Supplementary material for "Negative variance components and intercept-slope correlations greater than one in magnitude: How do such 'non-regular' random intercept and slope models arise, and what should be done when they do?" by Helen Bridge, Katy E Morgan, and Chris Frost

Technical Appendix

1 Eigenvalues and eigenvectors of ZGZ^T

From eigenvalue theory it is known that if A is an r-by-s matrix and B is an s-by-r matrix, such that $s \ge r$, then the s eigenvalues of BA are the r eigenvalues of AB, with the additional s - r eigenvalues being zero. It follows that ZGZ^T has only two non-zero eigenvalues, these being the eigenvalues of the 2-by-2 matrix GZ^TZ , with the remaining n - 2 eigenvalues all being zero.

Because $Z^T v_i = 0$ guarantees that $ZGZ^T v_i = 0$, the n - 2 non-defining eigenvectors (the eigenvectors with eigenvalues equal to zero) will be an arbitrary set of vectors orthogonal to the column vectors that make up Z (a column of 1's and a column of measurement times t_1 to t_n), while the eigenvectors that correspond to the defining eigenvalues (which we term the defining eigenvectors) will both be linear combinations of the column vectors that make up Z.

2 'Defining eigenvalues' and standard errors of $\hat{\beta}$

The defining eigenvalues of Σ also have relevance for the standard errors of $\hat{\beta}$ obtained when fitting the RIAS model to data. From standard theory Σ can be written as $V\Lambda V^T$ where V denotes the matrix of eigenvectors of Σ and Λ is a diagonal matrix of eigenvalues of Σ . Since V is a matrix of eigenvectors, $V^{-1} = V^T$ and so

$$\boldsymbol{\Sigma}^{-1} = (\boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^T)^{-1} = \boldsymbol{V}\boldsymbol{\Lambda}^{-1}\boldsymbol{V}^T. \tag{T1}$$

For a mixed model written (as in equation (2)) as $Y_i | b_i \sim N(X\beta + Zb_i, R_2)$,

$$V(\widehat{\boldsymbol{\beta}}) = \frac{1}{N} (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1}.$$
(T2)

Hence,

$$V(\widehat{\boldsymbol{\beta}}) = \frac{1}{N} (\boldsymbol{X}^T \boldsymbol{V} \boldsymbol{\Lambda}^{-1} \boldsymbol{V}^T \boldsymbol{X})^{-1}.$$
(T3)

For the RIAS model in equation (1) X = Z and so, because (as shown in Section 1) the nondefining eigenvectors of Σ are orthogonal to X, the matrix $X^T V$ has all but two columns that are made up of zeros. Analogously $V^T X$ has all but two rows that are made up of zeros. Further, these zero columns and rows multiply the reciprocal of the repeated, non-defining eigenvalue in Λ^{-1} . Hence the standard errors of $\hat{\beta}$ depend on the defining eigenvalues of Σ $(\theta_1 \text{ and } \theta_2)$ but not on the non-defining eigenvalues.

3 Impact of changing the number and timing of follow-up visits

The form of the PSD defining matrix D has implications concerning the number and timing of measurements. These follow from a theory due to Ostrowski¹. The theory relates to the situation where A is a symmetric 2-by-2 matrix with eigenvalues λ_1 and λ_2 and B is a 2-by-2

diagonal matrix with positive elements ($c_{max} \ge c_{min} > 0$). Ostrowski proves that the eigenvalues of AB are $d_1\lambda_1$ and $d_2\lambda_2$ where $c_{max} \ge d_i \ge c_{min}$ for i = 1, 2.

Now consider the RIAS model and suppose that we decrease *n* to *n*^{*} and *q* to *q*^{*} while keeping *G* constant. The effect of this is to post multiply GZ^TZ by a 2-by-2 diagonal matrix both of whose elements are less than 1 (*n*^{*}/*n* and *q*^{*}/*q* respectively). By the Ostrowski theory each of the defining eigenvalues of ZGZ^T (the eigenvalues of GZ^TZ) is multiplied by a number that lies between *n*^{*}/*n* and *q*^{*}/*q*, so reducing their magnitude. If the defining eigenvalues are initially positive, or negative but not less than $-\sigma_e^2$, they will remain not less than $-\sigma_e^2$. However, if we increase *n* and *q* while keeping *G* constant, we cannot guarantee that the defining eigenvalues will stay not less than $-\sigma_e^2$. If the defining eigenvalues are both initially non-negative then they will stay non-negative, but if one or both of them is negative then adding follow-up visits will increase the magnitude of that eigenvalue, potentially such that it is greater than σ_e^2 in magnitude. Indeed, when ZGZ^T has at least one negative eigenvalue, it is not possible to continually increase *n* and *q* while *G* remains unchanged: ultimately this must result in Σ no longer remaining PSD.

4 Non-linearity in fixed effects as a cause of non-regularity

Imagine that we observe y_{ij}^* , where $y_{ij}^* = y_{ij} + f_j$ and y_{ij} follows a simple RIAS model (as defined in equation (1)) that is regular, and $f_j = \sum_{k=2}^{n-1} \beta_k f_k(t_j)$ where each $f_k(t_j)$ is a polynomial function of time discretely orthogonal both to a constant and to linear time. For example, with data at five time points ($t_1 = -2$, $t_2 = -1$, $t_3 = 0$, $t_4 = 1$, $t_5 = 2$) one such set of discrete orthogonal polynomials is $f_2(t_j) = t_j^2 - 2$, $f_3(t_j) = (5t_j^3 - 17t_j)/6$ and $f_4(t_j) = (35t_j^4 - 155t_j^2 + 72)/12$, these giving the vectors $(2, -1, -2, -1, 2)^T$, $(-1, 2, 0, -2, 1)^T$ and $(1, -4, 6, -4, 1)^T$ respectively, which are mutually orthogonal and also orthogonal to $(-2, -1, 0, 1, 2)^T$ (ie, a vector of linear time) and $(1, 1, 1, 1, 1)^T$ (ie, a constant). Adding these three polynomials to the constant and linear terms puts no constraint on the means at the five time points, so any non-linearity in the relationship between the mean of the outcome and time can be accommodated.

Now contrast fitting the RIAS model in equation (1) to the observed y_{ij}^* rather than to y_{ij} . The y_{ij}^* do not follow the RIAS model, but because of the orthogonality of the $f_k(t_j)$ functions, the estimates of the fixed linear and constant terms, β_0 and β_1 , will be the same whether y_{ij}^* or y_{ij} is modelled. However, modelling y_{ij}^* rather than y_{ij} with the RIAS model will cause the expectation of the estimate of $\Sigma = R_n + ZGZ^T$ to change because there is now additional variability not accounted for by the fixed effects in the model. Further, the effect on $\Sigma = R_n + ZGZ^T$ is predictable because this additional variability is orthogonal to Z. Specifically, the defining eigenvalues of Σ will remain unchanged whilst the non-defining eigenvalue (ie, the residual variance represented by the diagonal elements of R) will increase in expectation by an amount equal to the residual variance from a simple linear regression of f_j on t_j .

If this increase in the non-defining eigenvalue of Σ is such that it remains smaller than the other two (defining) eigenvalues, then fitting the RIAS model to y_{ij}^* will give parameter estimates that correspond to a regular RIAS model. However, if the non-defining eigenvalue becomes larger than either of the other two, then parameter estimates that correspond to a non-regular RIAS model can result.

5 RIAS and random quadratic models for data at three evenly spaced time-points

For data at three evenly spaced time points, a number of mixed models that include all the terms in the simple RIAS model in equation (1) plus an additional random quadratic term all have the same marginal variance-covariance matrix. Specifically, all models parameterized as

$$y_{ij} = \beta_0 + \beta_1 t_j + b_{0i} + b_{1i} t_j + b_{2i} t_j^2 + e_{ij} : t_1 = -1, t_2 = 0, t_3 = 1$$
where $\binom{b_{0i}}{b_{1i}} \sim N \left[\binom{0}{0}, \binom{\sigma_{b0}^2 + 2k & \sigma_{b01} & -2k}{\sigma_{b01} & \sigma_{b1}^2 + k & 0}{-2k & 0 & 3k} \right]; e_{ij} \sim N [0, \sigma_e^2 - 2k]$
have $\operatorname{Var} \binom{y_{i1}}{y_{i2}} = \binom{\sigma_{b0}^2 + \sigma_{b1}^2 - 2\sigma_{b01} + \sigma_e^2 & \sigma_{b0}^2 - \sigma_{b01} & \sigma_{b0}^2 - \sigma_{b1}^2}{\sigma_{b0}^2 - \sigma_{b01} & \sigma_{b0}^2 + \sigma_e^2 & \sigma_{b0}^2 + \sigma_{b01} & \sigma_{b0}^2 + \sigma_{e1}^2 + 2\sigma_{b01} + \sigma_e^2 \end{pmatrix}$

for all choices of $k \leq \sigma_e^2/2$.

This demonstrates that if three-point data are compatible with the RIAS model (k = 0) then they are also compatible with a whole set of parameterizations of the 'random quadratic model'. So, we can think of non-regular RIAS model three-point data as being generated by a random quadratic model with parameters that cannot be uniquely estimated from the data. Further, one such parameterization is $k = \sigma_e^2/2$, which implies that $\Sigma = ZGZ^T$ and so (by the Ostrowski rule referred to in Section 3 above) if Σ is PSD then **G** will be too. So, a nonregular RIAS model for three-point data has at least one random quadratic model analogue that is regular.

6 Code for models fitted to the rat data^{2, 3}

6.1 SAS Code

```
/* Transform age to create time variable as modelled by
Molenberghs and Verbeke (2000) */
data rats;
  set rats.rats;
  time = log(1 + (age - 45) / 10);
run;
title "Random intercept and slope model, with 'nobound'
option";
proc mixed data = rats covtest nobound;
  class treat;
  model response = treat * time / solution;
  repeated / type = simple subject = rat r;
  random intercept time / type = un subject = rat g gcorr;
run;
title;
title "Random intercept and slope model model, without
`nobound'';
proc mixed data = rats covtest;
```

```
class treat;
  model response = treat * time / solution;
  repeated / type = simple subject = rat r;
  random intercept time / type = un subject = rat g gcorr;
run;
title;
title "Random intercept model";
proc mixed data = rats covtest;
  class treat;
  model response = treat * time / solution;
  repeated / type = simple subject = rat r;
  random intercept / type = un subject = rat g gcorr;
run;
title;
6.2
    Stata code
use "rats", clear
* Transform age to create time variable as modelled by
Molenberghs and Verbeke (2000)
gen time = log(1 + (age - 45) / 10)
* Convert treatment variable from string to numeric form
encode treat, gen(trt)
* Fit RIAS model with default output (random effects variances
and covariance)
mixed response i.tr#c.time || rat: time, reml
cov(unstructured) residuals(independent)
* Fit RIAS model with 'stddev' option for output including
random effects standard deviations and correlation
mixed response i.tr#c.time || rat: time, ///
     reml cov(unstructured) residuals(independent) stddev
6.3 R code
library(lme4)
rats <- read.csv("rats.csv")</pre>
# Transform age to create time variable as modelled by
Molenberghs and Verbeke (2000)
rats$time <- log(1 + (rats$age - 45) / 10)
```

Fit RIAS model

```
model <- lmer(response ~ treat: time + (1 + time | rat), data
= rats)
summary(model)
```

```
# Confirm that model is classed as a boundary (singular) fit
isSingular(model)
```

7 References

1. Horn RAJ, Charles R. Matrix Analysis. 2nd ed. Cambridge: Cambridge University Press; 2012.

2. Molenberghs G, Verbeke G. Linear Mixed Models for Longitudinal Data. New York: Springer; 2000.

3. Verdonck A, De Ridder L, Kühn R, Darras V, Carels C, de Zegher F. Effect of testosterone replacement after neonatal castration on craniofacial growth in rats. Arch Oral Biol. 1998;43(7):551-557. Dataset available at:

https://gbiomed.kuleuven.be/english/research/50000687/50000696/geertverbeke/datasets. Accessed November 5, 2023.