Supplementary material for "Negative variance components and intercept-slope correlations greater than one in magnitude: How do such 'non-regular' random intercept and slope models arise, and what should be done when they do?" by Helen Bridge, Katy E Morgan, and Chris Frost

Technical Appendix

1 Eigenvalues and eigenvectors of $\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$

From eigenvalue theory it is known that if \boldsymbol{A} is an r-by-s matrix and \boldsymbol{B} is an s-by- r matrix, such that $s \geq r$, then the s eigenvalues of $\boldsymbol{B} \boldsymbol{A}$ are the r eigenvalues of $\boldsymbol{A} \boldsymbol{B}$, with the additional $s-r$ eigenvalues being zero. It follows that $\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$ has only two non-zero eigenvalues, these being the eigenvalues of the 2 -by- 2 matrix $\boldsymbol{G} \boldsymbol{Z}^{\boldsymbol{T}} \boldsymbol{Z}$, with the remaining $n-2$ eigenvalues all being zero.

Because $\boldsymbol{Z}^{\boldsymbol{T}} \boldsymbol{v}_{i}=\mathbf{0}$ guarantees that $\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{\boldsymbol{T}} \boldsymbol{v}_{i}=\mathbf{0}$, the $n-2$ non-defining eigenvectors (the eigenvectors with eigenvalues equal to zero) will be an arbitrary set of vectors orthogonal to the column vectors that make up \boldsymbol{Z} (a column of 1 's and a column of measurement times t_{1} to t_{n}), while the eigenvectors that correspond to the defining eigenvalues (which we term the defining eigenvectors) will both be linear combinations of the column vectors that make up Z.

2 'Defining eigenvalues' and standard errors of $\widehat{\boldsymbol{\beta}}$
The defining eigenvalues of $\boldsymbol{\Sigma}$ also have relevance for the standard errors of $\widehat{\boldsymbol{\beta}}$ obtained when fitting the RIAS model to data. From standard theory $\boldsymbol{\Sigma}$ can be written as $\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}$ where \boldsymbol{V} denotes the matrix of eigenvectors of $\boldsymbol{\Sigma}$ and $\boldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues of $\boldsymbol{\Sigma}$. Since \boldsymbol{V} is a matrix of eigenvectors, $\boldsymbol{V}^{-1}=\boldsymbol{V}^{T}$ and so

$$
\begin{equation*}
\boldsymbol{\Sigma}^{-1}=\left(\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}\right)^{-1}=\boldsymbol{V} \boldsymbol{\Lambda}^{-1} \boldsymbol{V}^{T} . \tag{T1}
\end{equation*}
$$

For a mixed model written (as in equation (2)) as $\boldsymbol{Y}_{\boldsymbol{i}} \mid \boldsymbol{b}_{\boldsymbol{i}} \sim N\left(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{R}_{\mathbf{2}}\right)$,

$$
\begin{equation*}
V(\widehat{\boldsymbol{\beta}})=\frac{1}{N}\left(\boldsymbol{X}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}\right)^{-1} \tag{T2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
V(\widehat{\boldsymbol{\beta}})=\frac{1}{N}\left(\boldsymbol{X}^{T} \boldsymbol{V} \boldsymbol{\Lambda}^{-1} \boldsymbol{V}^{T} \boldsymbol{X}\right)^{-1} \tag{T3}
\end{equation*}
$$

For the RIAS model in equation (1) $\boldsymbol{X}=\boldsymbol{Z}$ and so, because (as shown in Section 1) the nondefining eigenvectors of $\boldsymbol{\Sigma}$ are orthogonal to \boldsymbol{X}, the matrix $\boldsymbol{X}^{T} \boldsymbol{V}$ has all but two columns that are made up of zeros. Analogously $\boldsymbol{V}^{T} \boldsymbol{X}$ has all but two rows that are made up of zeros. Further, these zero columns and rows multiply the reciprocal of the repeated, non-defining eigenvalue in $\boldsymbol{\Lambda}^{-1}$. Hence the standard errors of $\widehat{\boldsymbol{\beta}}$ depend on the defining eigenvalues of $\boldsymbol{\Sigma}$ (θ_{1} and θ_{2}) but not on the non-defining eigenvalues.

3 Impact of changing the number and timing of follow-up visits
The form of the PSD defining matrix \boldsymbol{D} has implications concerning the number and timing of measurements. These follow from a theory due to Ostrowski ${ }^{1}$. The theory relates to the situation where \boldsymbol{A} is a symmetric 2-by- 2 matrix with eigenvalues λ_{1} and λ_{2} and \boldsymbol{B} is a 2-by-2
diagonal matrix with positive elements $\left(c_{\max } \geq c_{\min }>0\right)$. Ostrowski proves that the eigenvalues of $\boldsymbol{A} \boldsymbol{B}$ are $d_{1} \lambda_{1}$ and $d_{2} \lambda_{2}$ where $c_{\max } \geq d_{i} \geq c_{\min }$ for $i=1,2$.

Now consider the RIAS model and suppose that we decrease n to n^{*} and q to q^{*} while keeping \boldsymbol{G} constant. The effect of this is to post multiply $\boldsymbol{G} \boldsymbol{Z}^{T} \boldsymbol{Z}$ by a 2 -by- 2 diagonal matrix both of whose elements are less than $1\left(n^{*} / n\right.$ and q^{*} / q respectively). By the Ostrowski theory each of the defining eigenvalues of $\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$ (the eigenvalues of $\boldsymbol{G} \boldsymbol{Z}^{T} \boldsymbol{Z}$) is multiplied by a number that lies between n^{*} / n and q^{*} / q, so reducing their magnitude. If the defining eigenvalues are initially positive, or negative but not less than $-\sigma_{e}^{2}$, they will remain not less than $-\sigma_{e}^{2}$. However, if we increase n and q while keeping \boldsymbol{G} constant, we cannot guarantee that the defining eigenvalues will stay not less than $-\sigma_{e}^{2}$. If the defining eigenvalues are both initially non-negative then they will stay non-negative, but if one or both of them is negative then adding follow-up visits will increase the magnitude of that eigenvalue, potentially such that it is greater than σ_{e}^{2} in magnitude. Indeed, when $\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$ has at least one negative eigenvalue, it is not possible to continually increase n and q while \boldsymbol{G} remains unchanged: ultimately this must result in Σ no longer remaining PSD.

4 Non-linearity in fixed effects as a cause of non-regularity

Imagine that we observe $y_{i j}^{*}$, where $y_{i j}^{*}=y_{i j}+f_{j}$ and $y_{i j}$ follows a simple RIAS model (as defined in equation (1)) that is regular, and $f_{j}=\sum_{k=2}^{n-1} \beta_{k} f_{k}\left(t_{j}\right)$ where each $f_{k}\left(t_{j}\right)$ is a polynomial function of time discretely orthogonal both to a constant and to linear time. For example, with data at five time points ($t_{1}=-2, t_{2}=-1, t_{3}=0, t_{4}=1, t_{5}=2$) one such set of discrete orthogonal polynomials is $f_{2}\left(t_{j}\right)=t_{j}^{2}-2, f_{3}\left(t_{j}\right)=\left(5 t_{j}^{3}-17 t_{j}\right) / 6$ and $f_{4}\left(t_{j}\right)=\left(35 t_{j}^{4}-155 t_{j}^{2}+72\right) / 12$, these giving the vectors $(2,-1,-2,-1,2)^{\mathrm{T}},(-1,2,0,-2,1)^{\mathrm{T}}$ and $(1,-4,6,-4,1)^{\mathrm{T}}$ respectively, which are mutually orthogonal and also orthogonal to $(-2$, $1,0,1,2)^{\mathrm{T}}$ (ie, a vector of linear time) and $(1,1,1,1,1)^{\mathrm{T}}$ (ie, a constant). Adding these three polynomials to the constant and linear terms puts no constraint on the means at the five time points, so any non-linearity in the relationship between the mean of the outcome and time can be accommodated.

Now contrast fitting the RIAS model in equation (1) to the observed $y_{i j}^{*}$ rather than to $y_{i j}$. The $y_{i j}^{*}$ do not follow the RIAS model, but because of the orthogonality of the $f_{k}\left(t_{j}\right)$ functions, the estimates of the fixed linear and constant terms, β_{0} and β_{1}, will be the same whether $y_{i j}^{*}$ or $y_{i j}$ is modelled. However, modelling $y_{i j}^{*}$ rather than $y_{i j}$ with the RIAS model will cause the expectation of the estimate of $\boldsymbol{\Sigma}=\boldsymbol{R}_{\boldsymbol{n}}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$ to change because there is now additional variability not accounted for by the fixed effects in the model. Further, the effect on $\boldsymbol{\Sigma}=\boldsymbol{R}_{\boldsymbol{n}}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$ is predictable because this additional variability is orthogonal to \boldsymbol{Z}. Specifically, the defining eigenvalues of $\boldsymbol{\Sigma}$ will remain unchanged whilst the non-defining eigenvalue (ie, the residual variance represented by the diagonal elements of \boldsymbol{R}) will increase in expectation by an amount equal to the residual variance from a simple linear regression of f_{j} on t_{j}.

If this increase in the non-defining eigenvalue of $\boldsymbol{\Sigma}$ is such that it remains smaller than the other two (defining) eigenvalues, then fitting the RIAS model to $y_{i j}^{*}$ will give parameter estimates that correspond to a regular RIAS model. However, if the non-defining eigenvalue becomes larger than either of the other two, then parameter estimates that correspond to a non-regular RIAS model can result.

5 RIAS and random quadratic models for data at three evenly spaced time-points
For data at three evenly spaced time points, a number of mixed models that include all the terms in the simple RIAS model in equation (1) plus an additional random quadratic term all have the same marginal variance-covariance matrix. Specifically, all models parameterized as

$$
y_{i j}=\beta_{0}+\beta_{1} t_{j}+b_{0 i}+b_{1 i} t_{j}+b_{2 i} t_{j}^{2}+e_{i j}: t_{1}=-1, t_{2}=0, t_{3}=1
$$

where $\left(\begin{array}{l}b_{0 i} \\ b_{1 i} \\ b_{2 i}\end{array}\right) \sim N\left[\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{ccc}\sigma_{b 0}^{2}+2 k & \sigma_{b 01} & -2 k \\ \sigma_{b 01} & \sigma_{b 1}^{2}+k & 0 \\ -2 k & 0 & 3 k\end{array}\right)\right] ; e_{i j} \sim N\left[0, \sigma_{e}^{2}-2 k\right]$
have $\operatorname{Var}\left(\begin{array}{l}y_{i 1} \\ y_{i 2} \\ y_{i 3}\end{array}\right)=\left(\begin{array}{ccc}\sigma_{b 0}^{2}+\sigma_{b 1}^{2}-2 \sigma_{b 01}+\sigma_{e}^{2} & \sigma_{b 0}^{2}-\sigma_{b 01} & \sigma_{b 0}^{2}-\sigma_{b 1}^{2} \\ \sigma_{b 0}^{2}-\sigma_{b 01} & \sigma_{b 0}^{2}+\sigma_{e}^{2} & \sigma_{b 0}^{2}+\sigma_{b 01} \\ \sigma_{b 0}^{2}-\sigma_{b 1}^{2} & \sigma_{b 0}^{2}+\sigma_{b 01} & \sigma_{b 0}^{2}+\sigma_{b 1}^{2}+2 \sigma_{b 01}+\sigma_{e}^{2}\end{array}\right)$
for all choices of $k \leq \sigma_{e}^{2} / 2$.
This demonstrates that if three-point data are compatible with the RIAS model $(k=0)$ then they are also compatible with a whole set of parameterizations of the 'random quadratic model'. So, we can think of non-regular RIAS model three-point data as being generated by a random quadratic model with parameters that cannot be uniquely estimated from the data. Further, one such parameterization is $k=\sigma_{e}^{2} / 2$, which implies that $\boldsymbol{\Sigma}=\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}$ and so (by the Ostrowski rule referred to in Section 3 above) if $\boldsymbol{\Sigma}$ is PSD then \boldsymbol{G} will be too. So, a nonregular RIAS model for three-point data has at least one random quadratic model analogue that is regular.

6 Code for models fitted to the rat data ${ }^{2,3}$

6.1 SAS Code

```
/* Transform age to create time variable as modelled by
Molenberghs and Verbeke (2000)*/
data rats;
    set rats.rats;
    time = log(1 + (age - 45) / 10);
run;
title "Random intercept and slope model, with 'nobound'
option";
proc mixed data = rats covtest nobound;
    class treat;
    model response = treat * time / solution;
    repeated / type = simple subject = rat r;
    random intercept time / type = un subject = rat g gcorr;
run;
title;
```

```
title "Random intercept and slope model model, without
```

title "Random intercept and slope model model, without
'nobound' ";
'nobound' ";
proc mixed data = rats covtest;

```
proc mixed data = rats covtest;
```

```
    class treat;
    model response = treat * time / solution;
    repeated / type = simple subject = rat r;
    random intercept time / type = un subject = rat g gcorr;
run;
title;
title "Random intercept model";
proc mixed data = rats covtest;
    class treat;
    model response = treat * time / solution;
    repeated / type = simple subject = rat r;
    random intercept / type = un subject = rat g gcorr;
run;
title;
```


6.2 Stata code

use "rats", clear

* Transform age to create time variable as modelled by Molenberghs and Verbeke (2000) gen time $=\log (1+($ age -45$) / 10)$
* Convert treatment variable from string to numeric form encode treat, gen(trt)
* Fit RIAS model with default output (random effects variances and covariance)
mixed response i.tr\#c.time |l rat: time, reml cov(unstructured) residuals(independent)
* Fit RIAS model with 'stddev' option for output including random effects standard deviations and correlation
mixed response i.tr\#c.time || rat: time, ///
reml cov(unstructured) residuals(independent) stddev

6.3 R code

library (lme4)
rats <- read.csv("rats.csv")
\# Transform age to create time variable as modelled by
Molenberghs and Verbeke (2000)
rats\$time <- log(1 + (rats\$age - 45) / 10)
\# Fit RIAS model

```
model <- lmer(response ~ treat: time + (1 + time | rat), data
= rats)
summary(model)
# Confirm that model is classed as a boundary (singular) fit
isSingular(model)
```

7 References

1. Horn RAJ, Charles R. Matrix Analysis. 2nd ed. Cambridge: Cambridge University Press; 2012.
2. Molenberghs G, Verbeke G. Linear Mixed Models for Longitudinal Data. New York: Springer; 2000.
3. Verdonck A, De Ridder L, Kühn R, Darras V, Carels C, de Zegher F. Effect of testosterone replacement after neonatal castration on craniofacial growth in rats. Arch Oral Biol. 1998;43(7):551-557. Dataset available at:
https://gbiomed.kuleuven.be/english/research/50000687/50000696/geertverbeke/datasets. Accessed November 5, 2023.
