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Technical Appendix 

1 Eigenvalues and eigenvectors of 𝒁𝒁𝒁𝒁𝒁𝒁𝑇𝑇 

From eigenvalue theory it is known that if A is an r-by-s matrix and B is an s-by-r matrix, 
such that 𝑠𝑠 ≥ 𝑟𝑟, then the s eigenvalues of BA are the r eigenvalues of AB, with the additional 
𝑠𝑠 − 𝑟𝑟 eigenvalues being zero. It follows that ZGZT has only two non-zero eigenvalues, these 
being the eigenvalues of the 2-by-2 matrix 𝑮𝑮𝒁𝒁𝑻𝑻𝒁𝒁, with the remaining 𝑛𝑛 − 2 eigenvalues all 
being zero. 

Because 𝒁𝒁𝑻𝑻𝒗𝒗𝑖𝑖 = 𝟎𝟎 guarantees that 𝒁𝒁𝒁𝒁𝒁𝒁𝑻𝑻𝒗𝒗𝑖𝑖 = 𝟎𝟎, the 𝑛𝑛 − 2 non-defining eigenvectors (the 
eigenvectors with eigenvalues equal to zero) will be an arbitrary set of vectors orthogonal to 
the column vectors that make up Z (a column of 1’s and a column of measurement times 𝑡𝑡1 
to 𝑡𝑡𝑛𝑛), while the eigenvectors that correspond to the defining eigenvalues (which we term the 
defining eigenvectors) will both be linear combinations of the column vectors that make up 
Z. 

2 ‘Defining eigenvalues’ and standard errors of 𝜷𝜷� 

The defining eigenvalues of 𝜮𝜮 also have relevance for the standard errors of 𝜷𝜷� obtained when 
fitting the RIAS model to data. From standard theory 𝜮𝜮 can be written as 𝑽𝑽𝚲𝚲𝑽𝑽𝑇𝑇 where 𝑽𝑽 
denotes the matrix of eigenvectors of 𝜮𝜮 and 𝚲𝚲 is a diagonal matrix of eigenvalues of Σ. Since 
𝑽𝑽 is a matrix of eigenvectors, 𝑽𝑽−1 = 𝑽𝑽𝑇𝑇 and so  

𝜮𝜮−1 = (𝑽𝑽𝚲𝚲𝑽𝑽𝑇𝑇)−1 = 𝑽𝑽𝚲𝚲−1𝑽𝑽𝑇𝑇.  (T1) 

For a mixed model written (as in equation (2)) as 𝒀𝒀𝒊𝒊|𝒃𝒃𝒊𝒊~𝑁𝑁(𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒃𝒃𝒊𝒊, 𝑹𝑹𝟐𝟐),  

𝑉𝑉�𝜷𝜷�� = 1
𝑁𝑁

(𝑿𝑿𝑇𝑇𝜮𝜮−1𝑿𝑿)−1.                      (T2) 

Hence,  

𝑉𝑉�𝜷𝜷�� = 1
𝑁𝑁

(𝑿𝑿𝑇𝑇𝑽𝑽𝚲𝚲−1𝑽𝑽𝑇𝑇𝑿𝑿)−1.               (T3) 

For the RIAS model in equation (1) 𝑿𝑿 = 𝒁𝒁 and so, because (as shown in Section 1) the non-
defining eigenvectors of Σ are orthogonal to 𝑿𝑿, the matrix 𝑿𝑿𝑇𝑇𝑽𝑽 has all but two columns that 
are made up of zeros. Analogously 𝑽𝑽𝑇𝑇𝑿𝑿 has all but two rows that are made up of zeros. 
Further, these zero columns and rows multiply the reciprocal of the repeated, non-defining 
eigenvalue in 𝚲𝚲−1. Hence the standard errors of 𝜷𝜷 � depend on the defining eigenvalues of 𝜮𝜮  
(𝜃𝜃1 and 𝜃𝜃2) but not on the non-defining eigenvalues.  

3 Impact of changing the number and timing of follow-up visits   

The form of the PSD defining matrix D has implications concerning the number and timing 
of measurements. These follow from a theory due to Ostrowski1. The theory relates to the 
situation where A is a symmetric 2-by-2 matrix with eigenvalues 𝜆𝜆1 and 𝜆𝜆2 and B is a 2-by-2 



diagonal matrix with positive elements (𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 > 0). Ostrowski proves that the 
eigenvalues of AB are 𝑑𝑑1𝜆𝜆1 and 𝑑𝑑2𝜆𝜆2 where 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑑𝑑𝑖𝑖 ≥ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑖𝑖 = 1, 2.  

Now consider the RIAS model and suppose that we decrease 𝑛𝑛 to 𝑛𝑛∗ and 𝑞𝑞 to 𝑞𝑞∗ while 
keeping G constant. The effect of this is to post multiply GZTZ by a 2-by-2 diagonal matrix 
both of whose elements are less than 1 (𝑛𝑛∗ 𝑛𝑛⁄  and 𝑞𝑞∗ 𝑞𝑞⁄  respectively). By the Ostrowski 
theory each of the defining eigenvalues of ZGZT (the eigenvalues of GZTZ ) is multiplied by a 
number that lies between 𝑛𝑛∗ 𝑛𝑛⁄  and 𝑞𝑞∗ 𝑞𝑞⁄ , so reducing their magnitude. If the defining 
eigenvalues are initially positive, or negative but not less than −𝜎𝜎𝑒𝑒2, they will remain not less 
than −𝜎𝜎𝑒𝑒2. However, if we increase 𝑛𝑛 and 𝑞𝑞 while keeping G constant, we cannot guarantee 
that the defining eigenvalues will stay not less than −𝜎𝜎𝑒𝑒2. If the defining eigenvalues are both 
initially non-negative then they will stay non-negative, but if one or both of them is negative 
then adding follow-up visits will increase the magnitude of that eigenvalue, potentially such 
that it is greater than 𝜎𝜎𝑒𝑒2 in magnitude. Indeed, when ZGZT has at least one negative 
eigenvalue, it is not possible to continually increase 𝑛𝑛 and 𝑞𝑞 while G remains unchanged: 
ultimately this must result in Σ no longer remaining PSD. 

4 Non-linearity in fixed effects as a cause of non-regularity   

Imagine that we observe 𝑦𝑦𝑖𝑖𝑖𝑖∗ , where 𝑦𝑦𝑖𝑖𝑖𝑖∗ = 𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑗𝑗 and 𝑦𝑦𝑖𝑖𝑖𝑖 follows a simple RIAS model (as 
defined in equation (1)) that is regular, and 𝑓𝑓𝑗𝑗 = ∑ 𝛽𝛽𝑘𝑘𝑓𝑓𝑘𝑘(𝑡𝑡𝑗𝑗)𝑛𝑛−1

𝑘𝑘=2  where each 𝑓𝑓𝑘𝑘�𝑡𝑡𝑗𝑗� is a 
polynomial function of time discretely orthogonal both to a constant and to linear time. For 
example, with data at five time points (𝑡𝑡1 = −2,  𝑡𝑡2 = −1,  𝑡𝑡3 = 0,  𝑡𝑡4 = 1,  𝑡𝑡5 = 2) one such 
set of discrete orthogonal polynomials is 𝑓𝑓2�𝑡𝑡𝑗𝑗� = 𝑡𝑡𝑗𝑗2 − 2, 𝑓𝑓3�𝑡𝑡𝑗𝑗� = �5𝑡𝑡𝑗𝑗3 − 17𝑡𝑡𝑗𝑗�/6 and 
𝑓𝑓4�𝑡𝑡𝑗𝑗� = �35𝑡𝑡𝑗𝑗4 − 155𝑡𝑡𝑗𝑗2 + 72�/12, these giving the vectors (2, -1,-2, -1, 2)T, (-1, 2, 0, -2, 1)T 
and (1, -4, 6, -4, 1)T respectively, which are mutually orthogonal and also orthogonal to (-2, -
1, 0, 1, 2)T (ie, a vector of linear time) and (1, 1, 1, 1, 1)T (ie, a constant). Adding these three 
polynomials to the constant and linear terms puts no constraint on the means at the five time 
points, so any non-linearity in the relationship between the mean of the outcome and time can 
be accommodated. 

Now contrast fitting the RIAS model in equation (1) to the observed 𝑦𝑦𝑖𝑖𝑖𝑖∗  rather than to 𝑦𝑦𝑖𝑖𝑖𝑖. 
The 𝑦𝑦𝑖𝑖𝑖𝑖∗  do not follow the RIAS model, but because of the orthogonality of the 𝑓𝑓𝑘𝑘�𝑡𝑡𝑗𝑗� 
functions, the estimates of the fixed linear and constant terms, 𝛽𝛽0 and 𝛽𝛽1, will be the same 
whether 𝑦𝑦𝑖𝑖𝑖𝑖∗  or 𝑦𝑦𝑖𝑖𝑖𝑖 is modelled. However, modelling 𝑦𝑦𝑖𝑖𝑖𝑖∗  rather than 𝑦𝑦𝑖𝑖𝑖𝑖 with the RIAS model 
will cause the expectation of the estimate of 𝜮𝜮 = 𝑹𝑹𝒏𝒏 + 𝒁𝒁𝒁𝒁𝒁𝒁𝑇𝑇 to change because there is now 
additional variability not accounted for by the fixed effects in the model. Further, the effect 
on 𝜮𝜮 = 𝑹𝑹𝒏𝒏 + 𝒁𝒁𝒁𝒁𝒁𝒁𝑇𝑇 is predictable because this additional variability is orthogonal to 𝒁𝒁. 
Specifically, the defining eigenvalues of 𝜮𝜮 will remain unchanged whilst the non-defining 
eigenvalue (ie, the residual variance represented by the diagonal elements of 𝑹𝑹) will increase 
in expectation by an amount equal to the residual variance from a simple linear regression of 
𝑓𝑓𝑗𝑗 on 𝑡𝑡𝑗𝑗.   

If this increase in the non-defining eigenvalue of 𝜮𝜮 is such that it remains smaller than the 
other two (defining) eigenvalues, then fitting the RIAS model to 𝑦𝑦𝑖𝑖𝑖𝑖∗  will give parameter 
estimates that correspond to a regular RIAS model. However, if the non-defining eigenvalue 
becomes larger than either of the other two, then parameter estimates that correspond to a 
non-regular RIAS model can result.  



5 RIAS and random quadratic models for data at three evenly spaced time-points   

For data at three evenly spaced time points, a number of mixed models that include all the 
terms in the simple RIAS model in equation (1) plus an additional random quadratic term all 
have the same marginal variance-covariance matrix. Specifically, all models parameterized as 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑗𝑗 + 𝑏𝑏0𝑖𝑖 + 𝑏𝑏1𝑖𝑖𝑡𝑡𝑗𝑗 + 𝑏𝑏2𝑖𝑖𝑡𝑡𝑗𝑗2 + 𝑒𝑒𝑖𝑖𝑖𝑖 ∶  𝑡𝑡1 = −1, 𝑡𝑡2 = 0, 𝑡𝑡3 = 1   

where �
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for all choices of 𝑘𝑘 ≤ 𝜎𝜎𝑒𝑒2/2. 

This demonstrates that if three-point data are compatible with the RIAS model (𝑘𝑘 = 0) then 
they are also compatible with a whole set of parameterizations of the ‘random quadratic 
model’. So, we can think of non-regular RIAS model three-point data as being generated by a 
random quadratic model with parameters that cannot be uniquely estimated from the data. 
Further, one such parameterization is 𝑘𝑘 = 𝜎𝜎𝑒𝑒2 2⁄ , which implies that Σ = ZGZT and so (by the 
Ostrowski rule referred to in Section 3 above) if Σ is PSD then G will be too. So, a non-
regular RIAS model for three-point data has at least one random quadratic model analogue 
that is regular. 

6 Code for models fitted to the rat data2, 3 

6.1 SAS Code 
 

/* Transform age to create time variable as modelled by 
Molenberghs and Verbeke (2000)*/ 
data rats; 
  set rats.rats; 
  time = log(1 + (age - 45) / 10); 
run; 
 
title “Random intercept and slope model, with ‘nobound’ 
option”; 
proc mixed data = rats covtest nobound; 
  class treat; 
  model response = treat * time / solution; 
  repeated / type = simple subject = rat r; 
  random intercept time / type = un subject = rat g gcorr; 
run; 
title; 
 
title “Random intercept and slope model model, without 
‘nobound’”; 
proc mixed data = rats covtest; 



  class treat; 
  model response = treat * time / solution; 
  repeated / type = simple subject = rat r; 
  random intercept time / type = un subject = rat g gcorr; 
run; 
title; 
 
title “Random intercept model”; 
proc mixed data = rats covtest; 
  class treat; 
  model response = treat * time / solution; 
  repeated / type = simple subject = rat r; 
  random intercept / type = un subject = rat g gcorr; 
run; 
title; 
 

6.2 Stata code 
 

use “rats”, clear 
 
* Transform age to create time variable as modelled by 
Molenberghs and Verbeke (2000) 
gen time = log(1 + (age – 45) / 10) 
 
* Convert treatment variable from string to numeric form 
encode treat, gen(trt) 
 
* Fit RIAS model with default output (random effects variances 
and covariance) 
mixed response i.tr#c.time || rat: time, reml 
cov(unstructured) residuals(independent) 
 
* Fit RIAS model with ‘stddev’ option for output including 
random effects standard deviations and correlation 
mixed response i.tr#c.time || rat: time, /// 
 reml cov(unstructured) residuals(independent) stddev 
 

6.3 R code 
 

library(lme4) 
rats <- read.csv(“rats.csv”) 
 
# Transform age to create time variable as modelled by 
Molenberghs and Verbeke (2000) 
rats$time <- log(1 + (rats$age – 45) / 10) 
 
# Fit RIAS model 



model <- lmer(response ~ treat: time + (1 + time | rat), data 
= rats) 
summary(model) 
 
# Confirm that model is classed as a boundary (singular) fit 
isSingular(model) 
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