LONDON
SCHOOL¢of

HYGIENE
&TROPICAL \ i )2
MEDICINE Ngz==

LSHTM Research Online

1l
—o—
1

Lee, SA; (2023) Spatial Modelling of Emerging Infectious Diseases: Quantifying the Role of Climate,
Cities and Connectivity on Dengue Expansion in Brazil. PhD thesis, London School of Hygiene &
Tropical Medicine. DOI: https://doi.org/10.17037/PUBS.04670982

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4670982/

DOI: https://doi.org/10.17037/PUBS.04670982

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Available under license. To note, 3rd party material is not necessarily covered under this li-
cense: http://creativecommons.org/licenses/by-nc-nd/4.0/

https://researchonline.lshtm.ac.uk


https://researchonline.lshtm.ac.uk/id/eprint/4670982/
https://doi.org/10.17037/PUBS.04670982
https://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk

LONDON
SCHOOL of
HYGIENE
S&TROPICAL
MEDICINE

Spatial Modelling of Emerging Infectious Diseases:
Quantifyig the Role of Climate, Cities and
Connectivity on Dengue Expansion in Brazil

Sophie Alice Lee

Thesis submitted in accordance with the requirements for the degree of
Doctor of Philosophy of the University of London

March 2023

Department of Infectious Disease Epidemiology
Faculty of Epidemiology and Population Health

London School of Hygiene & Tropical Medicine

Funded by The Royal Society



Declaration

| Sophie Alice Lee, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, | confirm that this has been indicated in the

thesis.

Signed:

Date: 30/09/22



Abstract

Over the past 50 years, dengue has been expanding globally into previously unaffected areas.
This has been attributed to climate change, urbanisation, and increased connectivity driven by
human movement. In Brazil, the rapid expansion of dengue has led to outbreaks occurring in
previously unaffected areas, including the temperate South region and remote areas of the
Amazon rainforest. In this thesis, | use spatial models to explore the drivers of dengue re-
emergence and expansion in 21% century Brazil. Spatial modelling techniques are used to
disentangle the effect of increasing temperatures in South Brazil and the contribution of human
movement around the Brazilian urban network to the expansion of the dengue transmission

Z0ne.

First, using Bayesian spatiotemporal models, | found an increased odds of dengue outbreaks in
highly urbanised, well-connected cities which had already experienced an outbreak and had
year-round temperatures suitable for dengue transmission (Chapter 2). Although these models
were able to capture the significant impact of temperature on the expansion of dengue into
South Brazil, they were unable to quantify the role of human movement in dengue expansion.
| conducted a systematic review to identify how spatial connectivity had been accounted for in
models of mosquito-borne disease transmission and the assumptions made about how spatial
connectivity arises (e.g., human movement between regions) (Chapter 3). Although the number
of spatial modelling papers had increased rapidly over the past 5 years, very few statistical
models considered connectivity arising due to human movement and there were no models
identified capable of accounting for multiple sources of spatial connectivity. Expanding current
state-of-the-art statistical frameworks using ideas from network-based mechanistic models

identified in this systematic review became the focus of the remainder of the thesis.

| developed a novel statistical modelling approach which can include multiple sources of
spatial connectivity, such as similarities between close areas and human movement, and
quantify the relative contribution of each source to the overall spatial structure of the model
outcome (Chapter 4). This framework was applied to dengue outbreak data for the whole of
Brazil between 2001 — 2020 (Chapter 5). Model results showed that human movement based
on commuting for work or education contributed very little to the overall spatial structure of
the number of outbreaks per municipality in Brazil, but this contribution was significantly

higher in North and Northeast Brazil compared to South Brazil.



In this thesis, | have explored the complex, interacting drivers of dengue expansion in Brazil
since 2001, including increasing temperatures in South Brazil and connections between cities
arising from human movement around the Brazilian urban network. Although this thesis
focuses on dengue expansion in Brazil, the methods presented here are flexible enough to be
applied in any Bayesian hierarchical model where spatial connectivity exists within the data.
Given the increasing risk of future pandemic pathogens due to increasing climate and
globalisation, robust modelling tools are essential to gain better understanding of infectious
disease emergence and identify areas at future risk of expansion.
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1. Introduction

1.1 Motivation

Recent public health emergencies such as the Zika epidemic in the Americas [1,2], the western
Africa Ebola outbreak [3,4] and the ongoing COVID-19 pandemic [5] have brought emerging
infectious diseases to the forefront of global health research. Changes in climate and land use
have led to increased cross-species contact and therefore increased the risk of spillover from
infectious zoonotic pathogens [6]. This, coupled with an increasingly connected world means
emerging diseases are spreading faster and further than ever [7]. Mathematical models are
important tools in understanding emerging infectious disease dynamics and predicting the
spread and persistence of these viruses [8]. Where expansion of a disease has occurred, spatial
models can be employed to explore the potential drivers of this emergence and identify areas
at risk of future expansion whilst accounting for spatial autocorrelation or connectivity across

a geographical area.

In this thesis, a spatial modelling framework is developed to quantify the role of climate
change, socioeconomic factors, and human movement on the expansion of emerging infectious
diseases. This framework is developed in the context of dengue re-emergence and expansion
in Brazil. In this chapter I introduce dengue and discuss its epidemiology and global burden.
Following this, I discuss the re-emergence of dengue in Brazil and introduce the hypothesised
drivers for the expansion of the dengue transmission zone. Finally, | introduce statistical
modelling methods that can be used to quantify the impact of potential drivers on emerging
infectious diseases. This chapter is concluded with the thesis aims, objectives, and the structure
of the thesis.

1.2 Dengue

Dengue is one of the world’s fastest growing communicable diseases, with the number of cases
doubling every decade over the past 30 years [9,10]. Dengue is transmitted to humans by the
bite of an infected female mosquito of the Aedes genus, primarily Aedes aegypti although Aedes
albopictus can transmit the virus less efficiently [9]. Aedes aegypti are now ubiquitous in
tropical and sub-tropical regions worldwide, while Aedes albopictus continue to expand into



temperate regions [11]. The rapid expansion of the global distribution of Aedes mosquitoes
and, subsequently, the arboviruses transmitted by them, has been attributed to rising
temperatures, increasing urbanisation, and increased global connectivity arising from human
movement [9,12-17]. Around half the world’s population are believed to live in areas at risk

of dengue infection [18].

Dengue is caused by a virus of the Flaviviridae family of which there are four genetically
distinct dengue serotypes (DENV-1 — 4). Infection from one serotype provides long-term
immunity against that particular serotype and short-term protection against others. However,
the risk of severe dengue increases upon secondary infection from another serotype [9]. Most
people with dengue will remain asymptomatic or develop mild symptoms, only around 25% of
cases are clinically apparent [18]. Dengue symptoms include fever, nausea, rashes, aches, and
lethargy. A small proportion of clinically apparent cases will progress to severe dengue or
dengue haemorrhagic fever (DHF), a potentially lethal form of the disease, characterised by
severe bleeding, plasma leakage and organ involvement [19]. Although there is no specific
treatment for dengue, supportive care can reduce mortality rates of severe dengue to below 1%
[20]. Despite low mortality rates compared to other mosquito-borne diseases like malaria,
dengue still has a huge burden, contributing to an estimated 2.9 million disability-adjusted life-
years (DALYSs) across the globe in 2017 [21].

Despite the huge global dengue burden, there is still no consensus on the optimal disease
control strategy. The World Health Organisation’s (WHO) current recommendations focus on
vector control, promoting an integrated vector management programme that combines
targeting mosquitoes directly (i.e., kill mosquitoes or their larvae using insecticides or
biological control agents), and indirectly (e.g., improvements in sanitation or environmental
modifications that aim to reduce potential mosquito habitat) [19]. However, there is a lack of
evidence that these measures are effective at reducing disease incidence or would be
sustainable in a wide-scale application [22,23]. Although several dengue vaccine candidates
are in development, only one has completed phase 3 trials, DENGVAXIA® [24,25]. The
vaccine has been licensed for use in 20 dengue-endemic countries but has been found to
significantly increase the risk of serious dengue and hospitalisations in patients that were
seronegative at administration [25,26]. The WHO currently recommends pre-vaccination
screening of serostatus before administering DENVAXIA® [27]. However, no rapid diagnostic

test validated for this purpose currently exists, and even if there were, this would present major



practical issues in a large-scale vaccination programme. A promising innovation in vector
control is releasing mosquitoes infected with Wolbachia, a bacteria that has been shown to
inhibit arbovirus infection in Aedes mosquitoes [28,29]. Modelling studies predict that
releasing Wolbachia-infected mosquitoes into dengue-endemic settings would significantly
reduce dengue infections, and in certain settings potentially lead to elimination [30,31]. These
were supported by experimental and quasi-experimental studies showing significant reductions
in dengue infections and hospitalisations in areas following the release of Wolbachia-infected
mosquitoes [32—36]. For these interventions to be as successful as possible, it is important to

target the most affected locations.

1.3 Dengue in Brazil

Dengue is hyper-endemic in Brazil, which means it experiences a persistent high level of
transmission with all four genetically distinct serotypes co-circulating [37]. Dengue was re-
introduced to Brazil in the 1980s, following the end of a successful mosquito eradication
campaign which led to the reinfestation of Brazil with Aedes aegypti [38]. Although the first
outbreak occurred in Boa Vista in 1981, dengue only became a public health problem 5 years
later when an outbreak in Rio de Janeiro spread rapidly along the coast to different states due
to the large number of people moving to and from the city [37-39]. The frequency and intensity
of dengue epidemics in Brazil have increased over the last 20 years [40]. The number of areas
experiencing outbreaks has also increased over this period [41]. Previous studies had identified
geographical barriers to dengue transmission, beyond which areas were relatively protected
from outbreaks [42]. A barrier to transmission was identified in South Brazil, a temperate
region which experiences cold winters, too cold for Aedes mosquitoes to effectively transmit
dengue virus [43,44]. However, temperatures in this region are increasing [45], and recent data
shows that outbreaks are now occurring as far south as Rio Grande do Sul [46]. Another barrier
was identified in the western Amazon, a relatively remote region which is mostly disconnected
from the Brazilian urban network [47], providing protection from the introduction of infectious
hosts and vectors. However, recent rapid and unplanned urbanisation without adequate
infrastructure, as well as improvements in transportation networks in the region have led to

explosive dengue outbreaks [48,49].



Dengue is a notifiable disease in Brazil and all suspected cases must be recorded in the Sistema
de Informacdo de Agravos de Notificacdo (SINAN) portal within 60 days [50]. During non-
epidemic periods, it is recommended all suspected cases are laboratory confirmed. However,
during epidemic periods cases are more often notified based on the Ministry of Health’s
syndromic definition. That is, someone that resides in an area or has travelled in the past 14
days to an area with occurrence of Aedes aegypti mosquitoes, experiences fever for between 2
and 7 days, and has at least 2 of the following symptoms: nausea/vomiting, rash, myalgia,
headache, petechiae and leukopenia [50]. Although the system is unified across the country
and covers all 5,570 municipalities, reporting rates can differ drastically across the country and
between epidemic and non-epidemic periods [51,52]. Surveillance is passive in Brazil which
means cases are likely underreported as many cases are mild or asymptomatic [18] and patients
may not seek medical assistance due to perceived low quality of healthcare or long waits during
epidemic periods [53]. One study estimated that there were 12 actual cases for every notified
case in Brazil, rising to over 17 in periods of low transmission [52]. Despite these issues, the
surveillance system is considered sensitive and robust [53], and although the accuracy of case
counts may differ, the Brazilian Observatory of Climate and Health noted that "there is no way

to hide an epidemic” [42].

1.3.1 Dengue and climate in Brazil

Due to its size, Brazil experiences a wide range of climatic, socioeconomic, and geographical
settings that may contribute to an areas’ suitability for dengue transmission. Brazil consists of
6 distinct biomes, defined by their vegetation and climate system, according to the Brazilian
Institute of Geography and Statistics (IBGE) [54]. These are Amazon, Atlantic Forest, Cerrado,
Caatinga, Pampa and Pantanal (Figure 1a). The largest biome is the Amazon which covers 49%
of Brazil and mostly consists of tropical rainforest. The Amazon biome experiences a humid,
equatorial climate which means year-round high temperatures and high levels of precipitation.
This contrasts greatly with the Caatinga biome which covers around 10% of Brazil and is
characterised by a semi-arid climate with very little rainfall, and the Pampa biome which
consists temperate grasslands with cold winter temperatures. An alternative definition of
Brazil’s climate system is the Koppen climate classification, which uses temperature and
precipitation to categorise climates [55]. Brazil consists of 3 zones: A (tropical climate), B (dry

climate), and C (temperate climate), and 9 distinct climate types (Figure 1b) [56]. However,



there is evidence to suggest that these zones are no longer stable, and that climate change is

leading to a reduction in the proportion of wet tropical and temperate climate zones [45].

Climate class

Biome l AF
. Amazon AM
Atlantic rainforest AS
Caatinga AW
- Cerrado B8SH
Pampa CFA
. Pantanal l cFB

CWA

. cwB

Figure 1: Climate zones of Brazil described using a) biomes and b) Kodppen climate
classification. Koppen classification groups: Af: Tropical rainforest climate, Am: Tropical
monsoon climate, As: Tropical dry savanna climate, Aw: Tropical wet savanna, BSh: Hot semi-
arid climate, Cfa: Humid sub-tropical climate, Cfb: temperate oceanic climate, Cwa: Monsoon

subtropical climate, Cwb: Subtropical highland climate.

Ambient temperature is an important consideration in mosquito-borne disease dynamics as it
affects mosquito biology. The ability of mosquitoes to survive, reproduce and transmit viruses
are altered by temperature [17,43,44]. Temperatures can also modify human behaviour, which
impacts interaction between hosts and vectors. In Brazil, dengue is transmitted by Aedes
aegypti and, to a lesser extent, Aedes albopictus mosquitoes. A modelling study showed that
Aedes mosquitoes were only able to transmit dengue virus between 16.2°C and 34.5°C [44].
Seasonal temperature variation has also been shown to impact the size and duration of
epidemics [57]. Most of Brazil experiences year-round temperature suitability for dengue

transmission, except South Brazil that experiences cold winters.

Hydrometeorological factors, such as precipitation and drought, are also important drivers of
dengue transmission, although their impacts are complex and often delayed. As Aedes
mosquitoes breed in pools of standing water, increased precipitation can lead to additional
habitat and therefore increased cases. However, too much precipitation can flush the larvae out

and reduce the number of mosquitoes in an area [58,59]. Alternatively, periods of extreme



drought, particularly in areas with inadequate access to piped water, can change water storage
behaviours and create additional breeding sites [60,61]. One study found that the risk of dengue
in Brazil increased shortly after (0 — 3 months) extremely wet conditions but at a longer lag (3
— 5 months) following drought conditions, particularly in areas that experienced a higher

frequency of water supply shortages [62].

1.2.2 Dengue, cities and connectivity in Brazil

Brazil comprises 5 geo-political regions (North, Northeast, South, Southeast and Centre-West,
Figure 2a) which consist of 26 states and one federal district containing the capital, Brasilia
(Figure 2b). These regions vary greatly in terms of wealth, level of urbanisation and access to
basic services. Dengue is typically an urban disease due to the evolution of Aedes mosquitoes
to thrive alongside humans, breeding in manmade water storage containers or pools of water
created by refuse [14]. Both Aedes aegypti and Aedes albopictus are widespread across Brazil
[11], with Aedes aegypti predominantly found in urban settings and Aedes albopictus typically
found in peri-urban and rural areas [12]. However, there is evidence that the primary vector,

Aedes aegypti, is expanding into peri-urban and rural areas across Latin America [63,64].
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Figure 2: The organisation of Brazil into a) 5 geo-political regions, and b) 27 federal units.
Abbreviations: AC = Acre, AL = Alagoas, AP = Amapa, AM = Amazonas, BA = Bahia, CE =
Ceara, DF = Distrito Federal, ES = Espirito Santo, GO = Goias, MA = Maranhdo, MT = Mato
Grosso, MS = Mato Grosso do Sul, MG = Minas Gerais, PA = Para, PB = Paraiba, PR = Paran4,
PR = Pernambuco, Pl = Piaui, RJ = Rio de Janeiro, RN = Rio Grande do Norte, RS = Rio



Grande do Sul, RO = Ronddnia, RR = Roraima, SC = Santa Catarina, SP = Sao Paulo, SE =
Sergipe, TO = Tocantins.

According to the 2010 census, the percentage of households with access to piped water, the
sewage network, and refuse collection ranged from 0 to 100% [65]. Access to basic services is
highly correlated to the level of urbanisation in Brazil (Appendix B.1, Figure D). In general,
rural communities in the historically poorer North region had the lowest levels of access,
compared to the traditionally wealthier, highly urbanised South and Southeast regions (Figure
3a). However, levels of access to the piped water network does not guarantee this is reliable,
as is the case in S&o Paulo which experiences intermittent water supply due to increasingly
severe droughts despite being one of the wealthiest cities in Brazil with the highest access to
basic services [66]. Residents without access to reliable water networks must rely on alternative
approaches, such as rainwater collection, which may create Aedes breeding habitats if not

properly maintained [67].

A B

Figure 3: a) Percentage of residents with access to the piped water network in 2010 (source:
IBGE demographic census [65]) and b) links between cities arising from the movement of

people and goods around the Brazilian urban network (source: REGIC 2018 [47]).

In addition to socioeconomic differences between regions, patterns of human movement also
differ greatly across Brazil. Approximately every 10 years, IBGE publishes the Regions of

Influence of Cities (“Regides de Influéncia das Cidades”, REGIC) study which aims to recreate



the Brazilian urban network and describe the hierarchies and links between cities across Brazil.
The latest REGIC study uses data from 2018 [47]. The urban network aims to explain the flow
of people, goods, and services between cities within Brazil. This is based on a survey carried
out in every municipality in Brazil which collects information including public transport
connections, air travel connections, and residents’ travel habits: where residents travel for
work, education, healthcare, shopping, and other recreational activities. Cities are categorised

into five levels of influence based on their ‘attractiveness’ within the urban network. These are:

1. Metropolis: the largest and most connected cities in Brazil, characterised by a strong
connection across the entire country and internationally. There were 15 metropoles in
the 2018 REGIC network (increased from 12 in the 2007 study [68]), including the
capital Brasilia, other large state capitals such as S&o Paulo and Rio de Janeiro, and
Campinas in Sdo Paulo state, the only metropolis which is not a state capital. All
connections within the urban network converge to one or more metropolis.

2. Regional capital: large cities that are characterised by strong attraction within the region
they are located and to metropoles. There were 97 municipalities classified as regional
capitals in the 2018 study, including state capitals not classified as metropoles such as
Rio Branco, Campo Grande and Porto Velho, and other large cities.

3. Sub-regional capital: cities with a lower level of connectivity than regional capitals but
still have visitors from smaller cities for ‘less complex’ activities (for example non-
specialist healthcare). These are mostly connected locally and to the three largest
metropoles.

4. Zone centre: smaller cities, mostly visited by residents from neighbouring cities for
commerce.

5. Local centre: smallest cities in the network that are generally used by residents for daily
activities such as shopping. Local centres do not typically have any influence outside

their limits and are not the main destination for any other city.

The REGIC study found that patterns of movement and connectivity differed vastly between
regions of Brazil. For example, the Southeast has the most ‘high-level’ centres (e.g., metropoles
and regional capitals) as it is home to some of the largest cities in Brazil, contributing a large
proportion of the national income. In contrast, the Northeast comprises mostly ‘lower-level’
cities (e.g., zone and local centres) as residents tend to travel to neighbouring cities rather than

travel large distances (Figure 3b). There was only one metropolis located in the North region,



Manaus. Although Manaus is far from being classified as the most influential city in the urban
network, it has the largest average distance travelled to reach the city (316km, over double the
distance travelled to the second highest which is Brasilia at 145km). Despite this huge reach,
Manaus’ region of influence has the lowest GDP of any metropolis (less than R$§100 billion

annually) [47].

Human movement is an important consideration when modelling any infectious disease as
movement drives contact between susceptible populations and infectious hosts. The
contribution of human movement to disease transmission depends on the timescale and mode
of transmission, and the geographical scale of interest [69,70]. Studies have shown that
simplifying human movement behaviour, either by assuming no movement or random mixing,
can lead to inaccurate and exaggerated inferences about mosquito-borne disease transmission
patterns [71,72]. Within Brazil, there is evidence to suggest that long-distance travel between
cities has contributed to the expansion of dengue outbreaks across the country [42,48,73] and

that intra-city movement is important in predicting outbreaks at a local level [74].

1.4 Statistical models of emerging infectious diseases

Statistical models of emerging infectious diseases allow us to identify key drivers of disease
expansion and predict regions at risk of future emergence based on observed data. Models can
vary in complexity depending on the nature of relationships between the response and
explanatory variables, including nonlinear and lagged variables where necessary. This is
particularly important when investigating the impact of climatic change on arbovirus
expansion, which is complex, nonlinear and often delayed by periods of up to several months
[62,75]. When considering disease emergence across a geographical area, it is also important
to consider the underlying spatial structure of the data, in particular spatial connectivity that
can play an important role in the importation of diseases from endemic areas with ongoing

transmission to disease-free areas [69,76,77].

Statistical models assume some underlying probability model of the outcome described by
unobserved parameters. These parameters are estimated via an inferential approach using
observed data. There are many different approaches to making these inferences, this thesis uses

a Bayesian approach. Bayesian inference is a branch of statistics based on Bayes theorem



(Equation 1), which allows the inclusion of some prior belief in the model fitting process. In
Bayesian analysis, parameter estimates and model predictions are based on the posterior
distribution p(@|y), the probability of parameters @ = 6,, 8,, ... conditional on data y. This
posterior distribution represents our current knowledge of the problem by updating the prior
belief (represented by the prior distribution p(@)) using observed data (represented by the
likelihood p(y|0)) [78,79]:

_pr0.y) _p@p(y16)
r(y) r(y)

p(6ly) (D

Where p(y) = fe p(0)p(y|08) when @ are continuous.

Bayesian hierarchical models are a common approach used to model spatial and spatiotemporal
data as expected spatial and/or temporal structures can be incorporated into their prior
distribution [78,80,81]. Random terms are included in the model to account for residual
autocorrelation and/or account for pooling within the data. In spatial models for emerging
diseases, this autocorrelation can arise due to unobserved shared characteristics between close
areas (for example, due to similar climates, vector-control programmes, and levels of immunity
within communities) or from human and vector movement creating connections between areas.
The prior distribution of these random terms is defined using some unknown
hyperparameter(s), ¢, which has its own prior distribution and can be defined using some
spatial and/or temporal structure (for examples, see [78-83]). The prior distribution therefore
becomes a joint prior, defining the prior belief of model parameters @ and their
hyperparameters ¢, p(0, @) = p(0|¢@)p(¢). The posterior distribution defined in Equation 1

can be rewritten as:

_p0,9)p(y16,¢) _p6le)r(e)r(y10)
467 r(y)

p(0,9ly) (2)

Note that p(y|0, @) = p(y|0) as the data distribution is only dependent on the model

parameters @, as the hyperparameters only affect the data through 6.

1.4.1 Bayesian hierarchical model estimation
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Although the formulation of the posterior distribution is generally well defined (Equation 2),
the multi-dimensional integral in the denominator is often hard, if not impossible, to calculate.
There are several approaches that have been developed to aid the derivation of the posterior
distribution which can broadly be classified into three groups: simulation-based,

approximation, and empirical approaches.

Simulation-based Bayesian inference

Markov chain Monte Carlo (MCMC) methods are a collection of algorithms used to simulate
samples from probability distributions. Within Bayesian statistics, they remove the need to
calculate the complex integral in the denominator of the posterior distribution (Equation 2).
They work by drawing samples of parameters @ from approximate distributions and then
correct these to obtain better approximations from the target posterior distribution [78]. MCMC
IS an iterative process, with each sampled value depending on the last value drawn, forming a
Markov chain. As the approximate distribution is improved at each step, the basis of MCMC

is that it will eventually converge to the target population, in this case the posterior distribution.

One of the main advantages of MCMC is that we do not need to know the full form of the
distribution we are sampling from (only up to the normalising constant), allowing estimation
of very complex distributions with many parameters (as is often the case when including
random terms into a model). The development of the user-friendly, flexible BUGS language
[87] and the programmes inspired by this [87-91] have made implementation more accessible
and efficient than ever. In particular, the NIMBLE package allows users to define novel
modelling frameworks and sampling algorithms which allows inference beyond general
models included in other software packages [91,92]. Despite these advances, MCMC methods

are still extremely computationally intensive and issues can arise with convergence.

Approximation methods for Bayesian inference

Integrated nested Laplace approximation (INLA) presents a less computationally intensive
alternative to Bayesian simulation approaches [93,94]. INLA performs approximate Bayesian
inference on a class of models known as latent Gaussian models (LGMSs) and returns an
approximation of the posterior distribution. LGMs are a class of additive models that aim to
explain the relationship between an outcome of interest and covariates whilst accounting for
some unobservable (latent) structure, including hierarchical models (where the latent structure

can define spatial and/or temporal autocorrelation [81,82]). The latent structure, consisting of

11



unobserved parameter and hyperparameters, is assumed to follow a Gaussian Markov random
field (GMRF). That is, a random field that follows a multivariate Gaussian distribution and
satisfies the Markov property of conditional independence [95]. A common example of a latent
structure that satisfies the GMRF assumption is the conditional autoregressive (CAR) spatial
structure where regions are considered connected if and only if they share a border [84]. This
GMREF structure means that the parameters and hyperparameters will have a sparce precision
matrix, speeding up computation. Under these conditions, INLA can calculate the joint
posterior distribution of the latent field (model parameters and hyperparameter) and obtain the

posterior marginal distributions using Laplace approximation, a mathematical approach used

to estimate integrals of the form fab eMf D dx [93].

Bayesian inference using INLA can be implemented using the R-INLA package which
provides a range of pre-built options to specify model priors, including spatial and temporal
structures [83,85,94,96]. R-INLA includes the most commonly used prior structures, including
CAR models. However, this approximation method lacks the flexibility of MCMC approaches,
which allow users to fully specify the model.

Empirical Bayesian inference

Both MCMC and INLA are examples of fully Bayesian approaches which require users to
specify their prior beliefs of structures within the data before model fitting. Empirical
approaches allow these underlying structures to be estimated as part of the model fitting process
using the data. This is particularly useful in scenarios where the spatial structure of the data is
not fully understood. Although generalised additive models (GAMs) are typically considered
a frequentist modelling approach, they can be extended to include smooth spatial and/or
temporal random terms which can be interpreted from a Bayesian perspective [97]. This class

of models are also known as structured additive regression (STAR) models [98].

Smooth terms are generated by applying smoothing splines to some representation of the
structure within the data (e.g., coordinates if assuming spatial connectivity arising between
close observations). Smoothing splines are estimated using restricted maximum likelihood
(REML) which imposes a penalty matrix, ensuring that they are not ‘overly wiggly’ [99]. This
penalty matrix can be viewed as a prior belief from a Bayesian perspective and can be

formalised into a prior distribution [97]. The mgcv package in R can fit these models and
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generate simulations from the posterior distribution of model parameters [100]. The empirical
smoothing spline approach presents an efficient, flexible alternative to fully Bayesian
approaches when the structure of the data is not fully understood. A more detailed description

of this approach can be found in Appendix A.

1.5 Aim

The overall aim of this research is to understand the complex, interacting drivers of dengue
expansion in Brazil. In particular, the goal is to understand the contribution of increasing
temperatures in South Brazil and connectivity between cities arising from human movement to

the expansion of the dengue transmission zone in Brazil.

1.5.1 Objectives

To achieve this aim, | will address the following objectives:

1. Explore the impact of temperature suitability, urbanisation, and connectivity of cities
to the Brazilian urban network on the expansion of the dengue transmission zone in
Brazil.

2. Identify spatial modelling techniques currently used to study mosquito-borne disease
transmission and the assumptions made in modelling studies about how spatial
connectivity arises, and describe the data used to inform spatial models.

3. Develop a statistical modelling framework capable of accounting for multiple sources
of spatial connectivity and quantifying the relative contribution of each source to the
overall spatial structure of the data.

4. Quantify the relative contribution of human movement to the expansion of dengue

outbreaks in Brazil.

1.6 Thesis structure

This thesis is written in a research paper style, where analysis chapters are written in the style
of a scientific paper for publication and are preceded by a bridging section. This thesis includes
four analysis chapters, preceded by the current introductory chapter, followed by a discussion

section. The remaining chapters are as follows:
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Chapter 2: The impact of climate suitability, urbanisation, and connectivity on the
expansion of dengue in 21st century Brazil. This chapter was published in PLOS Neglected
Tropical Diseases in December 2021 [101] and addresses Objective 1. It uses a Bayesian
spatiotemporal model to explore the association between dengue outbreaks in Brazil between
2001 — 2020, and temperature suitability, urbanisation and level of influence of cities in the
Brazilian urban network. The paper also quantifies the relative contribution of each factor in
turn and provides refined geographical barriers and updated limits to the dengue transmission

zone in Brazil based on new data and modelling results.

Chapter 3: Spatial connectivity in mosquito-borne disease models: a systematic review of
methods and assumptions. This chapter was published in the Journal of the Royal Society
Interface in May 2021 [102]. This systematic review addresses Objective 2 by synthesising the
spatial methods described in the literature to model mosquito-borne diseases, their spatial

connectivity assumptions and the data used to inform spatial model components.

Chapter 4: A Bayesian model framework to quantify multiple sources of spatial variation
for disease mapping. This chapter was published in the Journal of the Royal Society Interface
in September 2022 [103]. The paper addresses Objective 3 and presents a novel modelling
framework which allows multiple sources of spatial connectivity to be included within a
statistical model (in this case, autocorrelation between close regions and connections arising
due to human movement). Through Bayesian inference and simulations, the relative
contribution of each spatial connectivity element to the overall model structure can be
quantified. This chapter contains model derivation, results of simulation studies, and a case

study in which this method is applied to dengue incidence data from South Brazil.

Chapter 5: Quantifying the relative contribution of human movement to the expansion
of dengue outbreaks in Brazil. This paper is currently being prepared for submission and
addresses Objective 4. The modelling framework presented in Chapter 4 is applied to dengue
outbreak data between 2001 — 2020 from Brazil. The model includes spatially structured terms
to account for spatial autocorrelation between close regions and connections arising due to
human movement based on commuting. The relative contribution of the human movement-

based term is produced for Brazil as a whole, and for each region separately.
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Chapter 6: Discussion. This chapter provides an overall conclusion of the thesis and presents

strengths and limitations of the work carried out. Suggestions for future work are also

presented.
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2. The Impact of climate suitability,
urbanisation, and connectivity on the expansion

of dengue in 21st century Brazil

Bridging section
In this chapter, | present a published research study, which explores the impact of temperature
suitability, urbanisation, and connectivity to the Brazilian urban network on the expansion of

the dengue transmission zone in Brazil between 2001 and 2020 (Objective 1).

Previous studies identified geographical barriers to dengue transmission, beyond which areas
of the country were relatively protected from outbreaks!. These barriers included South Brazil,
a temperate part of the country which experiences cold winter temperatures, too cold for Aedes
mosquitoes to effectively transmit dengue virus to humans. The other dengue transmission
barrier existed in the western Amazon region of Brazil, a relatively remote area of the country
with many municipalities only accessible by long boat journeys. More recent epidemiological
reports showed that these barriers have been eroded and dengue outbreaks now occur beyond

these previous barriers?.

This chapter uses dengue incidence data from the Brazilian surveillance system between 2001
— 2020 to redefine the geographical limits of the dengue transmission zone in Brazil* and
investigate potential drivers of the erosion of transmission barriers. 1 use a Bayesian
spatiotemporal model to quantify the role of increased temperatures in South Brazil and
increased connectivity to and within the western Amazon region in the expansion of the dengue

transmission zone.
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This chapter was published in PLOS Neglected Tropical Diseases in December, 20213, | have

included the published version of this paper. Supplementary materials referred to in the paper
can be found in Appendix B.

L Barcellos C, Lowe R. 2014 Expansion of the dengue transmission area in Brazil: the role of climate and cities. Trop. Med.
Int. Health 19, 159-168. (doi:10.1111/tmi.12227)

2 Secretaria de Vigilancia em Sadde. 2022 Monitoramento dos casos de arboviroses até a semana epidemioldgica 18 de 2022.
3 Lee SA, Economou T, Catdo R de C, Barcellos C, Lowe R. 2021 The impact of climate suitability, urbanisation, and

connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl. Trop. Dis. 15, e0009773.
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Abstract

Dengue is hyperendemic in Brazil, with outbreaks affecting all regions. Previous studies
identified geographical barriers to dengue transmission in Brazil, beyond which certain
areas, such as South Brazil and the Amazon rainforest, were relatively protected from out-
breaks. Recent data shows these barriers are being eroded. In this study, we explore the
drivers of this expansion and identify the current limits to the dengue transmission zone. We
used a spatio-temporal additive model to explore the associations between dengue out-
breaks and temperature suitability, urbanisation, and connectivity to the Brazilian urban net-
work. The model was applied to a binary outbreak indicator, assuming the official threshold
value of 300 cases per 100,000 residents, for Brazil's municipalities between 2001 and
2020. We found a nonlinear relationship between higher levels of connectivity to the Brazil-
ian urban network and the odds of an outbreak, with lower odds in metropoles compared to
regional capitals. The number of months per year with suitable temperature conditions for
Aedes mosquitoes was positively associated with the dengue outbreak occurrence. Tem-
perature suitability explained most interannual and spatial variation in South Brazil, confirm-
ing this geographical barrier is influenced by lower seasonal temperatures. Municipalities
that had experienced an outbreak previously had double the odds of subsequent outbreaks.
We identified geographical barriers to dengue transmission in South Brazil, western Ama-
zon, and along the northern coast of Brazil. Although a southern barrier still exists, it has
shifted south, and the Amazon no longer has a clear boundary. Few areas of Brazil remain
protected from dengue outbreaks. Communities living on the edge of previous barriers are
particularly susceptible to future outbreaks as they lack immunity. Control strategies should
target regions at risk of future outbreaks as well as those currently within the dengue trans-
mission zone.
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Author summary

Dengue is a mosquito-borne disease that has expanded rapidly around the world due to
increased urbanisation, global mobility and climate change. In Brazil, geographical barri-
ers to dengue transmission exist, beyond which certain areas including South Brazil and
the Amazon rainforest are relatively protected from outbreaks. However, we found that
the previous barrier in South Brazil has shifted further south as a result of increased tem-
perature suitability. The previously identified barrier protecting the western Amazon no
longer exists. This is particularly concerning as we found dengue outbreaks tend to
become established in areas after introduction. Highly influential cities with many trans-
port links had increased odds of an outbreak. However, the most influential cities had
lower odds of an outbreak than cities connected regionally. This study highlights the
importance of monitoring the expansion of dengue outbreaks and designing disease pre-
vention strategies for areas at risk of future outbreaks as well as areas in the established
dengue transmission zone.

Introduction

Dengue is considered one of the top 10 threats to global health [1], with around half the
world’s population living in areas at risk of infection [2]. Incidence rates have doubled each
decade in the past 30 years as a result of increased urbanisation, global mobility and climate
change [2-4]. All 4 dengue serotypes are endemic to Brazil, which experiences frequent out-
breaks across the country [5]. Previous studies identified geographical barriers to dengue
transmission beyond which regions were relatively protected. This included South Brazil,
where seasonal temperatures are too cold for vectors to efficiently transmit the virus, areas of
high altitude in Southeast Brazil and remote regions of the western Amazon [6]. However,
these barriers are being eroded and the dengue transmission area in Brazil has expanded over
the past decade. This expansion is thought to be linked to increased human mobility and
changes in climate [7,8].

For dengue to become established in a new region, the environment must be suitable to
support the propagation of the dengue vector, Aedes mosquitoes. There are two vectors present
in Brazil capable of transmitting the dengue virus: Aedes aegypti and Aedes albopictus. Cur-
rently only Aedes aegypti are considered responsible for dengue transmission in Brazil [9,10],
however a recent study identified Aedes albopictus infected by dengue virus in a rural area of
Brazil during an outbreak, which could indicate their involvement in the introduction of den-
gue to rural areas [11]. Aedes aegypti have evolved to live in urban environments close to
humans [12] but there is evidence to suggest they are becoming established in peri-urban and
rural regions of South America [13,14]. Conversely, Aedes albopictus are typically found in
peri-urban areas but have been identified in densely urbanised areas such as urban slums in
Brazil [9,15]. Aedes mosquitoes breed in pools of standing, clean water created by water storage
containers or uncollected refuse. These conditions arise when rapid urbanisation occurs with-
out adequate improvements to infrastructure, such as access to piped water and refuse collec-
tion [16,17]. There is evidence that areas lacking reliable access to piped water are more
susceptible to dengue outbreaks, particularly in highly urbanised areas following drought [18].
Prior studies have found that extremely wet conditions also increased the risk of dengue out-
breaks, thought to be linked to the creation of larval habitat in the short term [18,19]. Suitable
temperature conditions are required for the mosquitoes to breed and transmit the virus. Aedes
aegypti are unable to survive in temperatures below 10°C or above 40°C [20] and can only
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transmit the virus between 17.8°C and 34.5°C [21,22]. Aedes albopictus are more suited to cooler
temperatures and can transmit the virus between 16.2°C and 31.4°C [21,22]. Recent outbreaks
in temperate cities of South America have shown that epidemics are still possible in regions
that experience seasonal temperatures outside of this range due to human movement [23-25].

The expansion of Aedes aegypti and the arboviruses they transmit into rural parts of the
Amazon has been linked to connections to and within the area by air, road or boat [13,26].
Despite this, the investigation of spatial connections created by human movement is little
explored in the literature and the vast majority of spatial modelling studies of mosquito-borne
diseases assume connectivity is based on distance alone [27]. Brazilian cities are connected to
one another within a complex urban network, described within the Regions of influence of cit-
ies ("Regides de Influéncia das Cidades”, REGIC) studies carried out by the Brazilian Institute
of Geography and Statistics [28,29]. People often travel great distances to reach large urban
centres as they contain important educational, business or cultural institutions. Failure to
account for long-distance movements may miss important drivers of dengue expansion, par-
ticularly in areas such as the Amazon where the average distance travelled to Manaus, the capi-
tal of Amazonas state, was 316km. Important cities can have influence over vast areas of Brazil,
for example the region of influence connected to the capital city of Brasilia corresponds to
over 20% of the country and spans 1.8 million km? [29].

Although previous studies have shown the expansion of dengue outbreaks in Brazil [7] and
the association between the dengue transmission zone and climate [6], neither formally inves-
tigated the link between this expansion and human movement. In this study, we use the level
of influence of cities from the REGIC studies [28,29] as a proxy for human movement, and
aim to better understand how climate suitability, connectivity between cities and socioeco-
nomic factors have contributed to the recent expansion of dengue. It is hoped that by under-
standing the drivers of dengue expansion in Brazil, we can identify its spatial trends and
regions at risk from future outbreaks.

Methods
Epidemiological data

Brazil is the 6th most populous country in the world with an estimated population of over 212
million in 2020 [30]. The country can be separated into 5 distinct geo-political regions (S1
Fig), 27 federal units (26 states and a federal district containing the capital city Brasilia, S1 Fig),
and 5,570 municipalities. We obtained monthly notified dengue cases for each of Brazil’s 5,570
municipalities between January 2001 and December 2020 from Brazil’s Notifiable Diseases
Information System (SINAN)), freely available via the Health Information Department, DATA-
SUS (https://datasus.saude.gov.br/informacoes-de-saude-tabnet/). Cases were aggregated by
month of first symptom and municipality of residence. Dengue cases are considered con-
firmed if they test positive in a laboratory or, more commonly, based on the Ministry of
Health’s syndromic definition Due to its passive nature, the accuracy of the dengue surveil-
lance system differs between municipalities and between periods of high and low incidence
[31]. To reduce the bias introduced by differences in case reporting and health seeking behav-
iour, we chose to model binary outbreak indicators rather than incidence rates because, as
stated by the Brazilian Observatory of Climate and Health, "there is no way to hide an epi-
demic" [6]. Between 2001 and 2020, municipality boundaries in Brazil have changed and sev-
eral new municipalities were created. To ensure data were consistent over the study period, we
aggregated data to the 5,560 municipalities that were present in 2001 by combining the new
municipalities with their parent municipalities. The data and code used to aggregate the den-
gue case data are available from https://github.com/sophie-a-lee/Dengue_expansion [32].
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Meteorological data

Monthly mean temperatures (K) were obtained from the European Centre for Medium-Range
Weather Forecasts’ (ECMRWF) ERA5-Land dataset [33] for the period January 2001—
December 2020, at a spatial resolution of 0.1° x 0.1° (~9km). The ERA5-Land database was
chosen because of its fine spatial scale, necessary when analysing small administrative units
such as municipalities. Temperatures were converted from Kelvin to degrees Celsius (°C) by
subtracting 273.15. Mean temperature was aggregated to each municipality using the exactex-
tractr package [34] in R (version 4.0.3) by calculating the mean of the grid boxes lying within
each municipality. Grid boxes partially covered by a municipality were weighted by the per-
centage of area that lay within the municipality.

Due to its size, Brazil experiences a wide range of climate systems and ecosystems. The
northern part of the country lies on or close to the equator, meaning regions experience year-
round high temperatures. In contrast, the South and Southeast regions have clear seasonality
in temperatures with cooler winters (S2 Fig), often falling below the optimal temperature
range for dengue transmission (between 17.8°C and 34.5°C for Aedes aegypti and 16.2°C and
31.4°C for Aedes albopictus [21,22]). To understand how temperature suitability has contrib-
uted to the expansion of the dengue transmission zone in Brazil, we calculated the number of
months per year each municipality lay within the suitable temperature ranges (between 16.2°C
and 34.5°C). Most of Brazil experiences year-round temperature suitability except for the tem-
perate South and mountainous regions in the Southeast (S3 Fig), although the number of
months suitable has increased in these regions over the past decade (Fig 1). As Aedes aegypti is
the only vector proven to transmit dengue in Brazil, we also tested the number of months con-
sidered suitable for Aedes aegypti transmission (between 17.8°C and 34.5°C) within the model.

Urbanisation

We obtained the percentage of residents in each municipality living in urban areas from the
2000 and 2010 censuses via DATASUS. In 2010, just under 85% of Brazil’s population lived in
urban areas, mostly concentrated in the large cities of South and Southeast Brazil. The North
region, except for some state capitals, has a larger rural population (54 Fig). The percentage of
residents living in urban areas was converted to the proportion to make interpretation and
comparison of model coefficients easier. Data from the 2000 census was used for the years
2001-2009 and data from 2010 was used for the years 2010-2020 to account for changes in
urbanisation over the period. Further details on the socioeconomic variables considered in
this analysis are given in S1 Text.

Hierarchical levels of influence of cities

As a proxy for human movement, we obtained the hierarchical level of influence of cities from
IBGE’s REGIC studies, carried out in 2007 and 2018 [28,29]. REGIC aims to recreate the com-
plex urban network of Brazil using information from surveys about the frequency and reasons
for the movement of people and goods around the country. Part of this study involved classify-
ing cities based on their hierarchical level of influence within this network (see S1 Text for
more details). Cities were classified into five levels:

1. Metropolis: the largest cities in Brazil, with strong connections throughout the entire coun-
try. This includes Sao Paulo, the capital Brasilia, and Rio de Janeiro.

2. Regional capital: large cities which are connected throughout the region in which they are
located and to metropoles. This includes state capitals that were not classified as metro-
poles, such as Rio Branco, Campo Grande and Porto Velho.
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Fig 1. The difference between the average number of months with suitable temperatures for dengue transmission in 2001-2010 and 2011-2020.
The number of months with temperatures between 16.2°C and 34.5°C has increased on average (shown in pink) in parts of South and Southeast Brazil
which were previously considered ‘protected’ from dengue transmission. Maps were produced in R using the geobr package [32,35] (https://ipeagit.
github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9001

3. Sub-regional capital: cities with a lower level of connectivity, mostly connected locally and
to the three largest metropoles.

4. Zone centre: smaller cities with influences restricted to their immediate area, often
neighbours.

5. Local centre: the smallest cities in the network which typically only serve residents of the
municipality and are not connected elsewhere.

The REGIC study aggregated data to population concentration areas (“Areas de Concen-
tracao de Populagdo”, ACPs), defined in [36]. Smaller or isolated ACPs consisted of a single
municipality, while large urban centres consisted of multiple municipalities. Levels of influ-
ence were extracted for each municipality based on the ACP they belonged to, meaning small
municipalities neighbouring large cities may have a high level of influence. The distribution of
highly connected urban centres is uneven across the country; the South and Southeast regions
are particularly well connected, while the North and Northeast contain fewer high-level centres
(Fig 2 and S1 Table). To account for any changes in connectivity over the study period, we
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Fig 2. The level of influence of cities within the Brazilian urban network from REGIC 2018. The Amazon region is far less connected to the urban
network than the rest of the country. As there is only one metropolis in North Brazil (Manaus), people often travel great distances, far greater than in
other regions, to reach cities. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9002

used the levels extracted from the 2007 study for the years 2001-2010, and levels from the 2018
study for the years 2011-2020.

Modelling approach

To understand how the dengue transmission zone has expanded between 2001 and 2020, we
aggregated dengue cases by year and created a binary outbreak indicator. We used an outbreak
threshold of more than 300 cases per 100,000 residents, defined as ‘high risk’ by the Brazilian
Ministry of Health [37]. We also tested a ‘medium risk’ indicator, defined as more than 100
cases per 100,000 residents, and a threshold defined as the 75th percentile of the dengue inci-
dence rate between 2001-2020 for each municipality to ensure our analyses were robust to this
outbreak definition. The annual dengue incidence rate was calculated using estimates of the
annual population for each municipality obtained from the Brazilian Institute of Statistics and
Geography (IBGE) via DATASUS (http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/
poptbr.def). Further details about the dengue surveillance system in Brazil and outbreak defi-
nitions are given in S1 Text. We formulated a binomial spatio-temporal generalised additive
model (GAM) using the binary outbreak indicator as the response variable. We included the
number of months per year with temperature suitable for Aedes mosquitoes to transmit den-
gue, the level of influence from REGIC, the proportion of residents living in urban areas, and a
‘prior outbreak’ indicator which took the value 0 until the year of the first outbreak in a munic-
ipality and 1 in every year after as covariates. We also considered the number of extremely wet
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months as a covariate, but we found this did not improve the model (further details can be
found in S1 Text). To account for spatial and temporal patterns in the data, smooth functions
of the year and the coordinates of the centroids of municipalities were included in the model
(see S1 Text for further details). Inference was performed using an empirical Bayesian
approach with estimates calculated using restricted maximum likelihood (REML) as part of
the mgcv package in R [38].

Model fit was assessed using a receiver operating characteristic (ROC) curve which plots the
true positive rate against the true negative rate at different thresholds to test the predictive ability
of the model. The area under the ROC curve was calculated as this gives a measure of predictive
ability compared to chance, which would return a value of 0.5. The closer the area under the
ROC curve is to 1, the better the model fits the data. The predictive ability of models were also
compared using the Brier score [39]. The Brier score is the mean squared difference between the
observed and expected outcomes; a lower Brier score represents a better fitting model.

To assess the relative contribution of the covariates, we compared the spatio-temporal
structured residual terms between the final model and a baseline model, containing only the
spatio-temporal smooth terms. If the covariates explained variation in the data, the smooth
functions would shrink towards zero in the final model and the difference between the abso-
lute estimates of these functions would be negative. To assess the contribution of the covariates
over the entire period, we took the median difference for each municipality. The contribution
of each individual covariate was also assessed by taking the difference between the structured
residuals from the baseline model and models with each covariate added in turn.

To understand how the risk of outbreaks have changed between 2001 and 2020, we drew
1000 simulations from the posterior distribution of the response and estimated the probability
of an outbreak for each municipality per year. These estimates were aggregated to the first
(2001-2010) and second (2011-2020) decades by taking the mean probability for each munici-
pality per decade to observe how the dengue transmission zone had changed after the large-
scale outbreak of the 21st century in 2010. The estimated probabilities were then used to deter-
mine the current dengue transmission barriers by identifying regions where the average proba-
bility of an outbreak lay below 10%, other barrier thresholds were also considered.

Results

There were 13,860,348 cases of dengue notified between January 2001 and December 2020 in
Brazil. The dengue incidence rate has increased across all regions of the country (Fig 3) partic-
ularly in the Centre-West and Southeast. Outbreaks were more widespread since 2010 with
around 80% of all municipalities in the Centre-West now regularly experiencing outbreaks (S5
Fig). Although the South had the highest incidence in 2020, this was still concentrated in a
small number of municipalities in Parana, around the fringe area of the previously identified
geographical barrier. The previous barriers to dengue transmission have been eroded over the
past decade. This is particularly noticeable in the western Amazon where there are now very
few municipalities yet to experience an outbreak. The erosion of the barrier in the South was
particularly noticeable in 2020 when it had the highest incidence rate of any region (Fig 3),
and many municipalities close to the previous barrier experienced outbreaks for the first time
(Fig 4). We observed that once dengue was introduced to municipalities, the virus became
established and future outbreaks were likely to occur (Fig 5).

Model results

We found municipalities that were highly urbanised, highly connected, and had temperatures
suitable for dengue transmission year-round had a significantly increased odds of an outbreak
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Fig 3. Monthly incidence rate per 100,000 residents in regions of Brazil 2001-2020. Incidence rates have increased in every region of the country
between 2001-2020. The first regional outbreak occurred in 2010, outbreaks have occurred more frequently and in more regions since then. Maps were
produced in R using the geobr package [32,35] (https:/ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.003

(Table 1 and Fig 6). Municipalities that had previously experienced outbreaks had around dou-
ble the odds of experiencing another compared to municipalities that were still protected
(adjusted odds ratio (aOR): 2.03, 95% credible interval (CI): 1.93, 2.15). This could indicate
that the virus becomes established following its introduction, however the increased incidence
may be a result of increased surveillance following an outbreak or due to the increased proba-
bility of severe cases following the introduction of new serotypes [40]. Municipalities with

2001 - 2010 2001 - 2020

Year of

first outbreak
2005
2010
2015

2020
No
outbreaks

Fig 4. The first year each municipality experienced an outbreak for the first time in the period 2001-2010 and 2001-2020. The year each
municipality first recorded over 300 cases per 100,000 residents. Recent data shows the previous barriers to dengue outbreaks in the Amazon and South
are being eroded. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g004
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Fig 5. The number of years each municipality experienced an outbreak between 2001 and 2020. Municipalities that experienced outbreaks earlier in
the 21st century continued to experience outbreaks throughout the period. This suggests that once dengue is introduced to a region, it becomes
established. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9005

Table 1. Posterior mean and 95% credible interval (CI) estimates for linear effect parameters, shown on the
adjusted odds ratio (aOR) scale.

Coefficient aOR (95% CI)

Urbanisation 3.26 (2.85,3.72)
REGIC level: metropolis 1.39(1.22, 1.59)
REGIC level: regional capital 1.52 (1.38, 1.66)
REGIC level: sub-regional centre 1.23(1.14,1.33)
REGIC level: zone centre 1.23(1.15,1.31)
Prior outbreak: yes 2.03(1.93,2.15)
Months with suitable temperature 1.42 (1.30, 1.55)

Posterior mean and credible interval estimated taking the 50th, 2.5th and 97.5th quantiles from the simulated
posterior distribution. The response variable is a dengue outbreak, defined as over 300 cases per 100,000 residents.
Urbanisation is the proportion of residents living in urban areas. REGIC covariates are in comparison to the
reference group, local centre. A suitable temperature is defined as between 16.2°C and 34.5°C (suitable for both
Aedes aegypti and Aedes albopictus).

https://doi.org/10.1371/journal.pntd.0009773.t001

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009773 December 9, 2021 9/21

37



PLOS NEGLECTED TROPICAL DISEASES Climate, connectivity, and dengue expansion in Brazil

Coefficient estimate (aOR)
1 2 3

Urbanisation °

Zone centre ' ==

)

et

.g Sub-regional centre | ==

©

>

8 Regional capital —ge=

£

O Metropolis | ~—=—

=

Prior outbreak: Yes —g—

Months suitable g

Fig 6. The mean and 95% credible interval of the posterior distribution for each model covariate. Results show that municipalities with a
higher proportion of residents living in urban areas, in cities with a higher connectivity than local centres, with a higher number of month per
year suitable for dengue transmission, which had previously experienced an outbreak have significantly higher odds of an outbreak.

https://doi.org/10.1371/journal.pntd.0009773.9006

year-round temperature suitability had increased risk of outbreaks, whether we consider suit-
ability for both species of Aedes mosquitoes (Table 1) or just Aedes aegypti (52 Table). On aver-
age, the odds of an outbreak increased by 42% (aOR: 1.42, 95% CI: 1.30, 1.55) for every
additional month of suitable temperature per year.

Although higher levels of connectivity had significantly higher odds of an outbreak than
local centres, this difference was highest on average for regional centres (aOR: 1.52, 95% CI:
1.38, 1.66) despite being considered less connected to the urban network than metropoles
(aOR: 1.39, 95% CI: 1.22, 1.59). This is potentially due to the structure of the urban network
which connects smaller cities to larger centres until they converge to metropoles, meaning that
regional capitals are important intermediate urban centres, that influences wide hinterland
areas [29]. Alternatively, despite the regional capitals having similar levels of access to basic
services as metropoles when aggregated to the municipality level (S6 Fig), metropoles have
larger economies and greater access to healthcare than regional capitals [29] which may mean
improved infrastructure which is not reflected by census variables on this scale.
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The area under the ROC curve for the final model was 0.86 (95% confidence interval: 0.856,
0.861, S7 Fig), indicating that the model fit the data well. We found the conclusions drawn
from the models using alternative outbreak definitions remained consistent, however the coef-
ficient values differed (S8 Fig and S2 Table). In particular, the model based on the 75th percen-
tile produced lower coefficient estimates than the fixed threshold models, and the model using
a threshold of over 100 cases per 100,000 residents estimated an increased odds following a
previous outbreak compared to the primary analysis (S8 Fig and S2 Table). We found that the
fixed threshold models outperformed the 75th percentile according to the ROC curve (S7 Fig)
and Brier score (S3 Table). The temporal smooth function showed increasing odds of an out-
break over the period not explained by the model covariates (Fig 7). The spatial smooth field
showed that the risk around Rio Branco in Acre, the Centre-West region, and in Rio Grande
do Norte in Northeast Brazil were higher on average than explained by the model covariates
(Fig 7). In contrast, areas in South Brazil, along the northern Brazilian coast, and in parts of
the Amazon had lower risk of dengue outbreak occurrence than expected given the covariates.

The structured residuals for the full model were closer to zero on average for the vast major-
ity of the country than the baseline model (92.33% of municipalities, Fig 8), indicating that the
covariates are indeed explaining spatio-temporal variation in the data. The inclusion of tem-
perature suitability into the baseline model shrank the structured residuals towards zero for
91.16% of municipalities. This was particularly noticeable in South Brazil (Fig 9), supporting
the hypothesis that the dengue transmission barrier here was a result of lower temperatures.
The inclusion of the prior outbreak indicator also shrank the structured residuals towards zero
across Brazil (in 94.28% of municipalities, Fig 9) showing its relative importance in this model.
The relative importance of urbanisation and REGIC levels of influence were less clear; despite
the model finding both these variables significantly associated with increased odds of an out-
break, there were fewer municipalities in which the structured residuals had shrank towards
(57.5% for urbanisation, Fig 9, and 45.08% for REGIC levels of influence, Fig 9). One potential
reason for this is that both variables are only measured once per decade and therefore do not

Spatial random
fiekd

R

Fig 7. Temporal (a) and spatial (b) smooth functions from the final model transformed to show the change in odds. The
odds of an outbreak has increased over the period due to unexplained factors not included in the model. The spatial random field
highlights that more information is needed in the model to understand the explosive outbreaks that have taken place in Rio
Branco, Acre and the Centre-West region as these hotspots are not fully explained by the model covariates. Pink (green) regions
of the map represent areas where the odds of an outbreak was higher (lower) on average than estimated by the covariates. Maps
were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9007
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Fig 8. The median difference between absolute values of the smooth function estimates calculated from the full model and from a baseline model.
A reduction in the absolute smooth functions (shown in green) indicates that the estimates have shrunk towards zero when the covariates were added to
the model and these covariates are explaining some of the variability in the data. Maps were produced in R using the geobr package [32,35] (https://
ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9008

differ annually; there may be changes in municipalities that contribute to dengue transmission
but are not captured by these stationary variables. Another potential reason is that these vari-
ables are not able to account for within-city variation at this spatial resolution that may con-
tribute to outbreaks of dengue.

The probability of an outbreak increased across most of Brazil since the first decade of the
21st century except for the 2 most southern states and some areas of the Northeast (Fig 10).
The largest increases in risk were seen in the Centre-West, which has been the epicentre of the
explosive outbreaks taking place since 2010. In the regions previously protected from out-
breaks (the western Amazon and the South (Fig 10)), the erosion of the geographic barriers
can clearly be seen. Although a southern border still exists, it has shifted south, and the Ama-
zon no longer has a clear boundary.

Current barriers to dengue transmission

To determine the current dengue transmission barriers, we identified regions where the aver-
age probability of an outbreak lay below 10% (Fig 11). We chose the threshold 10% as this gave
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Fig 9. The median difference between absolute values of the smooth function estimates calculated from the baseline model
and models with a) the climate suitability covariate added, b) the prior outbreak indicator added, c) the proportion of
urbanisation added, and d) the level of connectivity covariate added. A reduction in the absolute estimates of the smooth
functions (shown in green here) indicates that the functions have shrunk towards zero and the covariate has explained variation
in the data. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9009

barriers comparable to those identified in a previous study [6] (S10 Fig). The number of
municipalities considered protected declined from 2689 in 2001-2010 to 1599 in 2011-2020.
Between 2011 and 2020 there were no municipalities in the Centre-West region that were con-
sidered protected, compared to 92 in 2001-2010. Northeast Brazil was the only region that had
more protected municipalities in 2011-2020 than 2001-2020 (366 compared to 315). The
southern barrier to dengue transmission now begins in the southern part of Parana and
extends through the west of Rio Grande do Sul and Santa Catarina. Areas of high altitude in
Southeast Brazil, mostly found in Minas Gerais, are still considered protected. There are still
areas of the Amazon protected from dengue outbreaks, but this barrier is no longer clearly
defined. In addition to the previously identified barriers in the South region and Amazon rain-
forest, we found that there was a protected region along the north coast of Brazil in northern
Para and Maranhdo. This barrier was not explained by the covariates in our model indicated
by the low values of the spatial smooth function (Fig 7). This area is predominantly warm and
humid climate, with higher precipitation during winter (‘Am’ type in Képpen climate classifi-
cation) [41]. Although temperature and humidity are relatively stable along seasons in this
area, the interaction between these variables and increased precipitation may inhibit the mos-
quito populations [42].
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Fig 10. The average probability of an outbreak 2001-2010 and 2011-2020 in a) Brazil, b) Acre and Amazonas, and
¢) South Brazil. The probability of an outbreak estimated using simulations from the posterior distribution of the
response from the final model, averaged over the first and second decade of the time period. The probability of an
outbreak has increased across most of Brazil. The Amazonian barrier has almost completely been eroded and the
South Brazil border has moved further south. Maps were produced in R using the geobr package [32,35] (https://
ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9g010

Discussion

We found that the expansion of the dengue transmission zone is associated with temperature
suitability, connectivity within the Brazilian urban network and urbanisation, and that the
odds of future outbreaks significantly increase after both the vector and the virus have been
introduced. This study builds on previous literature that showed the expansion of dengue
across Brazil [6,7,17,26,43] and has updated the geographical barriers to transmission. The
most recent epidemiological bulletins have shown that this expansion has continued in 2021
into previously unaffected parts of Acre, Amazonas, and further south into Parana and Santa
Catarina [44], highlighting the importance of monitoring the erosion of these barriers. To our
knowledge, this is the first epidemiological modelling study to use the REGIC’s levels of influ-
ence and show that there is an increased odds of dengue outbreaks in cities that are highly con-
nected within the Brazilian urban network. However, this increase is not linear; regional
capitals are considered less connected than metropoles but we found that the increase in odds
were higher in these cities. Further investigation is needed to understand whether this is
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Fig 11. Geographical barriers to dengue transmission in a) 2001-2010 and b) 2011-2020. Maps showing areas where the probability of an outbreak
was less than 10% on average in each decade of the 21st century. Between 2011-2020, only the 2 most southern states and the northern coast were fully
protected from dengue transmission. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.9011

related to human movement, as people more often travel to regional capitals from smaller cit-
ies than metropoles [29], or differences in socioeconomic factors and health-seeking behaviour
that we were unable to detect at the municipality level.

Although this study focuses on Brazil, there is evidence that similar patterns are emerging
in other parts of South America. In Argentina, previously protected cities in temperate regions
are experiencing regular outbreaks, partially related to increasing temperatures but also as a
result of human movement importing cases from other parts of the continent [23,24]. Rural
parts of the Amazon, which were previously isolated from infected hosts and vectors, are also
experiencing outbreaks, thought to be associated with increased connectivity between rural
areas and larger cities [13,17]. The introduction of dengue into Acre in the Brazilian Amazon
has been linked to increased connectivity across the state following the construction of a high-
way between the two largest cities, Rio Branco and Cruzeiro do Sul [26]. The impact of this
connection can be observed in the data as the outbreak appears to jump from Rio Branco in
the south of Acre to Cruzeiro do Sul in the north in 2014 rather than spreading to neighbour-
ing regions which appears to be the case in the South (Fig 5). The introduction of dengue into
the Amazon is particularly worrying as it is the ideal environment for the virus to thrive: lower
than average access to basic services such piped water and refuse collection, and the ideal cli-
mate conditions for large epidemics [17,45].

Although this study extends our understanding of the expansion of the dengue transmis-
sion zone in Brazil, there are several limitations. Dengue case data used in this study was taken
from Brazil’s passive surveillance system, which has been found to differ in accuracy between
regions, and between epidemic and non-epidemic periods [31]. To reduce the impact of
reporting bias in our model, we used an outbreak indicator rather than case data as a response
variable. The outbreak indicator used was chosen as it reflects the Brazilian Ministry of
Health’s definition [37]. However, the threshold of an outbreak is likely to differ across the
country. In regions that historically experienced little or no transmission, even a small number
of cases may be viewed as an outbreak. The choice of such a high threshold is likely to produce
more conservative estimates of the transmission zone. When our results were compared to a
lower outbreak threshold of 100 cases per 100,000 residents, we found the model conclusions
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were consistent with the higher threshold. We found that both models using a fixed threshold
outperformed the model based on the 75th percentile based on the area under the ROC curve
(S7 Fig) and the Brier score. The model failed to pick up some of the temporal trends in the
data, which may be a result of using stationary indicators of urbanisation and connectivity
measured every 10 years. Information collected at a finer temporal scale may provide more
insights into the impact of sudden expansions such as the effect of improved infrastructure in
the Amazon [26].

Our model used the level of influence extracted from the REGIC studies [28,29] to account
for the level of connectivity between cities within Brazil as a proxy for human movement.
However, this indicator may simplify the process and miss important patterns. The hierarchi-
cal model assumed by REGIC assumes each small city is linked to a higher-level urban centre,
such as the regional capitals and metropoles. It is evident that large and warm cities may prop-
agate epidemic waves and maintain dengue transmission in their hinterland, while temperate
metropoles in the South (Porto Alegre, Curitiba and Sao Paulo) do not play a relevant role in
dengue diffusion in their region. Previous studies have found that imported cases driven by
human movement are responsible for dengue outbreaks in temperate cities [24,25]. The choice
of spatial connectivity assumption and data can lead to very different results and the use of the
REGIC levels of influence as a spatial covariate rather than including the direct links may miss
some important patterns [27]. Future work will aim to incorporate the complex urban network
from the REGIC studies into a statistical framework to account for direct and indirect links
between metropoles and regional capitals, and smaller urban centres in their hinterland.

Despite these limitations, we have shown that the expansion of the dengue transmission
zone has continued into the 21st century, driven by increased temperature suitability in the
South, a network of highly connected cities, and high levels of urbanisation. The introduction
of dengue outbreaks into an area more than doubles the odds of future outbreaks, which is par-
ticularly concerning given the expansion has continued into 2021. Given the dynamic nature
of the growing dengue burden, the barriers identified here will be outdated very quickly. We
have highlighted the importance of focusing control strategies in areas at risk of future out-
breaks as well as those within the established dengue transmission zone.

Supporting information

$1 Text. Supplementary material. Additional information about the methods and materials
used in this study and results of sensitivity analyses.
(DOCX)

S1 Alternative Language Abstract. Translation of the Abstract into Portuguese by Rafael
de Castro Catao.
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S1 Fig. The organisation of Brazil into a) 5 geo-political regions, and b) 27 federal units.
Abbreviations: AC = Acre, AL = Alagoas, AP = Amapa, AM = Amazonas, BA = Bahia,

CE = Ceard, DF = Distrito Federal, ES = Espirito Santo, GO = Goias, MA = Maranhdo,

MT = Mato Grosso, MS = Mato Grosso do Sul, MG = Minas Gerais, PA = Para, PB = Paraiba,
PR = Parana, PR = Pernambuco, PI = Piaui, R] = Rio de Janeiro, RN = Rio Grande do Norte,
RS = Rio Grande do Sul, RO = Rondonia, RR = Roraima, SC = Santa Catarina, SP = Sao Paulo,
SE = Sergipe, TO = Tocantins. Maps were produced in R using the geobr package [32,35]
(https://ipeagit.github.io/geobr/).
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S2 Fig. Average monthly mean temperature (°C) in each Brazilian state January 2001—
December 2020.
(TIF)

$3 Fig. The average number of months suitable for dengue transmission per year a) 2001-
2010, and b) 2011-2020. The average number of months with mean temperature between
16.2°C and 34.5°C aggregated to the two decades of data. Most of Brazil experiences suitable
temperatures year-round apart from areas of South Brazil and areas of high altitude in the
Southeast which experience cool winters. Maps were produced in R using the geobr package
[32,35] (https://ipeagit.github.io/geobr/).

(TIF)

$4 Fig. The percentage of residents living in urban areas of each municipality from the
2000 (a) and 2010 (b) censuses. Levels of urbanisation differ greatly across Brazil, with the
majority of Southeast and South Brazil living in urban areas in comparison to the North and
Northeast which has a larger rural population. Maps were produced in R using the geobr pack-
age [32,35] (https://ipeagit.github.io/geobr/).

(TIF)

S5 Fig. The proportion of municipalities in each region of Brazil experiencing an outbreak
per year 2001-2020. The proportion of municipalities affected by outbreak has increased
since 2010 in every region of the country, although outbreaks in South Brazil are still focused
on a small part of the region. Maps were produced in R using the geobr package [32,35]
(https://ipeagit.github.io/geobr/).

(TIF)

$6 Fig. Raincloud plots exploring the relationship between REGIC level of influence and a)
urbanisation, b) access to piped water, and c) refuse collection. Metropoles and regional
capitals have higher levels of urbanisation and access to basic services than municipalities that
had lower levels of connectivity within the urban network. Local centres were more varied in
terms of basic services and urban levels than the other levels and covered a wide range of city

types.
(TIF)

S7 Fig. Receiver operating characteristic (ROC) curve for the final model (solid black line),
the model using an outbreak threshold of over 100 cases per 100,000 residents (red dashed
line), and the model using an outbreak threshold of over the 75th percentile (blue dashed
line), compared to chance (black dashed line). The closer to the top-left corner, the better the
predictive ability of a model. As the ROC curve lies above the dashed reference line, this model
performs better than chance.

(TIF)

S8 Fig. The mean and 95% credible interval of the posterior distribution for each model
covariate under different outbreak threshold definitions. Coefficient estimates using the
outbreak indicator based on the 75th percentile were noticeably smaller than the fixed thresh-
old alternatives. The fixed threshold models (where outbreaks were defined as a dengue inci-
dence rate of over 100 or 300) produced similar estimates, however the odds of an outbreak in
municipalities after a previous outbreak was higher for the DIR = 100 model.

(TIF)

S9 Fig. The probability of an outbreak estimated from the model for each year 2001-2020.
The mean probability of an outbreak estimated by taking 1000 simulations from the posterior
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distribution of the response and transforming the outcome using a probit function. Maps were
produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).
(TIF)

$10 Fig. Comparison of different risk thresholds to define current geographical barriers to
dengue outbreaks. Municipalities were considered "protected’ if the probability of an outbreak
was less than or equal to the threshold a) 0%, b) 5%, c¢) 10% or d) 15%. The threshold of 10%
was chosen as it was the most comparable with previous studies. Maps were produced in R
using the geobr package [32,35] (https://ipeagit.github.io/geobr/).
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S1 Table. Distribution of municipalities at each level of influence in the urban network,
2007 [28] and 2018 [29]. The number of municipalities classified as metropoles (largest cities
in Brazil, connected throughout the entire country), regional capitals (large cities connected
regionally and to metropoles), sub-regional capitals (cities connected locally and to the three
largest metropoles), zone centres (smaller cities generally connected only to their neighbours),
and local centres (smallest cities typically disconnected from the urban network).

(DOCX)

S2 Table. Posterior mean and 95% credible interval (CI) estimates for linear effect parame-
ters, shown on the adjusted odds ratio (aOR) scale, for alternative model formulations.
Coefficient estimates for models assuming an outbreak threshold of over 100 cases per 100,000
(medium risk model), an outbreak threshold of over the 75th percentile of incidence rates, and
using temperature suitability for Aedes aegypti only.
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S3 Table. Model comparison statistics. Area under the receiver operator curve and Brier
scores for models assuming an outbreak threshold of over 300 cases per 100,000 residents
(high risk model), over 100 cases per 100,000 (medium risk model), over the 75th percentile of
incidence rates, and a model including the number of months considered extremely wet.
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3. Spatial connectivity in mosquito-borne disease
models: a systematic review of methods and

assumptions

Bridging section

In Chapter 2, model results showed that the relationship between the level of influence of cities
and dengue expansion was significant but nonlinear, with a greater odds of dengue outbreaks
in regional capitals rather than the more influential metropoles. There are many reasons this
could be the case, for example differences in healthcare investment and health-seeking
behaviours that were not included in the model. Another potential reason is the Brazilian urban
network structure that means people from cities of low influence often travel to metropoles via
less influential cities such as the regional capitals. This means that although regional capitals
are considered less influential, they may have many connections across Brazil due to their
proximity in the urban network to metropoles that could not be captured in the model presented
in Chapter 2. Chapter 2 considered levels of influence in the hierarchical urban network as a
proxy for human movement using a categorical variable rather than accounting for direct links

between cities arising from human movement.

This chapter presents a systematic review that aimed to identify spatial models used to
investigate the transmission of mosquito-borne diseases to humans, the spatial connectivity
assumptions made by these models, and the data used to inform spatial models (Objective 2).
| aimed to examine whether any statistical modelling frameworks existed that could incorporate
human movement into the spatial structure of the model. Although statistical model
frameworks are used in this thesis, the review included mechanistic and machine learning
frameworks to gain insight into how other approaches account for complex networks of

connectivity.
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The chapter was published in the Journal of the Royal Society Interface in May 20212. The
published version of the paper is included below. Supplementary materials referred to in the

paper can be found in Appendix C.

L IBGE. 2020 Regides de influéncia das cidades 2018.

2 Lee SA, Jarvis Cl, Edmunds WJ, Economou T, Lowe R. 2021 Spatial connectivity in mosquito-borne disease
models: a systematic review of methods and assumptions. J. R. Soc. Interface 18, 20210096.
(d0i:10.1098/rsif.2021.0096)
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Spatial connectivity plays an important role in mosquito-borne disease
transmission. Connectivity can arise for many reasons, including shared
environments, vector ecology and human movement. This systematic review
synthesizes the spatial methods used to model mosquito-borne diseases,
their spatial connectivity assumptions and the data used to inform spatial
model components. We identified 248 papers eligible for inclusion. Most
used statistical models (84.2%), although mechanistic are increasingly used.
We identified 17 spatial models which used one of four methods (spatial
covariates, local regression, random effects/fields and movement matrices).
Over 80% of studies assumed that connectivity was distance-based despite
this approach ignoring distant connections and potentially oversimplifying
the process of transmission. Studies were more likely to assume connectivity
was driven by human movement if the disease was transmitted by an Aedes
mosquito. Connectivity arising from human movement was more
commonly assumed in studies using a mechanistic model, likely influenced
by a lack of statistical models able to account for these connections. Although
models have been increasing in complexity, it is important to select the most
appropriate, parsimonious model available based on the research question,
disease transmission process, the spatial scale and availability of data, and
the way spatial connectivity is assumed to occur.

1. Introduction

The World Health Organization (WHO) estimates that over 80% of the world’s
population is now at risk of one or more vector-borne disease, accounting for
17% of the global burden of communicable diseases [1]. The past 50 years
has seen an unprecedented emergence of mosquito-borne diseases, in particular
dengue fever, chikungunya and Zika, linked to urbanization, globalization,
international mobility and climate change [2,3]. Increased connectivity between
geographical regions due to international air travel has led to these diseases
invading previously naive populations where competent vectors exist, as seen
in the introduction of chikungunya to Latin America and the Caribbean [4],
and sporadic outbreaks of dengue fever in parts of Southern Europe [5].
Conversely, the global incidence of malaria has decreased over the past 20
years, with an increasing number of countries working towards eradication,
although this trend has slowed in the past 5 years [6]. Spatial connectivity aris-
ing from human movement may pose a risk of re-introducing a pathogen into
indigenous populations. Failure to account for this in modelling studies may
negatively impact control and eradication campaigns [7].

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http:/creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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Table 1. Search terms used to search Medline, Embase, Global Health and Web of Science related to mosquito-borne diseases, modelling and spatial

connectivity.

mosquito-borne diseases modelling

(math® OR statistic’)® model®

»mosquito"" disease” : ‘
(gravity OR radiation)® model®

chikungunya

(spati® OR Bayes®)* model®
(ecolog® OR environment®)® model®

dengue
‘Japanese encephalitis’

malaria
mechan® OR compartment®)* model®
V(Rift Valley)® (fever OR (regreﬁsion OR genveralb)é model®
virus)
sindbis (SIR OR SEIR)® model®

(‘West Nile’)* (fever OR
disease® or virus)

patch® model®

‘yellow fever’
Zika

Aedes
Anopheles
Culex

(dynamic OR stochastic OR determinist® OR

(empirical OR correl® OR movement)® model®

connectivity

(spati® OR cluster)? analysis

autocorrel® OR neighb® OR hierarch® OR adjacen” OR
proximity OR network OR commut® OR connect®

random? effect”

(BYM OR ‘Besag” Yorke and Mollie’)* model®

‘conditional autoregress™ OR CAR

human® (mobility OR movement OR travel)

spat™ depend®
metapopulation

spati® (structure OR matrix)

*Proximity searching was used, search terms had to be within three words of each other. ADJ3 was used for Embase, Medline and Global Health, NEAR/3 was

used for Web of Science.
®Denotes truncation. MeSH terms related to terms above were also searched.

The inclusion of space within infectious disease epidemiol-
ogy is not a new phenomenon; however, the introduction of
Geographical Information Systems, improvements in compu-
tational power, and availability of spatial data have made
spatial modelling more accessible [8]. Despite this, Reiner
et al. [9] found that spatial modelling methods were under-
represented in their review of mathematical models for
mosquito-borne diseases, and spatial connectivity was not
explored in the majority of studies. Tobler’s first law of geogra-
phy states that ‘everything is related to everything else, but
near things are more related than distant things’ [10]. However,
when studying mosquito-borne diseases, long-distance move-
ment of hosts and vectors may create connections between
distant regions. Connectivity between geographical areas and
observations can arise for a number of reasons, for example,
shared characteristics such as human behaviour, vector-control
programmes, levels of immunity within communities and
human and vector movement. Although these issues are
common among diseases, their impact and the assumption
about how connectivity arises may differ due to mosquito
behaviours and different geographical settings.

Spatial connectivity is an important driver of mosquito-
borne disease, but to our knowledge, there are no systematic
reviews of spatial modelling techniques that include statistical,
machine learning and mechanistic frameworks. These three
approaches are used to address different objectives and require
different types of information. Mechanistic models are less
dependent on extensive training datasets than statistical or
machine learning approaches and can be parameterized
using previous experiments. However, this requires an in-
depth understanding of the underlying disease process and
incorrect parameterization could lead to invalid inference

[11]. Mechanistic models are useful for studying (re-)emerging
diseases, where few data exist, and comparing potential control
strategies [12]. By contrast, machine learning models are able to
make predictions about complex biological processes, without
prior knowledge of the underlying process, using algorithms
that learn from rich, complex data [13]. Statistical models are
able to explore relationships between variables, test hypotheses
about the underlying transmission process and make predic-
tions about an outcome of interest where adequate data are
available.

This systematic review aims to identify spatial models
used to investigate the transmission of mosquito-borne dis-
ease to humans, the assumptions made about how spatial
connectivity arises and the data used to inform the spatial
models. We provide detailed explanations of these methods,
their assumptions, how they were used, and discuss their
advantages and disadvantages.

2. Methods
2.1. Search strategy

The PRISMA guidelines for systematic reviews and meta-analyses
were followed for this review [14]. Five online bibliographic data-
bases were searched: Ovid/Medline, Web of Science, Embase,
Global Health and Scopus. The final search was completed on 14
December 2020. The search strategy included relevant keywords
and Medical Subject Headings (MeSH) related to mosquito-
borne diseases and the mosquito species that transmit them, math-
ematical models used to model infectious diseases and spatial
connectivity. Full details of the search strategy are provided in
table 1. Mosquito-borne diseases listed on WHO and European
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Centre for Disease Prevention and Control websites were
considered: dengue fever, Zika, chikungunya, malaria, yellow
fever, West Nile fever, Rift Valley fever, sindbis fever and Japanese
encephalitis [15,16].

Results from database searches were combined and stored
using EndNote referencing software; duplicates were removed
manually. The titles and abstracts were screened and irrelevant
articles excluded. Two reviewers screened full texts indepen-
dently and disagreements were resolved by consensus. After
relevant papers were identified, their references were screened
to identify other relevant studies.

2.2. Inclusion and exclusion criteria

The inclusion criteria are as follows: articles must be peer-
reviewed, published in English and contain a spatial model that
investigates the transmission of mosquito-borne disease to
humans. Spatial models are defined as those that explicitly account
for connections between geographical areas or observations. There
were no geographical or publishing date restrictions applied.
Articles were excluded if they only modelled transmission to vec-
tors or non-human hosts as these were outside the scope of this
review and may require different assumptions of connectivity.
Theoretical modelling studies that were fitted using simulated
data were excluded unless they were validated using real data.
Conference and workshop proceedings were excluded, as were
review articles.

2.3. Data analysis

The following variables were extracted from eligible papers: title,
first author, year of publication, disease studied, country/region
studied, the spatial scale of the data, spatial model used, the
spatial method used to account for connectivity, connectivity
assumptions and the data used to inform the spatial element of
the model.

Spatial models were classified as either statistical, machine
learning or mechanistic. Statistical models assume that the data
are a realization of a pre-specified probability distribution. These
probability distributions are defined by a set of parameters which
are estimated from the data using estimation, inference and
sampling techniques, such as maximum likelihood, Markov chain
Monte-Carlo and bootstrapping. The association between an out-
come of interest and a set of covariates is determined by how
these affect the probability distribution of the outcome. Statistical
models were also classified as either fixed effect, where all par-
ameters are treated as fixed, non-random values or mixed effect,
which contain both fixed parameters and random parameters
that account for unobserved heterogeneity or clustering within
the data. Machine learning methods use algorithms to learn pat-
terns from observed data without the need to specify a data
model prior to analysis. This makes them a useful alternative to
mechanistic or statistical models where underlying biological pro-
cesses are not known [13]. Mechanistic models, sometimes
referred to as mathematical models, aim to replicate the process
of disease transmission through a population across time based
on a simplified mathematical formulation of the underlying disease
mechanisms. These models often simulate the movement of indi-
viduals through infectious stages, or compartments, known as
compartmental models [11]. Mechanistic models can be parameter-
ized using a combination of data, when available, and results from
previous studies. This makes them particularly useful for studying
novel pathogens where there are few empirical data or when com-
paring potential control measures [12]. Spatial assumptions were
compared between diseases and mosquito species.

Analysis of the data and visualizations were carried out
using R [17]. Data extracted from the studies included in this
systematic review and code used to create figures and tables
are available from https://github.com/sophie-a-lee/mbd_

connectivity_review and archived in a permanent repository n

[18]. This study is registered with PROSPERO, CRD42019135872.

3. Results

3.1. General characteristics

We identified 248 studies published between 1999 and 2020
that were eligible for inclusion (figure 1). These studies
used data from 164 countries across six continents (electronic
supplementary material, figure S1). Almost half (n=118,
47.6%) of the studies modelled malaria transmission, 99
(39.9%) modelled dengue fever (including two modelling
dengue haemorrhagic fever, two which also modelled Zika,
one that also modelled chikungunya and one that modelled
dengue, chikungunya and Zika), 11 (4.4%) modelled just
Zika and five (2%) just chikungunya, one modelled both.
Seven (2.8%) modelled West Nile fever, five (2%) Japanese
encephalitis, 1 (0.4%) Rift Valley fever and one (0.4%)
yellow fever. No spatial modelling studies were identified
for sindbis fever. The number of spatial modelling studies
published has increased over time, with an average of one
study published per year in 1999-2005, 5.8 per year 2006—
2010, 14.2 per year 2011-2015 and 28.2 per year 2016-2020.
The diversity of diseases studied using spatial modelling
has also increased; until 2005, only malaria studies were
identified whereas there have been six different diseases
studied using these methods published in 2020 (electronic
supplementary material, figure S2). Most studies (=218,
87.9%) used aggregated data to fit models, most often aggre-
gated to administrative district- or country-level (1n=169,
68.1%) or clusters based on surveys or shared characteristics
(n=25, 10.1%). The remaining papers either separated their
study area into a grid and aggregated data to these patches
(n=24, 9.7%) or fit data to individuals (n=30, 12.1%).
A full summary of data extracted from studies by disease is
given in electronic supplementary material, table S1.

3.2. Spatial modelling methods
Most (n=209, 84.2%) studies used a statistical modelling
framework, in particular mixed effect models (n=155,
62.5%). The first mechanistic model included in this review
was published in 2012; mechanistic models are becoming
more common with over half of those studies published since
2018 (figure 2). Newly emerging diseases (Zika and chikungu-
nya) were more often modelled using mechanistic models
rather than statistical, which were more commonly used for
established diseases (e.g. malaria and dengue) (electronic sup-
plementary material, table S1). There were two studies
published in 2020 that used a combination of methods: one
compared a mechanistic and machine learning approach to
predicting dengue transmission [19], another used both a
machine learning and statistical approaches to explore the
relationship between risk factors and dengue outbreaks [20].
We identified 17 distinct models that incorporated
spatial connectivity into their framework: nine statistical,
four machine learning and four mechanistic models. Full
descriptions of the 17 models identified in this review, includ-
ing model structure, the method and data used to account for
spatial connectivity, and a discussion about the advantages
and disadvantages of each model are given in electronic sup-
plementary material, technical appendix. Some models were
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(N
records identified through
database searching
(n =5529)
Medline (n =994)
Global health (n = 670)
_5 Embase (n = 1427)
E} Scopus (n=1204)
‘;—;) Web of science (n=910)
i/ duplicates removed
I > (n=3577)
v
records after duplicates removed
(n=1952)
'D_D
2
N records screened by title and abstract records excluded
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Figure 1. PRISMA flow diagram of the search and exclusion process.

specifically designed for spatial analysis, whereas others have
been adapted or extended to incorporate this connectivity.
This section gives an overview of the methods used to
account for spatial connectivity for each type of model.
Details and best practices are summarized in table 2.

3.2.1. Statistical models

All statistical models identified within this review were
extensions of generalized linear or additive models (GLM/
GAM). These models assume that all observations are inde-
pendent after adjusting for the covariates, which is not
always appropriate when considering spatial data. Although

there were nine distinct statistical models, all of them used
one of three methods to account for spatial connectivity:
inclusion of spatial covariates as fixed effects, localized
regression models or the inclusion of a spatially structured
random effect or random field.

3.2.1.1. Spatial covariates

Of the 209 papers using statistical models, 25 (12%) included
spatial covariates to account for spatial connectivity in the
data. Spatial covariates are entered into the model in the same
way as nonspatial covariates, but aim to account for connectivity
within the model. Spatial covariates included the observed

57

96001207 8L d0a3uf 20S Y ' yisi/jeuinol/bio-buiysiigndAyaposieos H



Downloaded from https://royalsocietypublishing.org/ on 02 September 2022

40

30
2
8
% 20
&

10

0 = sl
2000 2005 2010
year

type of model

fixed effect
mixed effect
machine learning
compartmental
mixed

other

2015 2020

Figure 2. Number of spatial modelling studies published per year by model type. Statistical models were classified as a fixed effect if parameters were treated as
fixed, non-random values or mixed effect if they also included random parameters to account for unobserved heterogeneity or clustering (also known as hierarchical
or multilevel models). Machine learning models used algorithms to learn patterns from the data. Compartmental models were mechanistic models that simulated
the movement of hosts and/or vectors through disease compartments. Models classified as ‘other” did not fall into any of these categories, this included mechanistic
models that did not explicitly model movement through compartments, or bespoke statistical models.

incidence in connected regions [21-30], the number of people
moving between regions [20,31-35], the distance between
regions [31,35-37], coordinates of the centroid of a region
[38-40], the number of time spent commuting between regions
[41] and spatial eigenvectors created using spatial filtering [42—
44]. Spatial filtering creates spatial covariates by decomposing
Moran’s I (a measure of spatial correlation) into an eigenvector
per region/observation [45]. Two studies applied a smoothing
function to the spatial covariates within a GAM, allowing for a
nonlinear relationship between the outcome and measure
of connectivity [24,37]. Another study included spatial
kernels, exponentially decaying correlation functions of the
distance between cases’ home and work addresses, estimated
from public transport journeys, as spatial covariates when
estimating the probability of cases being linked [46].

Spatial covariates are compatible with all statistical models
identified in this review. If adequate data are available, this is a
simple and efficient way to include connectivity information
into a statistical model. Using information from connected
regions also allows the model to ‘borrow strength’ from other
parts of the data to increase the precision of estimates. Spatial
covariates were the only method that allowed human move-
ment data to be included in statistical models identified in
this review; all other methods relied on a function of distance.
However, the inclusion of a large number of spatial covariates
risks overfitting the model to the data, meaning the model
reflects the sample data too closely and is unable to make
prediction or inferences about the wider population, or intro-
ducing multicollinearity. Most spatial covariates require
‘connectivity’ to be defined prior to model fitting, introducing
a subjective element into the model and potentially oversimpli-
fying the spatial structure. For example, models that included
incidence from connected regions defined these as regions
that share borders; this ignores potential dependency between
distant regions which could still invalidate the independence
assumption. The inclusion of spatial covariates as fixed effects
assumes that the relationship between them and the outcome is
stationary (the same across the whole spatial area) and linear
which may not be appropriate across large areas.

3.2.1.2. Local regression models

Twenty papers used a geographically weighted regression
(GWR) model [47-65] which fits local regression models to
each observation or region rather than a single global model
[66]. Each local model has different coefficients, estimated
using information from connected observations that are
weighted by a function of distance, such as the one shown in
figure 3c. As with spatial covariates, GWR is a fairly simple
and efficient method to account for connectivity and a useful
exploratory tool to investigate how relationships differ across
space. Estimating a different coefficient for each model over-
comes the issue of stationarity which is present when using
spatial covariates. GWR is not suitable for making inferences
or predictions about the study area as a whole.

3.2.1.3. Spatially structured random effects and random fields
The final, and most common, method used to account for
spatial connectivity in statistical methods was the inclusion
of a spatially structured random effect or random field.
Fixed effect statistical models assume that there is a true
parameter value and that the only variation within the
data, after accounting for covariates, is sampling error.
Random effects and random fields explicitly allow additional
spatial variation and/or correlation in the data to be incor-
porated directly into the model structure. The structure of
the random effects or random fields must be specified prior
to model fitting and should be informed by the spatial con-
nectivity assumption. Most models identified in this review
used a Gaussian process which assumes the spatial process
at fixed locations follows a multivariate normal distribution,
with a mean of 0 and a covariance structure based on
distance or, when dealing with areal data, adjacency.

We identified 150 studies (150/209, 71.8%) that used a
spatially structured random effect within their statistical
model, 95 assumed a Markov random field structure based on
adjacency [29,40,42,64,67-156] and 57 used a distance-based
structure [141,157-212] (one used both [141]). A commonly
used Markov random field is known as the conditional
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plygons (x) for Sio Paulo (SP), Rio de Janciro
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Figure 3. Comparison of spatial connectivity using different data sources and assumptions. The level of connectivity between regions represented in models can
differ substantially depending on the assumptions made about how connectivity arises, and the data used to weight connections. The heat plots and connectivity
matrices show the strength of connectivity between states in Southeast Brazil (a), represented by nodes in the matrices, using assumptions and methods identified
in this review. Numbers within the heat plot and along edges of the connectivity matrix represent the weight of connections. These techniques were used to weight
observations in GWR models, to structure random effects and random fields, or to weight movement matrices in neural networks, metapopulation models, and
agent-based models. (b) Neighbourhood based: assumes states are connected if and only if they share a border. Application: to structure random effects in a CAR
model. (c) Distance-based: assumes connectivity between states decays exponentially as distance between centroids (denoted x on the map) increases, where
weight = exp(dij /1000) and djj is the distance between states i and j. Application: used to weight observations from neighbouring regions in a GWR model.
(d) Human movement data: assumes connectivity between states arises due to human movement. In this case, based on the number of air travel passengers
moving between capital cities of each state. Application: to weight hidden layers within a neural network. (¢) Movement model: assumes connectivity between
states arises due to human movement, estimated using a movement model (in this case, a gravity model). Application: used to weight movement between nodes in
a metapopulation model.

autoregressive (CAR) model, which assumes that regions are for residual spatial autocorrelation by fitting a separate
connected if and only if they are neighbours [213], i.e. regions regression model to the error terms of a non-spatial model.
that share a border or, in one case, regions within a fixed distance The observed outcomes from previous time points were
[140]. The weighting matrix used to formulate this Markov included in the residual model as covariates. This model was
random field is shown in figure 3b. Distance-based approaches fitted using an iterative process and was referred to as a vectorial
identified in this review used the Matérn correlation function autoregressive model [230]. Further details are given in
[214] to define the random effect covariance. This assumes electronic supplementary material, technical appendix.

that connectivity between points decays exponentially as the Although random effects and random fields are more com-
distance between them increases, as shown in figure 3c. There putationally intensive than the other statistical approaches,
were 15 studies that included a spatially structured random there are a number of statistical methods and programs built
field, a bi-dimensional smooth function in space over the coor- to fit these types of models which aim to overcome compu-
dinates of observations or the centroid of a region [40,215- tational issues [228,231,232]. These models are able to
227]. Bi-dimensional smooth functions are a type of Gaussian account for dependency between a large number of regions
process, with a covariance structure defined by the distance or observations without overfitting or introducing multi-
between observations, for which connectivity is expected to collinearity that causes issues when using spatial covariates.
decrease exponentially as distance increases [228] (figure 3c). The structure of random effects and random fields must be
One spatial model included a random field, estimated using a determined before the model-fitting process, potentially intro-
Markov random field [229], similarly to the CAR models ducing subjectivity into the model-fitting process, although
above, assuming connectivity exists between neighbouring they can be visualized which can help generate hypotheses
regions [228]. One study used an alternative way of accounting and identify additional factors that may not have been
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accounted for within the original model. Within this review,
we only identified two spatial structures that were used
within these models: distance based and neighbourhood
based. These structures are adequate if spatial connectivity
exists between close observations but we did not identify
structures that would allow for other assumptions, such
as long-distance movement of hosts and vectors, to be
incorporated into a statistical model.

3.2.2. Machine learning methods

We identified two methods that were used to account for spatial
connectivity within machine learning models: the inclusion of
spatial covariates, and the development of movement matrices
that aim to replicate human movement behaviour.

3.2.2.1. Spatial covariates

Five papers included spatial covariates as inputs for their
machine learning algorithms. These spatial covariates included
cases from neighbouring regions [233-235], the number of
people travelling between regions based on air travel [234],
public transportation networks [20] or a gravity model that
aimed to replicate human commuting behaviour [236], and
the distance between countries [236]. The inclusion of spatial
covariates as inputs is compatible with all machine learning
models and, if the data are available, does not require any
additional computation.

3.2.2.2. Movement matrices

We identified two papers that constructed a matrix reflecting
the movement of people between districts using public trans-
portation data [19,237]. Both papers used this matrix, similar
to the one shown in figure 3d, to weight layers within a
neural network model, allowing the algorithm to predict the
number of dengue cases across the study area while accounting
for connectivity arising from human mobility. Although both
studies used public transportation information to create their
matrices, they could be constructed using movement models
that aim to replicate human commuting behaviour, such as
gravity or radiation models [238] (figure 3e), or other proxies
such as distance-based functions where data are not available

(figure 3c).

3.2.3. Mechanistic models

There were two methods used to account for spatial connec-
tivity in mechanistic models identified by this review:
movement matrices and spatial parameters.

3.2.3.1. Movement matrices

There were 21 studies (21/34, 61.8%) included in the review
that used a movement matrix within a mechanistic model to
account for spatial connectivity [19,32,239-257]; all these
studies assumed that connectivity arose from either host or
vector movement. These models treated subgroups of the
host and/or vector populations as nodes in a network with
values of the matrix reflecting movement between those
nodes. Examples of these matrices constructed using different
assumptions and data are given in figure 3. Matrices were
constructed using human movement data from Twitter
[32,251,256], air travel [239,249,250] or public transportation
[19], using movement models that aimed to replicate human
commuting behaviour [32,241,243,244,246,248,254,255,257],

distance [242] or using a fixed value based on the type of neigh-
bourhood [252,253]. Two studies estimated people’s home and
work addresses using mobile phone data and simulated move-
ment between those [245,247], and two simulated the short
flight distance of mosquitoes by allowing movement into
neighbouring cells [240,245].

3.2.3.2. Spatial parameters

Thirteen studies (13/34, 38.2%) included spatial parameters
within the model equations that aimed to account for connec-
tivity [67,258-269]. Unlike movement matrices, these were
directly incorporated into the model equations to update the
population within a given compartment, or as a proxy for
another process. Spatial parameters included the force of infec-
tion calculated using a distance-based kernel [259,260] and
mosquito abundance estimated using a GAM containing a
spatial random field [258]. Some models updated the popu-
lation within compartments based on spatial parameters,
either using a fixed-distance dispersion value [264-266], or cal-
culating the proportion leaving regions using mobile phone
records [263], air travel [262] or movement models [262,269].
One study used a mechanistic model but estimated the
number of infected people using a CAR model [67].

3.3. Spatial connectivity assumptions

We collected details on the assumptions that authors made
about how spatial connectivity arises within the data, regard-
less of the model type or method used. Although the exact
assumptions differed between studies, all could be grouped
into one or more of the following categories:

1. distance based,
2. human movement,
3. vector movement.

This section presents the advantages, disadvantages and
methods used to implement these assumptions. A summary
of these points with guidance on their ideal uses are provided
in table 3.

3.3.1. Distance based

There were 200 (200/248, 80.6%) studies that assumed con-
nectivity existed between observations or regions if and
only if they were close. Although this was by far the most
common assumption observed in this review, it was not
explicitly stated in many of the studies. Twenty-two studies
stated that they used a distance-based assumption as close
regions were more likely to share characteristics such as
climate systems, protective behaviours (e.g. bed net use),
socioeconomic and demographic factors, vector ecology and
land use type.

The majority of studies making a distance-based assump-
tion of connectivity used a statistical model, only five studies
used a mechanistic model and three used machine learning.
The most common method for including distance-based
connectivity within a model was the inclusion of a random
effect or random field with a covariance structure defined
by distance or neighbours (1 =162). Other methods included
using spatial covariates (1 =16), such as the incidence rate in
neighbouring regions or distance between observations, and
local regression models fitted using data from nearby regions,
weighted by distance (12 =20).
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Table 3. The advantages, disadvantages and application of connectivity assumptions.

connectivity
R ]

distance based

human
movement

vector
movement

advantages

easy to obtain data

can be incorporated into all
types of model

can be used as a proxy for
shared characteristics that
cannot be observed

shown to be an important
part of disease transmission
for mosquito-borne
diseases

@n account for connectivity
between distant
observations as well as
close

an important part of the
disease transmission
process for all mosquito-
borne diseases

disadvantages

oversimplifies process of transmission

misses connectivity between distant
regions

difficult to define how ‘close’ regions
should be to be considered
connected

difficult to quantify and obtain data,
often requiring a proxy such as
distance to be used

data often have a number of biases

may not be necessary for malaria
studies in small-scale studies of
endemic areas

difficult or impossible to obtain data

due to the short flight distances of
most mosquitoes, would not be
necessary if considering a large
area or a short-term study

application

small-scale studies where unobservable

processes, such as shared behaviours, create
spatial connectivity. Not appropriate where
long-distance connections are expected to
exist due to travel. Basis of most statistical
approaches identified in this review, e.g.
GWR and mixed effect models

Aedes or (ulex-borne diseases in endemic

settings where commuting leads to
increased exposure, studies in areas that are
disease-naive or nearing elimination at risk
of (re-)introduction from long-distance
movement such as immigration. More
popular in mechanistic approaches such as
metapopulation or agent-based models that
allow complex movement matrices to
incorporated. Only spatial covariates were
able to reflect this connectivity in statistical
methods

small-scale studies or long-term forecasts,

particularly malaria studies where
transmission generally occurs at night. Due
to a lack of data, a proxy must be used
such as distance based on known flight

One of the main advantages of making a distance-based
assumption of connectivity is that measures of connectivity
(either distance or contiguity) are easy to obtain from geo-
graphical data. Contiguity is usually defined with chess
analogies: rook contiguity defines neighbours as those
sharing a common edge or border, whereas queen contiguity
also includes regions sharing a common vertex. Another
advantage of using one of these approaches is that there are
a number of well-established models (particularly in statisti-
cal analysis) that were designed or adapted to incorporate
this information, such as GWR and CAR models.

The main drawback of assuming connectivity is solely
based on distance is that it may oversimplify the process,
particularly for mosquito-borne diseases which require inter-
action between a susceptible host and an infectious vector.
One of the most common models based on the assumption
that connectivity exists between neighbouring regions, the
Besag, Yorke and Mollié model (one example of a CAR
model), states that these assumptions are reasonable if the
disease is non-contagious and rare, which is not the case for
mosquito-borne diseases [273]. Although regions are more
likely to share characteristics with close regions, it is hard to

distances of mosquitoes. May be included to
account for differences in exposure levels
across space

define where this ‘closeness’ ends and how similar places
should be before they are considered connected. Most studies
assumed that characteristics were shared between neighbours
or within a set distance; however, applying the same rule
for all shared characteristics may miss some heterogeneity or
exaggerate connectivity.

3.3.2. Human movement
We identified 50 studies that assumed spatial connectivity was
related to human movement; most used mechanistic models
(n =28, figure 4) which are able to include complex mobility
matrices (see metapopulation and agent-based models in
electronic supplementary material, technical appendix, and
figure 3 for more details). Other methods used to account for
human movement within models included spatial covariates
based on the number of people moving between regions,
random effects which assumed people were more likely to
travel to neighbouring regions, and a bespoke statistical
model which simulated home and work addresses based on
public transport journeys [46].

Studies were more likely to assume spatial connectivity
arose through human mobility if the disease was transmitted
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Figure 4. Connectivity assumption by model type. The number of spatial modelling studies that assumed connectivity is based on distance, human movement or
vector movement (bars) separated by model type. The vast majority of statistical models (fixed and mixed effect models) assumed that connectivity was based on
distance, whereas compartmental models were more likely to assume human movement drives connectivity.

by a mosquito of the Aedes genus (figure 5); this included
dengue fever, chikungunya, yellow fever and Zika. Aedes mos-
quitoes are most active during the day, meaning interaction
between host and vector is influenced by commuting behav-
iour [274], whereas Anopheles mosquitoes are night-biters and
are more likely associated with vector movement or migration
[275,276]. Less than half (1 =22) of the studies in this group
used human mobility data to inform the spatial component
of the model. Human mobility datasets included mobile
phone GPS data, geo-located tweets, air travel information,
public transportation networks and surveys. Other studies
used a proxy such as distance or movement models, which
replicate human commuting behaviours. The most common
movement models were the gravity and radiation models.
Both models assume that the movement of people is related
to the population at each location and the distance between
them; the radiation model also takes account of
the population between locations under the assumption that
people are less likely to commute to distant places when
opportunities exist closer to home [238].

Unlike distance-based methods, the human mobility
assumption allows for long-distance connections which may
be important to the disease process, particularly in the region
at risk of (re-)introduction of disease from imported cases.
Prior studies have identified the importance of human mobility
in the transmission of mosquito-borne diseases and found that
failure to adequately account for this can lead to biased or inva-
lid inferences [7,32,247,263,272,274,277]. However, human
movement data can be difficult to obtain and may not be repre-
sentative of all demographic and socioeconomic groups [272].

3.3.3. Vector movement
We identified 10 studies that explicitly stated they assumed
spatial connectivity arose from vector movement; all these

studies used a fixed distance or adjacency as a proxy for
vector movement as adequate movement data was not avail-
able. One model included wind speed to account for vector
movement as this extended the potential flight distance of
mosquitoes, another weighted vector movement to adjacent
tiles making this more likely if adjacent tiles contained
humans or breeding grounds. There was only one study in
this review that assumed all connectivity arose from vector
movement, all others included other assumptions.

4. Discussion

This review provides the first comprehensive overview of
spatial models, of any type, used to investigate the trans-
mission of mosquito-borne pathogens, and the connectivity
assumptions that underpin them. The last 10 years have
seen a rapid increase in the number of spatial modelling
studies of mosquito-borne diseases and the variety of
approaches used. We identified 17 distinct spatial models
that were used to explore the transmission of mosquito-
borne pathogens to humans. These were classified as either
statistical, machine learning or mechanistic; the choice of
model should depend on the aim of the study, the type
of data available and the information required from the
modelling output. Statistical models are able to explore
relationships between variables when sufficient data are
available and can be used to make predictions or inferences
about an outcome of interest. Unlike mechanistic models,
they do not require an in-depth knowledge of the underlying
biological process of the disease, although this can be used to
improve the model. However, statistical models require a
large amount of data to provide precise estimates, making
them more suited to well-established diseases. They are
able to make predictions within the scope of the data used
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Figure 5. Connectivity assumptions by mosquito species. The percentage of
studies modelling a disease transmitted by each mosquito species that
assumed spatial connectivity is related to the distance between regions or
observations (using a distance-based function or a neighbourhood structure),
human movement or vector movement. Dengue fever, chikungunya, yellow
fever and Zika were transmitted by mosquitoes of the Aedes genus; malaria
was transmitted by mosquitoes of the Anopheles genus, and Japanese ence-
phalitis, Rift Valley fever and West Nile fever were transmitted by mosquitoes
of the Culex genus.

to fit them but are not recommended for causal investigations
or extrapolation well beyond the data. Mechanistic models
are more able to make causal inferences as they model the
disease transmission process rather than the data itself; how-
ever, they are only able to do this within the specific setting
for which they have been parameterized. Parameters can be
taken from previous experiments where data are not avail-
able, making them particularly useful in settings where
data are sparse or for newly (re-)emerging diseases. An
example of this can be found in Zhang et al. [239] where par-
ameters were ‘borrowed’ from other settings. Care should be
taken when parameterizing mechanistic models in this way
as processes may differ in ways that are not apparent at the
model-fitting stage. By contrast, machine learning methods
require a large amount of data but use flexible algorithms
that allow them to learn patterns from rich, complex data.
Although machine learning can be used to make inferences
about data, most algorithms focus on making the most accu-
rate predictions possible from available data rather than
understanding underlying associations [270]. As with statisti-
cal models, they are inappropriate where there is a lack of
data and are not recommended for making predictions or
causal inferences well outside the range of data used to fit
them [271].

Connectivity assumptions differed between mosquito
species, indicating that authors consider mosquito behaviour
and biting patterns when deciding which spatial model and
assumptions are most appropriate. For example, dengue
fever is transmitted by day-biting Aedes mosquitoes and is

influenced by local movement or commuting [274], whereas

Anopheles-borne malaria is transmitted by vectors most
active between dusk and dawn so is influenced by proximity
to vector breeding grounds and bed net use [275,276].
Anopheles-borne pathogens were more likely to be modelled
assuming connectivity was driven by distance, potentially a
proxy for vector movement because of the short flight span
of vectors. Aedes- and Culex-borne pathogens were more
likely modelled assuming human movement or proximity
drives connectivity as this accounts for people commuting
or moving to nearby regions/ cities (figure 3). An alternative
explanation could be that Aedes-borne emerging diseases
(e.g. chikungunya and Zika) were more likely to be modelled
using a mechanistic framework, allowing for the inclusion of
complex movement matrices. The majority of statistical
models within this review included a random effect to
account for spatial connectivity, all of which used either a dis-
tance- or neighbourhood-based covariance structure. There
were no random effect model structures that explicitly
adjusted for connectivity arising from human movement.

Many studies included in this review did not explicitly
state the assumptions they made about how connectivity
arises. Often, assumptions had to be deduced from the data
and spatial methods used in the studies. Although the vast
majority of studies appeared to assume that regions were
connected to neighbours or based on the distance between
them, it is possible some used this as a proxy for another
assumption, such as shared characteristics or human move-
ment, where data were not available. Prior studies have
discussed the difficulty of quantifying human behaviour
when modelling infectious diseases [272]. Where mobility
data are not available, movement models that aim to replicate
commuting patterns, such as gravity and radiation models,
were found to give similar results when modelling the
spread of dengue fever compared to actual human movement
data from geo-located Tweets [278]. These may help to avoid
some of the issues surrounding privacy and bias when using
a mobile phone or social media data to inform models, and
where certain sections of the population, such as children
and older adults, may be under represented. Some studies
have suggested that radiation models are more accurate at
representing commuting networks than mobile phone GPS
data when compared to official census surveys in central
locations [279].

This review provides a synthesis of the modelling
approaches and spatial connectivity assumptions used to
research mosquito-borne disease transmission to humans,
but does not comment on the quality of these approaches.
It is important to remember that more complex methods
are not necessarily better and care should be taken to identify
the most parsimonious method to address a studies’” aim.
Choice of the model should depend on the research question,
the disease studied, the spatial scale and availability of the
data and the way in which spatial connectivity is assumed
to occur.
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4. A Bayesian modelling framework to quantify

multiple sources of spatial variation for disease
mapping

Bridging section

In Chapter 3, | found that most spatial statistical models of mosquito-borne disease
transmission assumed that spatial connectivity existed only because of distance, either between
neighbouring regions or between close observations. The only statistical approach identified
that could include human movement explicitly was the inclusion of spatial covariates, such as
the number of people moving between areas, into a generalised linear model. However, these
models require one covariate per connection which risks introducing multicollinearity,
particularly in metropoles such as Sdo Paulo, Brasilia and Rio de Janeiro which have
connections across the whole of Brazil. There were no statistical approaches identified by the
systematic review capable of accounting for multiple sources of spatial connectivity within the
same model. In reality, spatial connectivity in dengue outbreak data likely arises due to multiple
factors. For example, levels of immunity in the population, vector control measures, and
climate variation which is likely shared between close areas, and long-distance connections

created by people travelling between cities across Brazil.

In this chapter, | developed a novel statistical modelling framework capable of simultaneously
accounting for multiple sources of spatial connectivity, including a complex human movement
network (Objective 3). This model can be used to quantify the relative contribution of different
sources of spatial connectivity (i.e., spatial autocorrelation between close areas and human

movement) to the overall spatial structure of the outcome.
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The chapter was published in the Journal of the Royal Society Interface in September 20222,
The published version of the paper is included below. Supplementary materials referred to in

the paper can be found in Appendix D.

L Lee SA, Economou T, Lowe R. 2022 A Bayesian modelling framework to quantify multiple sources of spatial variation for
disease mapping. J. R. Soc. Interface 19, 20220440. (doi: 10.1098/rsif.2022.0440)
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Spatial connectivity is an important consideration when modelling
infectious disease data across a geographical region. Connectivity can arise
for many reasons, including shared characteristics between regions and
human or vector movement. Bayesian hierarchical models include structured
random effects to account for spatial connectivity. However, conventional
approaches require the spatial structure to be fully defined prior to model
fitting. By applying penalized smoothing splines to coordinates, we create
two-dimensional smooth surfaces describing the spatial structure of the
data while making minimal assumptions about the structure. The result is
a non-stationary surface which is setting specific. These surfaces can be
incorporated into a hierarchical modelling framework and interpreted
similarly to traditional random effects. Through simulation studies, we
show that the splines can be applied to any symmetric continuous con-
nectivity measure, including measures of human movement, and that the
models can be extended to explore multiple sources of spatial structure in
the data. Using Bayesian inference and simulation, the relative contribution
of each spatial structure can be computed and used to generate hypotheses
about the drivers of disease. These models were found to perform at least as
well as existing modelling frameworks, while allowing for future extensions
and multiple sources of spatial connectivity.

1. Introduction

When modelling infectious disease data across a geographical region, it is
important to account for potential spatial connectivity between areas. For
example, spatial connectivity may arise from human or vector movement con-
tributing to the spread of a vector-borne disease, or unobservable climatic,
behavioural, biological and socio-economic factors shared between areas.
Conventionally, Bayesian hierarchical models aim to account for this spatial
connectivity by including spatially structured random components within the
model [1-3]. Fully Bayesian modelling approaches require the spatial structure
of components to be defined prior to model fitting. However, the spatial struc-
ture of the data may not be fully known. A recent systematic review found that
all Bayesian hierarchical models for mosquito-borne diseases used a distance-
based spatial structure, assuming connectivity between regions only exists
between neighbours or close observations [4].

Spatial autocorrelation in disease count data may be attributable to multiple
sources of connectivity. For example, dengue incidence is associated with climate
variation, vector control interventions and levels of immunity in the population
which are likely to be shared between close regions [5]. However, dengue is

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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also influenced by human movement which creates links
between distant regions that a distance-based spatial connec-
tivity assumption would not capture [6,7]. Long-distance
connections are particularly important when studying (re-)-
emerging diseases which are largely driven by connections
between areas experiencing active disease transmission and
disease-free areas [8-10]. In these examples, multiple random
terms would be required within a Bayesian hierarchical
model to capture the different sources of connectivity and
quantify the relative importance of each to the disease trans-
mission process.

In this paper, we present a Bayesian hierarchical modelling
framework that uses penalized smoothing splines as a flexible
method for structuring spatial model components. Smoothing
splines use data to inform spatial components, given smooth-
ing assumptions, rather than requiring the full specification
of the spatial structure prior to model fitting [11,12]. The
result is a non-stationary structure which is setting-specific
and requires minimal user assumptions. This approach
allows multiple spatially structured random components to
be incorporated into the same model and can distinguish
between these structures to quantify their relative contribution
to the overall spatial structure. Although this study focuses on
disease mapping models of count data, we also show that this
method can be used for models of binary data.

2. Modelling approach
2.1. Disease mapping

Disease mapping is an important statistical tool used in
epidemiology to explore spatial variation in disease incidence
rates. Disease mapping models can generate and test hypo-
theses about associations between disease and a variety
of potential explanatory variables, such as environmental
and socio-economic factors [2,13]. Typically, disease counts, y;
(i=1,...,n), are collected across a study area separated into n
contiguous areas. These counts are combined with an offset
log(&) describing the underlying population at risk in each
area i. For instance, y;/¢&; is the empirical incidence rate in i
when ¢&; is population count. Where a disease is rare or areas
within the study are small, estimates of the incidence are
highly uncertain and thus unstable and inflated. To overcome
this issue, Bayesian (hierarchical) modelling approaches have
been developed to allow information from connected regions
to be included in the rate estimation using random effects
(data pooling). Conventionally, these models take the form

yi ~ p(E@:), ¥)
and

log(E(y;)) = log(&) + a + S;, (2.1)

where p is a suitable count distribution (e.g. Poisson, negative
binomial), E(y,) is the expected count, a is the intercept or
baseline risk, S; are spatially structured random components
and y are hyperparameters of the distribution. The definition
of S; (which describes the spatial structure of E(y;) on the log
scale, after correcting for &) depends on the disease of interest
and the assumed spatial structure in the data. A recent
systematic review found that spatial statistical models used
to study mosquito-borne diseases only considered distance-
based connectivity when defining the structure of such spatial

random effects [4]. The most common spatial structure
assumed connectivity between regions if and only if they
share a border using a conditional autoregressive (CAR) model

Y WiSi o
Wi T X Wi )

where Wj; are proximity weights, often defined as W;=1 if i
and j share a border, and 0 otherwise. Although the conditional
independence assumption intrinsic to neighbourhood-based
spatial structures allows for efficient Bayesian computation
[14], the nature of spatial connectivity is likely to be more
complex and differ across settings. A smooth function with a
structure defined using the data rather than prior to model
fitting provides a flexible alternative and allows spatial
dependency structures to be specific to each setting.

SilSjui ~ N( (22)

2.2. Penalized smoothing splines
Smoothing splines, or smooth functions, are used in generalized
additive models to explore nonlinear relationships between a
response variable and one or more covariate(s). Smoothing
splines are constructed as a linear combination of basis
functions, b; (functions applied to the covariate(s) at given inter-
vals, determined by the type of smoothing spline chosen),
multiplied by regression coefficients, f; [11]. For example,
K
fy =2 Bbjtx). (2.3)
=1

Where fis a smooth function (the smoothing spline), x is the cov-
ariate of interest and K is the number of ‘knots’, or turning
points, in the smooth function. The number of knots should
be chosen to be large enough that the smooth function ade-
quately describes the data, but not so large that they overfit or
become ‘overly wiggly’. To achieve this, a smoothing penalty
parameter, 4, is introduced and estimated using the data to
avoid overfitting when Kis too large (e.g. as A — o, f(x) becomes
linear) [12].

Regression coefficients f are estimated using restricted maxi-
mum likelihood, which imposes a smoothing penalty on the
coefficients of the form

AB'PB, (2.4)
where 1 is the penalty parameter introduced earlier and P is a
penalty matrix computed prior to model fitting (based on the
type of smoothing spline chosen) [11,12]. The penalty parameter,
matrix and basis functions can be estimated efficiently using the
mgcv package [15]. Although the mgcev package uses empirical
methods to estimate the parameters defining smoothing splines,
the results can be interpreted from a Bayesian perspective.

2.3. Bayesian interpretation of penalized smoothing
splines

The assumption that smoothing functions f are more smooth
than wiggly can be considered a prior belief on the values
that the coefficients can take. This prior can be formalized
and incorporated into Bayesian inference by assuming the
regression coefficients # have the prior distribution

p-
~N(0, —,

#-n(05)

where P~/ is the covariance matrix [11,12]. However, the pre-
cision matrix PA is rank-deficient so is instead replaced by

(2.5)
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Pyl + P1A;, where the first term relates to a penalty on the null
space of the smooth function and the second is the wiggliness
penalty [16]. The interpretation of this is that the penalty matrix
is separated into penalized components through P; (relating to
wiggly behaviour) and non-penalized components through Py,
The splines b;(x) and penalty matrices can be efficiently gener-
ated using the jagam function in the mgcv package [16]. The
definition of smoothing splines as linear combinations of
(known) basis functions and (unknown) coefficients means
that they can be entered into hierarchical models [17] and
implemented using Bayesian inferential methods such as
Markov chain Monte Carlo (MCMC). Under these conditions,
the resulting penalized smoothing splines can be interpreted as
random effects [11,18].

2.4. Spatial smoothing splines within Bayesian

hierarchical models

In this study, we applied penalized smoothing splines to
coordinates describing the relative ‘connectivity’” of regions
(e.g. coordinates of the centroid of regions). This created two-
dimensional smooth surfaces describing spatial patterns in
the data. Thin plate regression splines are relatively efficient
at estimating smooths over multiple variables and do not
require a surface to be stationary. In addition, thin plate
regression splines have low posterior correlation between
parameters, which improves mixing when using MCMC
methods [19,20]. If a coordinate system does not currently
exist that describes the connectivity in question, this can be
created from a symmetric continuous measure using multi-
dimensional scaling (MDS). MDS translates a continuous
measure of ‘distance’ or connectivity between observations
onto an abstract Cartesian space and returns a set of coordi-
nates [21]. For example, when connectivity is assumed to
arise due to human movement, this could be defined as a con-
tinuous measure such as the number of air travel passengers,
or an estimate from a movement model, such as a gravity
or a radiation model [22,23], which assumes the number of
people moving between areas is a function of population and
distance. Note that MDS requires the measure of connectivity
to be symmetric, for example, the number of people travelling
to an area is assumed to be equal to the number returning.

Smooth surfaces were defined using splines and included
in Bayesian hierarchical models of count data using the pro-
cedures detailed above. Models were implemented using
NIMBLE [24,25], a flexible program that implements Baye-
sian models created in the BUGS language using MCMC
methods within R [26]. The flexibility of this framework
means that multiple spatially smooth surfaces can be
included in the same model with different connectivity
assumptions (e.g. distance-based and human movement).
Interpreting the smooth surfaces over the various connec-
tivity measures as random means the relative contribution
of each spatial structure can be quantified by calculating
the proportion of the overall variance of the random terms
that is captured by each spatial term.

3. Simulation study 1: a single source of spatial
structure

In this section, we present a simulation study in which we apply
Bayesian spatial models to data generated froma distance-based

spatial structure. We compare model performance between the -

penalized regression spline approach and a neighbourhood-
based CAR model. A further simulation study assuming a
single source of human movement-based connectivity is
presented in the electronic supplementary material.

3.1. Data generation

Fictitious disease count data were generated from a Poisson
distribution for each of the 1013 municipalities in South
Brazil, the region used in the case study (§5), from model
(2.1). The log of the population divided by 100 000, log(&y,
was included as an offset (electronic supplementary material,
figure S1). The population of each municipality was taken
from the Brazilian census and described in §5.1. The intercept
term o was set to zero, while the term S; was defined by

Si=/d-smx;, z)+ /A - &, (3.1)

where ¢ is a mixing parameter, taking values between 0 and
1, which measures the contribution of each term (if we inter-
pret sm(x;, z;) as random and independent of ;) to the overall
variance of S;, and &; ~ N(0, 1). sm(x;, z;) is a continuous func-
tion applied to connectivity coordinates (x;, z;) to emulate a
spatially structured surface (figure 1b, taken from [27]):

R T )
sm(x,z) = mo,o,(1.2e~ ¥02)/0~@=03) /o

+ 0_8e—(,\‘—0,7)2/0f—(:—O,B)Z/af) (3.2)
and
&y =03, =04,

To create a distance-based spatial structure, the smooth
function sm was applied to coordinates of the centroid of
municipalities which were scaled to take values between 0
and 1. The function sm(x;, z;) was centred at 0 by subtracting
the overall mean from each value. Eleven simulated datasets
were produced using equation (3.1), setting values of ¢
between 0 and 1 at intervals of 0.1 (figure 1).

3.2. Modelling approach

Two Poisson models containing spatially structured and
unstructured random components were applied to each
simulated dataset

i ~ Poisson(E(y;))
log(E(y))) = log(&) + & + u; + v; (33)

log(E) = log(@) + a+~ (V- wi+ VI~ 6-0.) . (34)

In model (3.3), u; is a spatially structured term, constructed
using a thin plate regression spline on the coordinates of the
centroid of each municipality, and v; is a spatially unstructured
term, assumed to follow a zero-mean normal distribution,
representing heterogeneity between regions. This spatially
smooth model was compared with a more conventional
random effect approach based on the BYM2 model (model
(3.4)), which is often used to capture spatial structure in disease
mapping [3,28,29]. In model (3.4), ux; are spatially structured
random effects assuming a CAR model with a binary neigh-
bourhood matrix (see equation (2.2)), v+ are unstructured
normal random effects, and ¢ is a mixing parameter, measuring
the contribution of each random effect to the marginal variance
(1/7) of the overall random effect [3,28]. Here, ¢ = 1 represents
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Figure 1. Simulated disease counts (left) and spatial random effects (right) under a distance-based structure using different spatial structure combinations. The
number of cases simulated from a Poisson model and the underlying spatial structure where the data has (a) no spatial structure (¢ =0), (b) a distance-based

structure only (¢ =1) and (c) equal contribution of both structures (¢ = 0.5).

a purely spatial model, equivalent to an intrinsic CAR model
[30], and ¢=0 indicates no spatial structure in the data.
Spatially smooth models were fitted using MCMC simulations
in R via the NIMBLE package [24]. Although the BYM2 model
can be formulated and fitted using MCMC simulations [31], we
found that most contemporary disease mapping studies use
integrated nested Laplace approximations (INLA) for model

fitting [32]. INLA is an approximate Bayesian inference
approach which provides a more efficient alternative to
MCMC and avoids issues with convergence [14,29]. We com-
pared the spatially smooth model with a BYM2 model fitted
using INLA to ensure we were comparing our results to the
conventional approach. However, to ensure any differences
were not a result of inferential methods, the BYM2 random
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Figure 2. The mean and 95% credible interval of estimated ¢ values extracted from models including a smoothing spline (black) and BYM2 (blue) compared with
the known value (dashed line). Estimated ¢ values for the smoothing spline model were calculated using the proportion of the random effect variance explained by
the spatially structured term and were extracted from INLA output for the BYM2 model.

effect model was also fitted using MCMC simulations in
NIMBLE and compared with the spatially smooth model.
Results of this comparison are presented in the electronic sup-
plementary material.

Model comparison was based on mean absolute error
(MAE) and Watanabe-Akaike information criterion (WAIC),
an information criterion used to assess the predictive accuracy
of Bayesian models [33]. Lower values of MAE and WAIC are
preferred. The relative contribution of the spatially structured
term, u;, to the overall random terms in the spatially smooth
model was defined as the proportion of the overall random
term variance explained by u (var(u) /var(u + v)). This was esti-
mated using samples from the posterior distribution of # and v.
We compared estimates of the ¢ hyperparameter from INLA,
the relative contribution of u; with the random effect variance
from NIMBLE, and the known proportion of spatial variance
used in the simulation. All analyses were carried out using R
v. 4.1.1 [26]. The code used to simulate data and perform
analyses is available here: https://doi.org/10.5281/zenodo.
7054457 [34].

3.3. Results
We found that the spatial spline model estimates were closer to
the true value of ¢ than the BYM2 model for most simulations
(figure 2 and table 1), and that INLA’s estimates of this parameter
were not always consistent with the true value. This indicates that
the spatial spline models were able to identify and quantify the
relative contribution of this spatial structure within the data as
well as (if not better than) INLA’s BYM2 models.

MAEs and WAIC values show that model performance
was similar between the smoothing spline and BYM2 models
(table 1). The WAIC showed the smoothing spline model

performed slightly better on all simulated datasets apart
from one, although the MAE preferred the BYM2 models.
When these approaches were compared with the BYM2
model fitted using MCMC (electronic supplementary material,
S1), we found that some of these differences appear to be a
result of fitting the model using INLA rather than model for-
mulation itself. However, the objective of this comparison
was not to show that the proposed smooth model outperforms
these approaches, rather that it performs as well as the current
standard. These results illustrate that the smoothing spline was
able to detect spatial connectivity between neighbouring
regions while being flexible enough to capture alternative
structures. The 95% credible interval (CI) of the intercept coef-
ficient estimate contained the true value 0 for all models for
both approaches (electronic supplementary material, figure
52).

4. Simulation study 2: two sources of spatial
structure

In this section, we present another simulation study in which
we apply Bayesian spatial models to data generated with two
sources of spatial connectivity: distance-based and human
movement-based.

4.1. Data generation

An extension of the spatial term, S;, in equation (3.1) was
used to generate data with spatial connectivity arising from
two different sources

Si= \/-d;; -sm(a;, b;) + \/75 -sm(cj, d;) + \ﬁd;; s (4.1)
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Figure 3. Simulated data containing two sources of spatial structure. Simulated disease counts, y; (a) and spatial random terms, s; (b), for South Brazil generated

using equation (4.1), where ¢ =04, ¢, =05 and ¢3=0.1.

Table 1. Model comparison statistics and mean estimates of the mixing parameter, ¢, from the smoothing spline and INLA BYM2 models. Mean absolute error
(MAE) and WAIC calculated for the spatial spline and BYM2 models for each simulated dataset. The lowest MAE and WAIC, and the ¢ estimate closest to the

value used in each simulation are highlighted in italics.

smoothing spline model

MAE WAIC
0 151 996.94 0.041
01 154 1030.64 0.121
0.2 133 93242 0.6
03 127 909.42 0253
04 139 91.67 0375
05 154 935.09 0.601
06 15 881.09 0.512
07 145 931.85 0.641
08 163 947.51 0.808
09 159 876.37 0918
1 148 875.42 0797
and
b+ b+ b =1

Where sm is a smooth function (equation (3.2)), applied to
coordinates describing distance-based connectivity (a; b)),
and human movement-based connectivity (c;, d;). The coordi-
nates of the centroid of municipalities were scaled to take
values between 0 and 1 and used to describe distance-
based connectivity (a;, b;). As a coordinate system describing
connectivity arising from human movement does not exist,
we applied MDS to an estimate of the number of people
moving between municipalities, generated using a movement
model described in the electronic supplementary material, to
create coordinates ¢; and d; (electronic supplementary
material, figure S3).

In this example, we used three scaling parameters, ¢, ¢»
and ¢3, to describe the relative contribution of each random

¢ estimate

INLA BYM2 model

MAE ¢ estimate
1.04 1005.79 0072
111 103429 0279
.04 ) 0486
0.93 9125 Y72
1.08 976.12 0625
121 95434 0668
113 97361 0757
1.17 989.24 089
137 ' 983.96 0951
137 92229 0963
1.25 92414 0948

term to the marginal variance. We held ¢3 constant at 0.1,
with ¢; and ¢, taking values between 0 and 0.9 at intervals
of 0.1, creating 10 simulated datasets (figure 3).

4.2. Modelling approach
We applied a Poisson spatial model to each simulated dataset
which contained three random terms

yi ~ Poisson(E(y;))
log(E(yi)) o= log(f,-) +a+ Uy + Uz + vj. (42)

Where u,; is constructed using a thin plate regression spline
applied to coordinates of the centroids of municipalities, and
U, is structured using a thin plate regression spline applied
to human movement-based connectivity coordinates described
previously. v; is assumed to have no spatial structure and
represents unobserved heterogeneity between municipalities.
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Figure 4. Mean and 95% credible interval of the proportion of variance of the random effects explained by (a) the distance-based structured term, (b) the human
movement-based structured term and (c) unstructured random term. Dashed lines represent the true value from simulations.

84



We compared the proportion of the marginal variance
explained by each random term and compared these with the
known ¢ values used in data generation.

4.3. Results

We found that the models were able to accurately estimate
the intercept coefficient value of 0 across most simulated
datasets (electronic supplementary material, figure S4). Esti-
mates of the relative contribution of each random term to
the overall spatial structure were close to ¢ values used in
simulations and were able to detect the increasing contri-
butions of distance-based and human movement-based
terms as the true value increased (figure 4).

5. Case study

This case study uses the Bayesian spatially smooth models
introduced in previous sections to map the spatial patterns
of dengue incidence in South Brazil between 2001 and 2020.

5.1. Data description

We obtained annual notified dengue cases for each of South
Brazil's 1013 municipalities between 2001 and 2020 from
Brazil’s Notifiable Diseases Information System, freely available
via the Health Information Department, DATASUS (https://
datasus.saude.gov.br/informacoes-de-saude-tabnet /). To
explore the pattern of disease over the whole period, we
took the average annual number of cases over the period
and rounded this to the nearest whole number. The annual
population for each municipality was obtained from the
Brazilian Institute of Statistics and Geography (IBGE) via
DATASUS  (http://tabnet.datasus.gov.br/cgi/deftohtm.exe?
ibge/cnv/poptbr.def) over the same period and aggregated
in the same way. We used the population divided by 100 000
as an offset to model the dengue incidence rate (DIR), a measure
used by the Brazilian Ministry of Health to monitor dengue
outbreaks. South Brazil was previously thought to be protected
from dengue due to its temperate climate, with winter tempera-
tures too low for the primary vector, Aedes aegypti, to breed
and transmit the disease. However, recent studies have shown
that the northern part of the South region now experiences out-
breaks, thought to be due to increasing temperatures (figure 5,
[35]). The data show a clear distance-based spatial pattern in
this region. However, studies of other temperate regions of
South America, such as Argentina, have hypothesized that
increased outbreaks in cooler regions may be a result of
human movement into previously protected cities [7,36]. Data
used in this case study are available from https:/ /doi.org/10.
5281/zenodo.7054457 [34].

5.2. Modelling approach

We applied a negative binomial model to the average annual
dengue cases, using the log of the population divided by
100000 as an offset to explore the DIR in South Brazil.
A negative binomial distribution was assumed to account
for possible overdispersion in the dengue case count [5].
Model (4.2) was applied to the data, spatial random terms
were structured by applying thin plate regression splines
to the coordinates of the centroids of municipalities
(11,5, assuming distance-based connectivity), and human

Figure 5. Average dengue incidence rate (DIR), 20012020 in South Brazil.
The mean annual dengue incidence rate per 100 000 residents in South Brazil
from 2001 to 2020. Data are shown on a log scale.

movement-based connectivity coordinates described in §4
and the electronic supplementary material (15 ).

5.3. Results

The model found that human movement did not account for
much of the spatial structure of the data in this region (¢, =
0.003, 95% CI: 0, 0.012), and most of the variation could be
attributed to the distance-based random term (¢, =0.85, 95%
CI: 0.823, 0.876, figure 6). The human movement data used
to create these random effects were only able to capture
movement between cities in South Brazil. However, out-
breaks in temperate regions such as this are likely to be
triggered by the movement of people from endemic regions
elsewhere in Brazil into the South [7].

Estimates of each random term and the combined total
were extracted and plotted to generate hypotheses about
these patterns (figure 7). Most of the spatial structure came
from the distance-based random term, which shows the high-
est risk was in the northwest and that the risk decreased
to the south. This area of increased risk is the same region
which was found to have an increase in the number of
months per year with temperatures suitable for dengue trans-
mission since 2010 in a previous study [35]. This model could
be extended to include temperature and other variables
known to influence dengue risk.

6. Discussion

In this paper, we have shown that penalized smoothing
splines present a flexible alternative to CAR-based structures
of spatial random effects that allow multiple sources of
spatial connectivity to be considered within the same
model. Smoothing splines allow the spatial structure to be
derived from data as part of the model fitting process, produ-
cing a non-stationary spatial surface specific to the data being
considered. This smooth surface can be extracted and plotted
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Figure 6. Estimates of the proportion of variance explained by distance-based (black), human movement-based (blue) and independent (red) random terms. Using
simulations extracted from NIMBLE, the variance of each random term was calculated and divided by the variance of the combined random component, giving the

relative contribution of each structure.

to generate hypotheses about the reasons for this spatial
connectivity which may help identify potential drivers of
disease. Although many disease mapping studies assume a
distance-based structure of connectivity, the smooth spline
approach used here can be applied to any symmetric continu-
ous measure of connectivity, including human movement.
Another benefit of the smoothing spline approach is that
the model structure can be extended to include multiple
sources of spatial connectivity and can produce parameters
quantifying the relative contribution of each structure to the
underlying variance of the data. Although this study has
focused on disease mapping models of count data, we have
shown this method is compatible with other models, such
as logistic models for binary data (see the electronic
supplementary material).

Formulating models in NIMBLE (or other similar coding
languages) and implementing them using MCMC methods
allows for flexibility and complexity in the model structure.
However, these models are more likely to face issues with
convergence than approximate methods such as INLA [14].
MCMC methods may also take longer than INLA to fit
models if convergence is an issue, although this is not
always the case when using NIMBLE [37].

One of the main benefits of using penalized smoothing
splines over CAR-based priors is that they can be applied
to any symmetric continuous measure of connectivity. How-
ever, the most appropriate measure may not always be clear
or available. For example, human movement-based con-
nectivity can be captured using data to describe regular,
short-distant movement such as commuting within a city,

or long-distance, long-term movement such as migration,
which requires different assumptions [9]. Mobile phone
data have potential to describe short-term movements at
small spatial scales but may be difficult to obtain, and care
must be taken in some settings where bias may arise [38].
Movement models, such as gravity and radiation models,
assume that the number of people moving between
areas can be described as a function of population and
distance [22]. Movement models provide an alternative
when data is unavailable or inappropriate and have been
shown to replicate patterns of movement in large cities and
European countries [23,39]. However, care must be taken
when parametrizing these models, particularly in rural set-
tings [40]. Although distance is recognized as an important
driver of human movement [22], our simulation studies
showed that this approach can distinguish between the rela-
tive contribution of both sources of connectivity to the
overall spatial structure (see §4 and electronic supplementary
material, 54).

One limitation of this method is that the measure of con-
nectivity must be symmetric to produce a spatially smooth
surface. This is often not realistic when considering human
movement, as the number of people moving from smaller
to larger cities is often different to those moving in the oppo-
site direction [41]. In the examples presented in this study, we
assumed that the number of people travelling between muni-
cipalities is equal to the number of people returning. Also, the
models presented in this study only consider a single time
point (or data summarized over a given time period); how-
ever, disease risk is likely to vary over time and models

86

0P0TZ07 ‘61 03| 20§ Y °f ;;s:/wumo[/ﬁm'ﬁu!qs!|qndMa[305|eA01 H



| O =W

Uy

Figure 7. Mean estimates of the (a) distance-based, (b) human movement-based, (c) unstructured and (d) combined random terms.

may be required to account for inter-annual or seasonal vari-
ation. Data presented in the South Brazil study have been
used elsewhere to show the expansion of dengue outbreaks
into the region and the changes in spatial structure over the
past 20 years [35,42]. The models presented here can be
extended to include temporal covariates or random terms to
account for seasonal and annual trends, and changing spatial
connectivity surfaces to reflect changing patterns of move-
ment. Tensor smooth functions, a type of smoothing spline
which allows interaction between variables measured on
different scales [27], may be incorporated to explore the inter-
actions between time and connectivity. These structures can
be explored to understand changing dynamics of diseases
and generate hypotheses about drivers of change or highlight
areas at risk. Covariates such as climate indicators can also be
included into the models and random term estimates com-
pared to highlight the relative variability in the disease risk
explained by these covariates.

Penalized smoothing splines present a flexible alternative
to conventional random effect structures when constructing
Bayesian hierarchical models. They require minimal user
assumptions beyond smoothness and can be applied to any
symmetric continuous measure of connectivity. By taking a
Bayesian view of these smoothing splines, we can incorporate

multiple sources of spatial connectivity into a complex
modelling framework efficiently and quantify their relative
contribution to the overall spatial structure of the data. This
is particularly useful in infectious disease epidemiology
where the drivers of transmission may be complicated and
not fully understood.

Data accessibility. All data used in this study are open access and avail-
able freely on the internet; see the methods section for more details.
Data and code used to produce this analysis is available from Zenodo
(https:/ /doi.org/10.5281/zenod0.7054457) [34].

The data are provided in the electronic supplementary material
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5. The contribution of human movement to
dengue expansion differs between regions in

Brazil

5.1 Bridging section

The overall aim of this thesis was to understand the contribution of increasing temperatures in
South Brazil and connectivity between cities arising from human movement to the expansion
of the dengue transmission zone in Brazil. Model results from Chapter 2 showed that the odds
of a dengue outbreak were significantly increased in municipalities with year-round
temperatures suitable for dengue transmission, and that temperature suitability explained most
spatiotemporal variation in dengue outbreaks in South Brazil. The model also found that the
level of influence of cities was significantly associated with the odds of a dengue outbreak.
However, this relationship was nonlinear and cities classified as regional capitals were found
to have a higher odds of a dengue outbreak compared to the most influential cities in Brazil,
metropoles. Although the level of influence indicator was used as a proxy for human
movement, the model presented in Chapter 2 was not able to include direct connections
between cities in Brazil arising due to human movement. Chapter 4 presented a statistical
modelling framework that could incorporate explicit links between areas arising due to human
movement and quantify the relative contribution of human movement to the overall spatial

structure of the data.

In this chapter, | applied the statistical modelling framework presented in Chapter 4 to model
the number of dengue outbreaks between 2001 — 2020 per municipality in Brazil, with spatially
structured terms designed to capture spatial connectivity within the data. Simulations from this
model were used to quantify the relative contribution of human movement based on regular
commuting to the odds of a dengue outbreak across Brazil (Objective 4). The relative
contribution of regular commuting to the spatial structure of dengue outbreaks was estimated

for the whole of Brazil and each region in turn.

This paper is yet to be submitted to a journal. Supplementary materials referred to in this

chapter can be found in Appendix E.
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Abstract

Dengue transmission has been expanding across Brazil since its re-introduction into areas that
were previously thought to be protected. Previous studies have shown that geographical
barriers to dengue transmission are being gradually eroded in South Brazil and the western
Amazon. In this study, we quantify the relative contribution of regular commuting to the
geographical expansion of dengue outbreaks between 2001 and 2020 in Brazil using a Bayesian
hierarchical model. Spatially structured terms were included in the model and generated by
applying penalised regression splines to coordinate systems that describe the relative
‘connectedness’ of municipalities. Spatial connectivity arising from regular commuting was
described using coordinates generated from the 2010 census in Brazil, and connectivity
between close regions due to unobserved shared characteristics e.g., climate type and
socioeconomic conditions, were described using coordinates of the centroid of municipalities.
We found that regular commuting contributed very little (1.3%) to the spatial structure of data
when Brazil was considered as a whole. However, the relative contribution of commuting to
dengue outbreaks was higher in the North and Northeast regions, particularly in the western
Amazon. This supports previous findings that expansion in this region was a result of improved

transportation infrastructure and increased human movement.

5.2 Introduction

Over the past 50 years, dengue has been expanding globally into previously unaffected areas.
This has been attributed to climate change, urbanisation, and increased connectivity driven by
human movement [1,2]. In Brazil, this expansion has taken place at an alarming rate since its
re-emergence in the 1980s, resulting in an estimated 8.7 million new individuals at risk over
the past 5 years [3]. One of the final frontiers of dengue transmission in Brazil was the western
Amazon, a remote, mostly rural area with many communities reachable only by long boat
journeys [3-5]. However, this barrier has been eroded over the past 20 years and there are now
few municipalities in the area that have not experienced a dengue outbreak [4]. Evidence
suggests that the introduction of dengue into the area was driven by increases in human
movement to and within the region following improved road infrastructure and increased air
travel [6]. Although dengue is typically an urban disease, rapid unplanned urbanisation has
produced ideal habitats for the dengue vector, Aedes mosquitoes, to thrive. The humid, hot

climate coupled with a lack of access to basic services, such as piped water, has seen dengue
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vectors, and subsequently the viruses they transmit, move from larger urban centres into

neighbouring peri-urban and rural areas within the Amazon [7].

A previous study found that the odds of a dengue outbreak was significantly higher in cities
that were considered very connected within the Brazilian urban network compared to less
influential centres based on their classification in the Regions of influence of cities ("Regides
de Influéncia das Cidades”, REGIC) study [4,8]. However, this relationship was nonlinear and
the cities considered most connected in Brazil, classified as metropoles, had lower odds of a
dengue outbreak than those classified as regional capitals. This could be due to differences in
infrastructure and health-seeking behaviour which could not be detected at the municipality
level. Another potential reason for this nonlinear trend is that the level of influence indicator
used in this study may not be an adequate proxy for connectivity arising due to human
movement. The REGIC study found that small cities were connected to metropoles via less
influential cities, such as regional capitals [8]. By not including the direct links between cities,

we could be missing important connections within the data.

Spatial connectivity, including connections between close geographical areas due to
unobserved shared characteristics and behaviours (referred to here as distance-based
connectivity), and connections arising due to human movement between areas, is an important
consideration when modelling infectious diseases. Most spatial models for mosquito-borne
disease transmission assume spatial connectivity only exists between close areas, represented
as a function of distance [9]. This distance-based connectivity is often used as a proxy to
account for unobserved characteristics such as shared climatic and environmental factors,
vector control measures, and levels of immunity within communities. However, these
connections do not account for long-distance human movement, which has been identified as
an important driver of infectious disease expansion [10-12]. In this study, we aim to understand
how human movement around the Brazilian urban network has contributed to the expansion of
dengue between 2001 — 2020. We include direct links between pairs of cities across Brazil
arising from regular commuting into a Bayesian spatial model, which allows us to quantify the
relative contribution of human movement on the expansion of dengue in Brazil [13]. A
distance-based spatial connectivity structure is also included to account for unobserved shared
characteristics, such as climate, between close areas. By comparing the relative contribution of
regular commuting to the spatial structure of dengue outbreaks between regions of Brazil, we

hope to better understand the recent changes to the dengue transmission zone.
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5.3 Methods
5.3.1 Epidemiological data

Notified dengue case data was obtained from Brazil’s Notifiable Diseases Information System
(SINAN), freely available via the Health Information Department, DATASUS

(https://datasus.saude.gov.br/informacoes-de-saude-tabnet/). This data is aggregated by month

of first symptom (between January 2001 and December 2020) and the municipality of
residence. Although there were 5,570 municipalities in 2020, these borders have changed over
the period. To ensure municipalities were consistent over the entire period, we aggregated data
to the 5,560 municipalities that were present in 2001 by combining the new municipalities’
data with their ‘parent municipality’. Data and code used to carry out the analysis are available

from https://github.com/sophie-a-lee/dengue human movement model.

5.3.2 Human movement data

The number of residents regularly commuting between municipalities for work or education
was extracted from the 2010 Brazilian demographic census [14]. A random sample of residents
were asked to give details about the country, state and municipality that they travel to for work
or education. We excluded movements outside of Brazil and residents that did not provide any
information about their destination (they responded that they leave the municipality for work
or education but gave no further details about the destination). Some residents provided partial
data, for example the state but not the municipality of their destination. These residents were
assigned a destination proportionally based on complete answers of other residents from the

same municipality (see [6] for more details).
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a)

b)

Figure 5.1: Percentage of residents regularly commuting between a) Brasilia, b) Rio
Branco, and c) Porto Alegre. The percentage of residents commuting between cities in Brazil
for work or education taken from the 2010 census, for all connections (left), and for connections
where over 0.1% of the residents moved (right). Although connections exist across the country

in each of these cities, these long-distance movements make up a small proportion compared

to movements between neighbouring cities.
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To measure the ‘strength’ of connection between municipalities based on the number of people
commuting between them, the number of people was converted into the proportion of the
source population using data from the 2010 Brazilian census obtained via DATASUS

(http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptbr.def) (Figure 5.1). We applied

multidimensional scaling (MDS) to these proportions to obtain an abstract cartesian coordinate
system describing the relative connectivity between municipalities arising due to human
movement [13,15] (Appendix E, Figure E1).

5.3.3 Modelling framework

To measure the expansion of the dengue transmission zone in Brazil between 2001 — 2020, we
aggregated monthly dengue case data to annual dengue incidence rate (DIR), defined by the
Brazilian Ministry of Health as the number of cases per 100,000 residents. The DIR was
converted into a binary outbreak indicator using the Brazilian Ministry of Health’s definition
of ‘high risk’, over 300 cases per 100,000 residents, as a cut-0off [16]. Although other outbreak
definitions could be considered, our definition is consistent with Brazilian public health policy
[16], and results from a previous study found that different outbreak thresholds produced

similar conclusions [4].

We applied a Binomial spatial smooth model to the number of outbreaks per municipality
between 2001 — 2020 using the spatial modelling framework outlined in [13]. Briefly, the
model included 3 spatial terms: one assuming connectivity between municipalities as a function
of distance (distance-based), one assuming connectivity between municipalities because of
regular commuting (human movement-based), and another unstructured term to account for

unobserved heterogeneity between municipalities. The final model equation was as follows:

y; ~ binomial(p;, 20)

p.
log (1 —lpi) =a+ u,;+ uy; + vy

Where y; is the number of outbreaks between 2001 — 2020 in municipality i (i = 1, ..., 5,560),
expected to follow a Binomial distribution defined by the probability of an outbreak, p;. u, ; is

a distance-based spatially structured term, created by applying a thin plate regression spline to
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latitude-longitude coordinates of the centroid of municipalities. u,; is a human movement-
based spatially structured term, created by applying a thin plate regression spline to coordinates
describing connectivity between municipalities arising due to regular commuting, described
previously. v; is a spatially unstructured term, assumed to follow a zero-mean Normal
distribution. This unstructured term aims to capture heterogeneity between municipalities
which is not spatially correlated. Spatially smooth terms were generated using the mgcv
package [17] and extracted using the jagam function [18]. Model fit was carried out using
Markov chain Monte-Carlo (MCMC) simulations in R via the NIMBLE package [19].

The relative contribution of each spatial term to the overall marginal variance was defined as
the proportion of the overall random term variance explained (for example, the contribution of
distance-based connectivity is calculated as war(uy;)/var(uy; +uy; + v;)) using
simulations from the MCMC [13]. This was calculated for Brazil as a whole and then separately

for each region of Brazil.

5.4 Results

Between 2001 and 2020, there were 1,322 (23.8%) municipalities that did not experience a
dengue outbreak. Most of these (845) were in the South region and only 4 municipalities in the
Centre-West region did not experience an outbreak in this period. The Goiania and Aparecida
de Goiania, municipalities, both situated in the state of Goias in Centre-West Brazil, each had
an outbreak in 19 out of 20 years. There were no municipalities that experienced an outbreak
every year between 2001 — 2020 (Figure 5.2). The Centre-West region of Brazil is currently
the region in which most outbreaks occur. This pattern diverges from the early spatial
distribution of dengue in the 1980s and 1990s, when transmission was most intense in warm,
coastal metropoles. The Centre-West region has a relatively recent introduction of outbreaks,
promoted by the expansion of agricultural areas, increasing urbanisation, and the construction
of an intricate road transport network [20]. Alternatively, there remain some areas of Brazil
with a virtual absence of dengue outbreaks in the past two decades, mainly located in the South

region, mountainous regions, along the northern coast, and in isolated areas of the Amazon.
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Figure 5.2: The number of years between 2001 and 2020 that each municipality in Brazil
experienced an outbreak. The number of years between 2001 — 2020 that municipalities
recorded a DIR of over 300 cases per 100,000 residents. Most municipalities that did not record

an outbreak are located in South Brazil.

5.4.1 The contribution of human movement to dengue expansion in Brazil

Over the past 20 years, regular commuting for work or education was found to contribute very
little to the spatial structure of dengue outbreaks in Brazil when it is considered as a whole
(Figure 3, relative contribution: 0.013, 95% credible interval (CI): 0.009 — 0.017). The
distance-based terms, included to account for spatial autocorrelation between close areas,
contributed the most to the spatial structure in the number of dengue outbreaks, explaining
78.6% of the spatial variation in the data (relative contribution: 0.786, 95% CI: 0.769, 0.802).
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Figure 5.3: The relative contribution of each spatial random term to the overall random
variance. The relative contribution is estimated using the proportion of the combined random
term variance explained by each spatial random term. Note that the density curves have been

rescaled to a maximum of 1 to aid interpretation.

However, when the relative contribution of spatial terms was calculated for each region
separately, we found that South Brazil was mostly accounted for by distance (82.8%), whereas
the unstructured term had the largest relative contribution to the spatial structure of the number
of dengue outbreaks for all other regions (Figure 5.4). The contribution of the commuting term
to the overall spatial variation in the model was found to be highest in the North and Northeast
regions of Brazil (7.5% and 6.8% respectively). Although the contribution was relatively small,
this finding suggests the expansion of outbreaks may be influenced by commuting between

municipalities in these regions.
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Figure 5.4: The relative contribution of each spatial random term to the overall random
term variance calculated separately for each of the 5 geo-political regions of Brazil. The
map is coloured according to Brazilian region. Each panel shows the probability density of the
relative contribution of distance (top), regular commuting for work or education (middle) and

unstructured heterogeneity (bottom) to the overall spatial structure of dengue outbreaks.

Although this model did not explicitly include covariates to describe potential drivers of
dengue expansion (e.g., temperature or level of urbanisation), spatial patterns found using the
random term estimates from the model can capture unmeasured or unexplained variation that
may be attributable to variations in climate or socioeconomic factors across Brazil (Figure 5.5).
For example, the distance-based random term estimate indicated that the odds of an outbreak
in South Brazil was lower than the baseline average. This corresponds to the area of Brazil
considered to be climate type C (temperate) according to the Koppen climate classification
[21]. This climate type is characterised by strong seasonality and cold winter temperatures,
suggesting that a temperature-based covariate might explain the difference in this area
compared to the rest of Brazil (Fig 5.5a). In contrast, the regular commuting-based random

term showed that the odds of an outbreak was higher in the western Amazon, where climate
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conditions are favourable to dengue transmission year-round, compared to the baseline
average, suggesting that human movement based on commuting patterns has a more
determinant role in dengue virus diffusion in the northern region, and may have contributed to

the expansion of dengue outbreaks in the region (Fig 5.5b).

a) b)

Figure 5.5: Mean estimates of the a) distance-based, b) human movement-based, c)
unstructured, and d) combined random terms. Maps show regions where the odds of an

outbreak was higher (lower) than the baseline average in pink (green).

5.5 Discussion

This study provides evidence that the contribution of regular commuting to the expansion of

dengue differs substantially between regions of Brazil. When considering Brazil as a whole,
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the model found minimal contribution of commuting to the spatial structure of dengue
outbreaks between 2001 — 2020. However, when the contribution is calculated separately for
each region, we can see that the relative contribution of different drivers of dengue expansion
varies between regions (Figure 5.4). In particular, the increased odds of an outbreak in the
western Amazon was captured by the commuting-based random term (Figure 5b), supporting
our hypothesis that expansion into this region was influenced by human movement. In contrast,
South Brazil had the strongest distance-based pattern of any region, indicating that other
contextual factors, which are spatially structured, may play a more important role in the
probability of outbreaks. The reduced odds of an outbreak in this region captured by the
distance-based random term aligns with the area found to be protected due to regional

temperatures, in particular, low winter temperatures [4].

There were some parts of Brazil where the odds of dengue were increased but not explained
by spatially structured random terms and were captured by the independent unstructured term
(Figure 5.5¢). These areas of increased odds often correspond to areas close to Brazil’s
international borders such as the states of Roraima (bordering Venezuela and Guyana), Amapa
(bordering French Guiana) and parts of Amazonas state (bordering Colombia). This suggests
that dengue virus may have been imported into these regions of Brazil internationally, as is the
case in other non-endemic countries such as Argentina, USA and Europe [22-24]. It is worth
noting that the data used to inform the spatial random terms included in the model did not
consider the international human movement nor distances to bordering international cities.
Another municipality with a notable increase in odds captured by the unstructured term was
Rio Branco, the capital of Acre state. Rio Branco was one of the first municipalities in the
western Amazon to experience dengue transmission and has experienced explosive outbreaks
since 2001. Although dengue was established in Rio Branco early in the 21% century, it took
several years for the virus to affect surrounding municipalities. When this expansion did
happen, outbreaks appeared to ‘jump’ between municipalities, potentially due to increased air
travel and improvements to the road network within the state [6].

There are several limitations to this study. First, the regular commuting data was sourced from
the 2010 census. This provides a snapshot of connectivity across Brazil and does not allow us
to investigate the impact of changes in commuting patterns over the past 20 years on the dengue
transmission zone. Although the model indicated that commuting for work or education has

contributed to patterns of dengue outbreaks in the western Amazon, this commuting behaviour
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was assumed to be constant between 2001 — 2020. A previous study investigating the
introduction of dengue into the state of Acre in the western Amazon noted that the census data
is most likely representative of the situation since 2009 in the region, following the completion
of major maintenance works on the highway connecting the two largest cities in the state [6].
Another limitation of the human movement data is that it only contains information about
residents that travel regularly for work or education [14] and therefore does not include
irregular, long-distance connections that are less frequent but have been shown to be important
when considering (re-)emergence of mosquito-borne diseases [25]. Despite this, the data did
capture some long-distance travel, particularly between large cities in the Amazon region
(Figure 1). Future work could consider an alternative model formulation that allows temporal
trends to be included and alternative sources of human movement data that capture different
types of human movement and the changing patterns of movement over the period.

Although this model does not explicitly include temperature or other explanatory variables, we
are able to generate hypotheses about potential drivers of dengue outbreaks using the random
term estimates. These hypotheses support previous research that showed South Brazil is
protected due to its lower temperatures and North Brazil was previously protected due to its
disconnection to the Brazilian urban network [4]. This work contributes to previous literature
about the expansion of the dengue transmission zone in South America [4,5,23,26] and
provides evidence that human movement plays a role in this expansion. Our results highlight
the importance of considering different drivers that may be taking place across a large
geographical region like Brazil, which varies enormously in terms of climatic, socioeconomic,

and demographic factors.
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6. Discussion

6.1 Summary of findings

The primary aim of this thesis was to understand the complex, interacting drivers of dengue

expansion in Brazil. This aim led to the following four objectives:

1. Explore the impact of temperature suitability, urbanisation, and connectivity of cities
to the Brazilian urban network on the expansion of the dengue transmission zone in
Brazil (Chapter 2)

2. Identify spatial modelling techniques currently used to study mosquito-borne disease
transmission and the assumptions made in modelling studies about how spatial
connectivity arises, and describe the data used to inform spatial models (Chapter 3)

3. Develop a statistical modelling framework capable of including multiple sources of
spatial connectivity and quantifying the relative contribution of each source to the
overall spatial structure of the data (Chapter 4)

4. Quantify the relative contribution of human movement to the expansion of dengue

outbreaks in Brazil (Chapter 5)

In this section, | begin by summarising the main findings of previous chapters in relation to
these objectives. Following this, | discuss the strengths and limitations of the research
presented in this thesis. | then present future research opportunities that may arise from this

project.

6.1.1 Objective 1: Explore the impact of temperature suitability,
urbanisation, and connectivity of cities to the Brazilian urban network on

the expansion of the dengue transmission zone in Brazil

In Chapter 2, a spatiotemporal generalised additive model (GAM) was applied to a binary
dengue outbreak indicator, using an outbreak threshold of over 300 dengue cases per 100,000
residents. The model included hypothesised drivers of dengue expansion as fixed covariates,
and spatial, temporal and spatiotemporal smooth terms to account for patterns in the data which
were not captured by the covariates. Results from this model showed that the odds of an
outbreak were significantly increased in highly urbanised, highly connected municipalities that

experienced year-round suitable temperatures and had previously experienced an outbreak. A
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comparison of the spatiotemporal smooth terms to a baseline model containing no covariates
showed that temperature suitability explained most interannual and spatial variation in South
Brazil, supporting the hypothesis that this region was protected due to low winter temperatures.
Barriers to the dengue transmission zone were redrawn using the results from this model.
Although a southern border still exists, this has shifted further south, and the western Amazon
no longer has a clear barrier. Another barrier was identified along the northern coast of Brazil

which was not explained by the covariates in this model.

The level of connectivity of cities was defined using the Regions of Influence of Cities
(REGIC) study which categorised cities into 5 levels of influence from the most connected,
metropoles, to least, zone centres [1]. Although connectivity within the Brazilian urban
network was identified as a significant driver of dengue outbreaks, the relationship was
nonlinear. Regional capitals had the highest increase in the odds of an outbreak but were
considered less connected than metropoles. There are many potential reasons for this result,
such as differences in socioeconomic factors, healthcare investment, or health seeking
behaviours between metropoles and regional capitals that could not be captured at a
municipality level. Another hypothesis was that this nonlinear trend was related to human
movement which may not be fully captured within the REGIC connectivity indicators.
Although the model presented in Chapter 2 included a spatially structured term, this was only
able to capture spatial connectivity between close regions due to its smooth structure. As the
current model was not able to incorporate human movement into the spatial structure of the
random terms, or account for multiple (distance and human movement) sources of connectivity,

identifying models that could became the basis for Objective 2.

6.1.2 Objective 2: ldentify spatial modelling techniques currently used to
study mosquito-borne disease transmission and the assumptions made in
modelling studies about how spatial connectivity arises, and describe the

data used to inform spatial models

The systematic review presented in Chapter 3 synthesised spatial modelling approaches
described in the literature used to study the transmission of mosquito-borne diseases to humans,
and the spatial connectivity assumptions that they made. Models were classified as statistical,

mechanistic, machine learning or a combination of these approaches. Although this PhD
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considers dengue expansion as a case study, the systematic review considered 9 mosquito-
borne diseases as the issue of spatial connectivity and the assumption of how this arises is likely

shared across diseases.

There were 248 published studies eligible for inclusion that used a spatial model to investigate
the transmission of a mosquito-borne disease to humans. Of these, over 80% used a statistical
model, most frequently a mixed effect model. All mixed effect models used a distance-based
function to describe the relative ‘connectedness’ of areas or observations. The only statistical
method identified that could include links arising due to human movement was the inclusion
of spatial covariates (e.g., the number of people moving between areas) in a generalised linear
model (GLM). Spatial covariates are a relatively quick and simple way to account for spatial
connectivity in a model as they are added to a GLM in the same way as nonspatial covariates
and can be interpreted in the same way. However, this approach required one covariate per
connection in the data. In Brazil, metropoles such as Brasilia and Sdo Paulo are connected
across the entire country so would require thousands of covariates. The inclusion of many
covariates in a GLM risks overfitting the data and introducing multicollinearity. GLMs also
assume that the relationship between the outcome and spatial covariates is the same across time
and space (stationarity). Given the size of Brazil and the diversity in the movement patterns

across regions [1], the assumption of stationarity is not appropriate for this setting.

Only 50 of the studies included in the review assumed that spatial connectivity was related to
human movement, despite it being recognised as an important driver of mosquito-borne disease
transmission [2-5]. The assumption of human movement-based connectivity was more likely
when studying Aedes-borne diseases and within a mechanistic model. This was likely because
some mechanistic models (i.e., metapopulation and agent-based models) are designed to

include complex networks that describe the movement of a population between nodes.

This systematic review found that there were no statistical modelling frameworks currently
used for mosquito-borne disease transmission that were appropriate to quantify the role of
human movement on the expansion of dengue in Brazil. Expanding the current statistical
frameworks using ideas taken from network-based mechanistic models became the focus of
Obijective 3.
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6.1.3 Objective 3: Develop a statistical modelling framework capable of
including multiple sources of spatial connectivity and quantifying the
relative contribution of each source to the overall spatial structure of the
data

Chapter 4 presented a novel Bayesian hierarchical modelling framework that allows multiple
sources of spatial connectivity, in this case distance and human movement, to be included in a
single model. Spatially structured terms were constructed using penalised smoothing splines
of coordinates that describe the relative connectedness of areas. This creates a 2-dimensional
smooth surface describing the spatial structure of the data which can be incorporated into a
hierarchical model and interpreted similarly to traditional random effects. Smoothing splines
such as these can be applied to any symmetric continuous measure of connectivity, for example
distance or the number of people moving between areas. These functions require minimal user

assumptions about the spatial structure of the data beyond smoothness.

Using model inference and simulations, the proportion of the marginal variance explained by
each spatial term can be computed from the proposed model. This result provides an estimate
of the relative contribution of each spatial term to the overall structure, as demonstrated by
simulation studies. This method could therefore be used to quantify the relative contribution of
human movement to the expansion of dengue transmission in Brazil, the final objective of this
thesis. A case study was carried out using dengue case data in South Brazil between 2001 —
2020 and human movement data generated using a movement model, assuming the total
number of people moving between municipalities was a function of distance and population.
The model found that human movement between municipalities did not account for a
significant proportion of the spatial structure of the average dengue incidence rate between
2001 — 2020 in South Brazil.

6.1.4 Objective 4: Quantify the relative contribution of human movement to

the expansion of dengue outbreaks in Brazil

The modelling framework presented in Chapter 4 was applied to the number of dengue
outbreaks that occurred between 2001 — 2020 per municipality, defined as over 300 dengue
cases per 100,000 residents, for the whole of Brazil. The model contained spatially structured
random terms generated by applying penalised smooth splines to coordinates of the centroid of

municipalities (aiming to capture spatial autocorrelation between close regions, referred to as
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distance-based connectivity) and coordinates generated to describe the ‘connectedness’ of
municipalities based on the number of people travelling between them for work or education
taken from the 2010 census [6] (capturing spatial connectivity arising from human movement).
The model also contained an unstructured, independent random term to capture the remaining
heterogeneity in the number of dengue outbreaks between municipalities. The proportion of
the marginal variance explained by each random term was estimated and used to describe the

relative contribution of each term to the overall spatial structure of the data.

When Brazil was considered as a whole, regular commuting was found to contribute very little
to the overall spatial structure of the number of dengue outbreaks. However, when this
contribution was calculated for each geo-political region of Brazil separately, the relative
contribution differed substantially across the country. The distance-based term contributed the
most to the South region, but the unstructured random term had the largest relative contribution
to the spatial structure of the data in all other regions of Brazil. The North and Northeast regions
had the highest contribution of regular commuting which, although still relatively small, was
significantly higher than South Brazil. When the random terms were extracted and visualised
on a map, the commuting term was shown to capture the increased odds of an outbreak in the
western Amazon compared to a baseline average. The distance-based terms captured the lower-
than-average odds of an outbreak in South Brazil. This area corresponded to the ‘protected’
region identified in Chapter 2, which also aligned with the area classified as temperate by the
Kodppen climate classification [7,8]. This suggests that the spatial autocorrelation between
municipalities in South Brazil captured by the distance-based term might be attributed to
similar climate conditions across the region, particularly low winter temperatures, which are

less suitable for dengue transmission than other parts of Brazil.

In summary, the results from this thesis show that the dengue outbreak zone has expanded
between 2001 and 2020, and the current barriers to dengue transmission are determined by
temperature, levels of urbanisation, and connectivity within the Brazilian urban network.
Although the barriers to dengue transmission presented in Chapter 2 are likely already outdated
due to the rapid expansion of dengue across Brazil [9], they highlight the importance of
focusing control efforts on areas at risk of future outbreaks as well as those in the current

transmission zone.
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6.2 Strengths

Despite the importance of space in epidemiology being well recognised, spatial modelling
studies have been underrepresented in mosquito-borne disease literature [10]. The systematic
review presented in Chapter 3 found that the number of spatial modelling papers had increased
rapidly over the past 10 years but that very few of these considered spatial connectivity arising
due to human movement. Almost all spatial statistical models of mosquito-borne diseases
assumed that spatial connectivity existed between observations if and only if they were ‘close’,
defined using distance or adjacency. Many of these papers hypothesised that human movement
was a driver of disease transmission but there were no statistical methods identified that could
include additional sources of spatial connectivity, such as human movement, into a model to
test this hypothesis. A major strength of this thesis is that it fills this important methodological
gap. The modelling framework in Chapter 4 allows multiple sources of spatial connectivity to
be include within a statistical model and can quantify their relative contribution to the overall

spatial structure of the outcome.

Although the modelling framework presented in Chapter 4 requires technical statistical
knowledge and skills, the approach was based on existing statistical methods that are well-
documented and used throughout spatiotemporal epidemiology. Therefore, this approach
should be accessible to any researcher familiar with conventional spatial modelling approaches
and their interpretations, in particular Bayesian hierarchical models and generalised additive
models. To aid this understanding, a detailed description of all models identified in the
systematic review was provided as a technical appendix (Appendix C.1) which is freely
available online [11]. These descriptions also include examples of how each model has been
applied to mosquito-borne disease transmission. Care was taken throughout the entire thesis to
provide full, detailed analysis methods in accessible language to ensure others could replicate
these approaches. Where there was not sufficient space in a standard journal article full,
detailed descriptions of analytical methods were provided as supplementary materials. All code
contained within public repositories have detailed comments explaining each procedure to aid

replicability.
Another strength of this thesis is the wide applicability of the methods used and developed.

Although dengue expansion in Brazil was presented as a case study, spatial connectivity plays

an important role in the transmission of other infectious diseases. Spatial connectivity due to
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human movement is particularly important when considering (re-)emerging infectious diseases
as links created by human movement between regions with active disease transmission and
currently unaffected but susceptible populations allows these diseases to spread [4,12,13].
Although the assumption of how spatial connectivity arises (e.g., human movement) may be
shared across diseases, the structure of this connectivity is likely to be different. Empirical
Bayesian inferential methods using penalised regression splines, such as the ones used in this
thesis, estimate the spatial structure of the data as part of the model fitting process rather than
requiring it to be specified a priori [14,15]. This means that the same model fitting approach
can be used across different settings but produce a spatial surface describing spatial
connectivity which is setting-specific and requires no assumptions of this structure beyond
smoothness. The simulation studies presented in Chapter 4 show that this approach is
applicable to models for count data and binary outcomes, however it is flexible enough to be

applied in any Bayesian hierarchical model where spatial connectivity exists within the data.

Great care has been taken to ensure that all research presented in this thesis is reproducible and
as accessible as possible. There is some discussion about the true definition of ‘reproducible’
in scientific research. However, it is generally agreed that the minimum requirement is ensuring
that all data and software used to carry out analysis are made available [16-18]. Each research
chapter included in this thesis has its own public repository, published on Github, containing
the analytical dataset and computer code used to carry out analyses. All analyses were carried
out using the free, open-source statistical package R [19] to make reproduction as accessible
as possible. In addition, all data used throughout the thesis are open-source and details of how

to access these databases were provided within each chapter.

6.3 Limitations

All spatial models developed throughout this thesis have been applied to real-world, open-
source data providing evidence of their applicability and usefulness in studying emerging
infectious diseases. However, real data is often messy and contains inherent biases depending
on how it is collected. A major limitation of this thesis is that the conclusions drawn from
modelling results rely heavily on the quality of the data used to fit them. Dengue case data used
in this thesis was obtained from the Brazilian Notifiable Diseases Information System (SINAN)

which is passive and therefore likely to miss mild and asymptomatic cases where individuals
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do not require medical assistance [20-22]. The accuracy of the surveillance system is also
known to vary across the country, particularly between areas with established dengue
transmission and previously disease-free areas [23]. As it is impossible to know the true dengue
incidence, it is difficult to accurately account for these inherent biases within models.

Biases in dengue case data were likely further confounded by other infectious diseases co-
circulating within Brazil at the same time. Zika and chikungunya are arboviruses transmitted
to humans via the same mosquito vector as dengue, Aedes aegypti, that have been co-
circulating in Brazil since approximately 2013 [24,25]. Dengue, Zika and chikungunya can
produce similar clinical symptoms, including fever, joint pain and lethargy, making them
difficult to distinguish between [26,27]. Although there are some differences in clinical
manifestations, such as the severity and duration of symptoms, a study carried out in Northeast
Brazil found that misclassification can occur, particularly in periods of intense simultaneous
circulation of these arboviruses [28]. When suspected dengue cases are laboratory tested, this
may not always overcome the issue of misclassification as cross-reaction between antibodies

of the dengue and Zika viruses may lead to false positive serological tests [26].

To reduce the potential impact of differences in dengue reporting across Brazil and between
epidemic and non-epidemic periods, | used a binary outbreak indicator as an outcome rather
than incidence when modelling the data. Although the raw case data may not always be
accurate, the surveillance system should be able to detect when an outbreak is occurring [29].
There are several different approaches to defining outbreak thresholds and the definition of an
outbreak is likely to differ between endemic and disease-free areas. Throughout this thesis, |
have chosen to use an outbreaks threshold of over 300 cases per 100,000 residents, defined as
‘high risk’ by the Brazilian Ministry of Health [30]. Sensitivity analyses in Chapter 2 confirmed
that model results were similar when alternative outbreak thresholds were used (see Appendix
B.1). Further investigation is necessary to assess the impact of arbovirus misclassification on

the accuracy of results since the introduction of chikungunya and Zika.

A further limitation of this thesis arising from data was the lack of temporal resolution in
socioeconomic variables such as urbanisation and access to piped water used in Chapter 2, and
in the commuting data used in Chapter 5. These variables were taken from the Brazilian census
which is usually carried out every 10 years. The 2020 Brazilian census was postponed due to

the COVID-19 pandemic and is currently underway [31,32]. Therefore, census data was only
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available from 2010 for this research, with no information about how these factors have
changed over time. This severely limits the inferences that can be made about how changes in
socioeconomic factors and connectivity arising from human movement have driven the
expansion of the dengue transmission zone within Brazil. Future work could consider
alternative sources or measures with a finer temporal resolution to explore these drivers further,

for example by using land use data as a measure of changing urbanisation [33].

One of the main focuses of this thesis was the inclusion of human movement within a spatial
model of emerging infectious diseases. However, human movement is a very broad term and
can refer to many different types of connections depending on the setting and the spatial and
temporal scales of the problem [4,34]. Another limitation of this thesis was that only one source
of human movement was considered which included regular commuting trips. The human
movement data used to inform the model presented in Chapter 5 was taken from the 2010
census and contains information about regular travel for work and education taken from a
survey carried out on a random sample of the population [35]. This data fails to capture long-
distance, irregular trips which are known to drive disease (re-)emergence [4,34] and is likely
biased towards shorter connections. Despite this, some long-distance connections were present
in the data, particularly between large cities and in the North region. This suggests that this
data captured some of the regional differences in human movement behaviour in Brazil
identified in the Regions of Influence of Cities (REGIC) studies [1,36]. For example, journeys
in North Brazil are much longer on average due to the remoteness of some municipalities. This
has led to the exclusion of the North region in some studies to minimise the biases which arise
due to the differences in travel patterns [37]. By using survey data rather than assuming the
same patterns of movement across the country, which is commonly assumed in movement
models [38,39], | have been able to compare differences in the relative importance of human
movement between different regions of Brazil while accounting for these differences. Future
work could consider additional data sources such as air travel information and mobile phone
data to account for irregular movements and provide information about changing patterns of

movement over time.
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6.4 Future work

There are several ways in which the work presented in this thesis could be extended and used

to further understand (re-)emerging infectious disease transmission.

The first objective of this thesis was to understand how changes in climate, socioeconomic
factors, and connectivity have impacted the expansion of the dengue transmission zone in
Brazil. However, the extent to which this could be addressed was limited by data availability
and model design. Socioeconomic variables such as levels of urbanisation and access to basic
services were obtained via the Brazilian census which is carried out every 10 years. There was
no information about how these factors changed in the intermediate years, nor about how they
have changed since as the 2020 census was delayed [31]. Future work could explore alternative
data sources, such as land use data that can be used to extract fine-scale information about
changes in urbanisation over time [33]. The relative contribution of each term could then be
compared over time to explore whether the rapid urbanisation of some previously protected

areas has had a larger impact.

Increasing temperature was found to contribute to the expansion of dengue into South Brazil
in Chapter 2. This was accounted for in the model using an indicator based on the temperatures
Aedes mosquitoes can transmit the dengue virus to humans [40]. However, other climate
variables such as precipitation, drought and humidity are also known to play a role in dengue
transmission dynamics [41,42]. At present, there is no known optimal hydrometeorological
conditions for dengue transmission, and the interaction between these conditions and
socioeconomic factors, such as water storage practices, means this is likely to change across
space [41]. An ‘extremely wet’ indicator was explored as part of the analysis carried out in
Chapter 2 which was defined using the self-calibrating Palmer drought severity index
(scPDSI), a measure of how wet or dry an area is relative to ‘normal’ conditions [43]. This
indicator was not found to improve the model, however future work could be carried out to

investigate other hydrometeorological indicators to investigate their role in dengue expansion.

The models presented in this thesis to explore the relative contribution of human movement on
infectious disease expansion requires the data to be symmetric and stationary. However, this is
not how human movement behaves [38,44]. Patterns of human movement in Brazil have
changed over the past 20 years, as shown by the two latest REGIC studies [1,36]. The REGIC
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study in 2018 showed that, although the North region still has fewer highly influential cities
than other regions, the number of regional capitals and sub-regional centres had increased in
the North and the number of connections between them has also increased (Appendix B.1,
Figure E). This is likely a result of improved infrastructure and connectivity by air travel in the
region since 2009 [45]. Future work is needed to explore how the spatial models presented in
Chapters 4 and 5 can be extended to include temporal trends to explore the impact of changing
human movement patterns on disease expansion and include more complex, realistic human
movement networks. An interaction between spatial and temporal random terms, similar to
those included in the model in Chapter 2, would allow the spatial patterns to change over time
and allow hypotheses to be drawn about how changing patterns of human movement could

lead to further expansion of the dengue transmission zone in Brazil in the future.

Finally, although this thesis uses dengue re-emergence and expansion in Brazil as a case study,
spatial connectivity is an important driver of many infectious diseases. It would be interesting
to apply the modelling framework developed in Chapter 4 to other infectious diseases and
compare the relative importance of human movement. For example, Brazil was one of the most
severely affected countries during the COVID-19 pandemic following the rapid spread of the
virus across the country [46]. Human movement has been recognised as one of the major
drivers of this spread, with Sao Paolo considered a ‘super spreader’ city due to its high level of
influence and connectivity to the whole country [47]. In theory, a model with COVID-19
incidence as the outcome would have a far higher contribution of human movement to the

spatial structure than a mosquito-borne disease such as dengue.

6.5 Concluding statement

In this thesis, | have explored the complex, interacting drivers of dengue expansion in Brazil
since 2001. | have shown that increasing temperatures in South Brazil, high levels of
urbanisation, and connections between cities arising from human movement have all played a
role in the erosion of geographical barriers to the dengue transmission zone in Brazil. As part
of this thesis, | have considered existing spatial modelling frameworks and presented a novel
statistical approach to deal with the issue of complicated spatial connectivity systems that exist
within infectious disease epidemiology. Given the increasing risk of future pandemic

pathogens due to changes in climate and increased global connectivity [48,49], robust spatial
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modelling tools are essential to gain better understanding of infectious disease emergence and

identify areas at future risk of expansion.
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Appendix A: Spatial modelling with empirical
Bayes

A.l Introduction

Empirical Bayesian approaches use data to inform the prior distribution, with the prior being
estimated as part of the model fitting process. This removes the requirement of having to fully
specify prior beliefs before model fitting, making it particularly appealing in spatial statistical
modelling where the spatial structure of the data may not be fully understood. In this section, |
explain how penalised smoothing splines, in particular thin plate regression splines, can be
used to produce a spatial smooth model, estimated using empirical Bayesian methods. | then
show how these methods can be extended to more complex model structures and fitted using a

fully Bayesian approach via Markov chain Monte Carlo (MCMC) methods.

A.2 Empirical Bayes with generalised additive models

Generalised additive models (GAMs) are statistical models that include smooth functions of
covariates to allow flexibility in the nature of the relationships between an outcome and

explanatory variables [1]. The original GAM was defined as:

n) = ap + Xieq ajxij + Xk= fi(20),

where 7 is some link function determined by model choice, y are outcome variables, x and z
are observed covariates, a are unknown regression coefficients, and f are some smooth
functions to be estimated. To introduce the concepts underlying GAMs and smoothing

functions, I will first focus on a linear model containing a single, univariate smooth function:

yi = f(z) + & 1)

Expansions to models with multiple smooths or functions applied to multiple covariates will

be introduced in later sections.

The inclusion of smooth functions allows for more flexible model specifications and the
inclusion of nonlinear relationships between the outcome and explanatory variables. However,

this additional flexibility comes at a cost: the structure of f must be determined and the degree
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of ‘smoothness’ much be defined. The first assumption we make about this function is that it
is smooth. One mathematical way to categorise this is that any function f is smoother than a
function g if [ /" (2)?dx < [ g"'(z)*dz. Therefore, we want a function that will minimise the
integrated square second derivative (also known as a cubic spline penalty) [2]. This can be
included in the model as a penalty. However, even with this penalty, the best fitting model will
likely be one that interpolates the data. To avoid this, a smoothing penalty parameter is

introduced and, using a penalised least squared approach, the function we seek to minimise is:

ly = fF@I?+A[ f" (2)*dz, )

where A is the smoothing penalty parameter aiming to control smoothness and ensure the
smooth function is not too ‘wiggly”’ (i.e. the function does not simply interpolate between data
points) [2,3]. A = c would produce a straight line and 4 = 0 would lead to an unpenalized

piecewise linear regression coefficient [4].

Many smooth functions used in GAMs are constructed using smoothing splines and can be
described as linear combinations of (known) basis functions, b; (functions applied to the
covariate(s) at given intervals, determined by the type of smoothing spline chosen), multiplied
by (unknown) regression coefficients, §; [3]. When considering a univariate smoothing spline,

f(2), this can be expressed:

f(2) =X5,Bibi(2), (3)

where K is the number of knots, or turning points, in the function. The number of knots should
be large enough to capture patterns in the data but not so large it leads to excessive
computational cost or overfits the data [2,3]. Assuming the number and value of basis functions
are known and fixed, the estimation problem (2) can be rewritten as a function of the unknown
coefficients, B. Given f(z) = BTb(z), it follows that f"'(z) = BTb"(z) and f''(2)? =
BTb"(2)b"(z)"B.  So, the  smoothing  penalty  becomes [ f'"(z)?dx =
BT [ b"(2)b" (2)Tdz B = BTSP and the estimation problem (2) can be rewritten:

ly — ZBII> + AB"SB, (4)
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where Z = b(z) are the basis functions, S;; = [ b;'(2)b/'(z)dz and S can be thought of as a
penalty matrix. By solving this expression, the penalised least squared estimator of the

coefficients, B, is:
B=(Z"2+18)1Z"y. (5)

The assumption that the spline is more smooth than wiggly can be viewed from a Bayesian
perspective as a prior belief, with B representing the posterior mode of B. An improper
multivariate normal prior is used here as the penalised least squares estimate of g (Equation 5)
is also the maximum a posteriori (MAP) estimate of B|y where B ~ N(0,528~/A) and S~ is
the generalised inverse of the penalty matrix [2,3]. The Bayesian posterior distribution of g is
then:

Bly ~N(B,(Z"Z + A5)™1a2). (6)

This interpretation gives the model the same structure as linear mixed models. Therefore, the
resulting smooth functions can be interpreted in the same way as traditional random effects [3].
This also means that the parameters o and A can be estimated using restricted maximum
likelihood (REML) [4]. As the prior and posterior distributions of g depend on the smoothing
parameter A which is estimated using the data, this approach is known as an empirical Bayesian

approach and is justified by large sample approximation.

A.3 Thin plate regression splines

The empirical Bayesian approach introduced in the previous section assumes that basis
functions defining the smooth spline f(z) in Equation (3) are known and fixed. However in
practice, the type of splines b;, the number of them K and the position of the knots along the
covariate range space need be defined prior to model fitting. There are many types of
smoothing splines that can be used in GAMs to explore nonlinear relationships between an
outcome and one or more explanatory variables (see [3] for some examples). The choice of
spline depends on the nature of the relationship between the outcome and explanatory
variables, and the number of explanatory variables being considered. Each spline has a
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different definition of basis functions (b;(z) from Equation 3) and their associated penalty

matrices, S.

Thin plate splines are a general class of smoothing splines that are incredibly flexible and can
be applied to multiple variables [3,5]. Thin plate splines can be used to estimate smooth

functions f by minimising the equation:

1y = FII? + A Jma(F), (7)

where A is the smoothing parameter introduced previously, f is a vector of basis functions
applied to d covariate(s) (z = [wy, ..., w4]T), Jma(f) is a penalty function measuring the
wiggliness of f, m is the order of differentiation in this penalty and can be any integer satisfying
2m > d. However, for visually smooth results it is preferable that 2m > d + 1, and often m

is set to the minimum that satisfies this condition [3]. The wiggliness penalty is defined as

2
! am
Jma = f ...f2v1+...+vd=m = (d ! ) dwq ...dwg.

v
vil.vg! w;’l...dwdd

Note that the penalty matrix in Equation (2) is an example of a thin plate spline applied to a
single covariate (d = 1) where m = 2. One of the major benefits of using thin plate splines is
that knot positions and basis functions arise naturally due to the mathematical properties of the
smoothing penalty and do not have to be specified by the user (see [3] and [5] for full
specification of these basis functions). If we take the two-dimensional case (d = 2, covariates
w1 and w,) and the minimum value of m to satisfy the visually smooth condition (m = 2),

then the smoothing penalty becomes:

J22 = ff(;%;)z + 2 (dz—f)z + (Z:];)Z dw,dw,.

d(L)ld(L)Z 2

In this case, the basis function functions minimising Equation (7) has the form

f@ =Xki6vlz =zl + X3-; 4 (2),
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where §; and «; are coefficients to be estimated, ¢;(z) are linearly independent polynomial
functions, and y(r) = ;—;rzlog (r). The ¢; functions span the null space of the J,,,; penalty

and are considered completely smooth (where d =m =2, ¢,(2) =1, ¢,(2) = w; and
$3(2) = wy). By defining the matrix E as E;; = y(||z; — z;||) and T as T;; = ¢;(z;), the

spline fitting problem (7) requires the following equation to be minimised:
lz— E& —Tal|l* + A8'ES. (8)

The main drawback of using full thin plate splines is that they are extremely computationally
intensive (they require one parameter per observation plus an additional smoothing parameter
A). To overcome this, thin plate regression splines were developed as truncated versions of full
thin plate splines which reduce the computational cost of model fitting by substituting E in
Equation (8) with a rank deficient approximation [3,5]. It is important to note that thin plate
regression splines are isotropic in nature, i.e. they smooth equally with respect to each covariate
[3,5]. This makes them inappropriate where covariates included in the smoother are measured
on a different scale (e.g. when considering spatio-temporal relationships). For these instances,

another choice of smoother would be required.

A.4 Bayesian spatially smoothed generalised additive models

When considering spatial data, thin plate regression splines can be applied to geographical
coordinates (longitude, latitude) to produce a spatially smoothed surface. These can be
incorporated into generalised additive models as an alternative to traditional random effect
terms where spatial autocorrelation between close areas is present in the data. This spatially

smoothed model takes the form:
77(%’) =a, + Z;’lzl ajxij + fspat(ai'bi)v )
where 7 is a link function determined by model choice, y are outcome variables, x are observed

covariates, a are unknown regression coefficients, and f;,,:(a, b) is a thin plate regression

spline applied to coordinates a, b.
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This model can be fit using the R package mgcv [3,6]. By default, this package uses thin plate
regression splines to define smooth functions (although alternatives are available) and
estimates the degree of spline smoothness (defined by the smoothing parameter 1) using
generalised cross-validation by default. The empirical Bayesian interpretation of smoothing
splines as random effects introduced earlier require the smoothing parameter to be estimated
using REML, this can be achieved by adding the argument method = “REML” to the smooth

function definition.

Users must specify an upper bound for the number of basis dimensions (k from Equation 3).
Although there is no set rule for how to define this upper limit, it should be large enough to
ensure the smooth represents the data adequately but small enough to ensure computational
efficiency [3]. Often this choice is arbitrary and in practice, unless the dimensions are set
restrictively small, this choice will only have a small impact on the model fit (the actual
flexibility of the smooth is mainly controlled by the A parameter). Informal checks performed
using the gam.check function in the mgcv package help to determine whether the basis
dimension is adequate [6]. This function estimates the residual deviance along the covariates
of the smooth and compares it to close values. If there is little or no difference, this suggests
that the function is too smooth and the maximum basis dimensions should be increased [3].
The output includes a p-value testing the difference between residual deviance estimates,
generated using simulations by randomly resampling from the model results at different
covariate values. If the p-value is low, this indicates a small difference, and the maximum

number of basis dimensions should be increased.

Given the smoothing parameter has been estimated using REML, this model can be viewed
from an empirical Bayesian perspective. Following from Equation 6, the posterior distribution
of B is assumed to follow a multivariate Normal distribution with mean B and precision matrix
proportional to the smoothing penalty S, (assuming the prior distribution of B takes a zero-
mean multivariate Gaussian prior). As these values are estimated as part of the model fitting
process, this distribution is fully defined, and simulations can be performed to generate
estimates or credible intervals of the coefficients via bootstrapping. Estimates of the
coefficients can be combined with the basis functions used to generate the smooth surface and
can be visualised to show the spatial structure of the data. An example of this approach can be
found in Chapter 2.
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A.5 Multidimensional scaling

Multidimensional scaling (MDS) is a set of mathematical procedures that aim to convert
measures of pairwise ‘distances’ or dissimilarity between data points into a set of points
mapped onto an abstract coordinate space [7]. One common example of MDS is principal

component analysis (PCA).

Metric or classical scaling aims to return coordinates x;, x; based on dissimilarities d;;. Here,
let X be a matrix containing the coordinate values, and D be a matrix of squared dissimilarities
(where D;; = df;). If B = XXT, then d%; = by, + bss — 2b,,. Therefore, given matrix D is
known, this process can be inverted and X can be calculated by factorising the matrix B [8].
Note that one of the major assumptions of MDS is that the measure of dissimilarities d;; are

symmetrical (d;; = dj;).

In Chapter 5 of this thesis, | sought to project the measure of ‘connectivity’ between
municipalities based on regular commuting onto a two-dimensional abstract cartesian space.
As MDS requires a measure of dissimilarity d;;, the measure of connectivity (the proportion
of residents of municipality i regularly travelling to municipality j for work or education, c;;)

was converted using d;; = 1 — ¢;;.

A.6 Fully Bayesian simulations of generalised additive models

The empirical Bayesian approach introduced in Section A.4 allows simulations from the
posterior distribution of the smooth functions which can be used to generate credible intervals
(via bootstrapping) and estimates of the spatial smooth function. However, there are limits to
the complexity of the models that can be generated within the mgcv package. For example, it
would not be possible to extend the spatial smooth model in Equation 9 to include an
unstructured random effect that accounts for unobserved heterogeneity between areas. The
jagam function has been developed to allow models with complex smooth structures (as can
be defined in mgcv) and random structures (as can be defined in BUGS-based programmes)
to be fit using a fully Bayesian MCMC approach [9]. This combines the flexibility of model
specification available in BUGS language with the flexible structures available in mgcv.
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To illustrate this approach, we will consider the model presented in Chapters 4 and 5 of this
thesis that contain two spatially smoothed random terms and an unstructured random effect to
account for spatial heterogeneity. The spatially smoothed terms are created by applying thin
plate regression splines to sets of coordinates describing the relative ‘connectedness’ of areas.
The first assumes connectivity based on distance, i.e. areas close together are more similar in
terms of the outcome, and is defined using geographical lat-lon coordinates. The second
assumes connectivity based on the number of people regularly commuting between areas and

uses coordinates created using MDS (see Section A.5):

n(:)/i) =a, + Z;'lzl ajXij + fspat(ai’ bi) + f:s‘pat(ci, di) + v;.

The thin plate regression splines are generated using the jagam function in mgcv which
produces estimates of the basis functions, basis coefficients and the smoothing penalties. Note
that the maximum value of k must still be defined in these functions and should be checked as
described in Section A.4. These values are then extracted and used to define the prior
distributions of the basis coefficients in the MCMC, assuming improper zero mean Normal
distributions.

A.7 Conclusion

The empirical Bayesian approach presented in this section is a flexible, computationally
efficient alternative to fully Bayesian approaches such as MCMC where sufficient data are
available. Prior distributions are determined indirectly through the specification of each spline
rather than having to choose a spatial structure subjectively. With splines, the spatial structure
is estimated from the data objectively which is particularly appealing for spatial analysis where
the spatial structure of the data may not be fully understood. Estimates of the smooth functions
can be used to inform future analysis and generate hypotheses about underlying spatial
structures in the data. This approach reduces some of the subjectivity involved in Bayesian
analysis as users are not required to pre-specify the prior distribution. In addition, the empirical
Bayesian approach in Section A.4 does not suffer issues with convergence and reduces the

computational burden which can be an issue for simulation-based approaches, such as MCMC.

However, an empirical Bayesian approach is not fully Bayesian as the choice of prior

distributions is restricted and the inferential approximations underlying the computation of the
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posterior distributions relies on large sample approximations. The approach presented in
Section A.4 is also limited in terms of the complexity of the model structure that can be
specified. Models with complex spatial structures involving multiple sources of spatial
connectivity require MCMC to fit the models, increasing the computational cost of the model

fitting process.

Despite these limitations, empirical Bayesian approaches offer a flexible approach where the
underlying structure of the data are not known. Future work could explore alternative
specifications of the posterior distribution beyond multivariate normal. Additionally, the
sensitivity analysis presented in Chapter 4 showed that spatial models fitted using the approach
in Section A.6 performed as well as the current conventional approach fitted using MCMC or

integrated nested Laplace approximations (INLA).
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Appendix B: Supplementary Material Chapter
2

B.1 Supplementary text

Supplementary information to support Chapter 2: The impact of climate suitability,
urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. Contains
additional information about methods and materials used in the manuscript and the results of

sensitivity analyses. Taken from https://doi.org/10.1371/journal.pntd.0009773.
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B.1.2 Methods and materials

B.1.2.1 Dengue surveillance and outbreak definitions in Brazil

Monthly dengue case data are freely available from Brazil's Notifiable Diseases Information
System  (SINAN), via the Health Information  Department, DATASUS
(https://datasus.saude.gov.br/informacoes-de-saude-tabnet/).  Although notification of a
suspected dengue case is mandatory in Brazil, the surveillance system is predominantly
passive, which means that many mild and asymptomatic cases may be missed. One
investigation of the Brazilian dengue surveillance system estimated that there were 12 actual

infections per reported case overall, which rose to over 17 in periods of high incidence [1].

Rather than use dengue case data which differs in accuracy between regions, and between
epidemic and non-epidemic periods, we aggregated the cases by year and converted them into
a binary outbreak indicator where cases exceeded some outbreak threshold. Several methods
have been used to define outbreak thresholds Brazil, including a monthly moving average,
where historical data are used to estimate the expected number of cases within a region [2,3],
and a fixed threshold based on the dengue incidence rate (DIR), defined by the Brazilian
Ministry of Health as the number of cases per 100,000 residents [4]. We chose to use a fixed
threshold approach as the mean incidence was heavily influenced by outbreak years, making
the probability of detecting an outbreak inconsistent between municipalities. Our primary
analysis used an outbreak threshold of more than 300 cases per 100,000 residents, defined as
'high risk' by the Brazilian Ministry of Health. We also tested a 'medium risk' indicator, defined

as more than 100 cases per 100,000 residents [4].

The annual DIR was calculated using estimates of the annual population for each municipality
obtained from the Brazilian Institute of Statistics and Geography (IBGE) via DATASUS
(https://datasus.saude.gov.br/populacao-residente). As an alternative, we used the 75th
percentile of the DIR per municipality with a minimum threshold value equivalent to 5 cases
per year to avoid very low cases triggering an outbreak in 'protected’ areas. The 75th percentile
of the DIR was calculated using all available data from 2001 - 2020 for each municipality.
Many municipalities in previously 'protected' areas such as South Brazil and the western
Amazon had lower thresholds using this method than the fixed thresholds used by the Brazilian
Ministry of Health (Fig B1). However, the threshold was much higher (up to a maximum of

DIR = 3275) in regions which had experienced high levels of dengue transmission in the past.
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Fig B1: The outbreak threshold for each municipality based on the 75th percentile of
dengue incidence rates between 2001 - 2020. Regions with historically low dengue
transmission, such as South Brazil, had thresholds below 100 (shown in gold), whilst areas
with sustained high transmission such as the Centre-West had much higher thresholds, up to a
maximum of 3275. Maps were produced in R using the geobr package [5,6]

(hsttps://ipeagit.github.io/geobr/).

B.1.2.2 Hydrometeorological factors

In addition to temperature suitability, hydrometeorological conditions such as precipitation and
drought have been linked to dengue transmission. Prior studies have found that the risk of
dengue increases immediately following extremely wet conditions [7,8], however the level of
precipitation considered extreme varies greatly across Brazil between climate systems. To
measure the relative wetness of municipalities, we used the self-calibrating Palmer Drought
Severity Index (scPDSI). The scPDSI was obtained from the Climate Research Unit gridded
Time Series (v4.05) [9,10] for the period January 2001 - December 2020, at a spatial resolution
of 0.5° x 0.5°. The PDSI is a widely used measure of meteorological drought ranging from -
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10 (dry) to 10 (wet) compared to 'normal conditions’, with values below -4 and above 4
considered extreme [11,12]. The scPDSI calibrates this index to the 'normal conditions' for
each location of interest separately, providing a more spatially comparable measure [10,13].
The scPDSI was aggregated to each municipality using the exactextractr package [14] in R
(version 4.0.3) by calculating the mean of the grid boxes lying within each municipality. Grid
boxes partially covered by a municipality were weighted by the percentage of area that lay

within the municipality.

Most states, particularly those in North Brazil, have experienced increasingly severe drought
conditions in recent years. However, there have been several extremely wet events, particularly
in the Southeast of the country (Fig B2). To understand the relationship between wet conditions
and dengue outbreaks, we calculated the number of months per year each municipality took an
scPDSI value of 4 and above, considered 'extremely wet' by the scPDSI [10,12]. On average,
the number of months considered extremely wet has increased in parts of South Brazil and in

Para, North Brazil, and has reduced in the Amazon and Southeast Brazil (Fig B3).
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Fig B2: The average monthly self-calibrated Palmer Drought Severity Index (scPDSI)
per state from January 2001 - December 2020. Values below -4 (shown in brown) are
considered extremely dry compared to normal conditions, whereas values above 4 (shown in
blue) are considered extremely wet. The north and east of Brazil has experienced increasingly
severe droughts in recently years, in contrast states in the Southeast have experienced a number
of extremely wet conditions.
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Fig B3: Map showing the difference in the average number of months per year considered
extremely wet (scPDSI > 4) between 2001 - 2010 and 2011 - 2020. The number of months
considered extremely wet has increased on average in parts of South and North Brazil (shown
in pink). In comparison, the number of extremely wet months per year in the western Amazon
and parts of South and Southeast Brazil have reduced. Maps were produced in R using the

geobr package [5,6] (https://ipeagit.github.io/geobr/).

B.1.1.3 Socioeconomic factors

We obtained information about the percentage of residents in each municipality living in urban
areas, the percentage with access to the piped water system, and the percentage that had refuse
collected (either privately or using the municipal service) from the 2000 and 2010 censuses via
DATASUS. Despite Brazil having the largest economy in South America, it has been the most

unequal since 2015 [15]. Access to basic services differs greatly across the country and the
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traditionally wealthier regions in the South and Southeast have almost universal coverage at
the municipality level in contrast to rural parts of the North and Northeast which had little or
no access, even in 2010. We found that the level of urbanisation was highly correlated to access
to piped water (Fig B4, r = 0.656, 95% confidence interval: [0.641, 0.671], p < 0.001) and
refuse collection (Fig B4, r = 0.794, 95% confidence interval: [0.784, 0.804] p < 0.001) when
aggregated to the municipality level. Therefore, access to piped water and refuse collection
were not included in the models as they were not useful at explaining the differences within
cities at this level of aggregation and would likely introduce multicollinearity into the model.

139



100

| -
()]
p—
©
=
©T 75
(b} .
o Region
o
o * Central-West
‘;’J 50 North
%] *  Northeast
o] * South
o .
] Southeast
c 25
=
=
= .
0
0 25 50 75 100
% urbanisation
100
c
Re)
"ca)'; 75
= Region
:; * Central-West
n 50 North
=] »  Northeast
o *  South
E * Southeast
'S 25
R
0
0 25 50 75 100

% urbanisation

Fig B4: Scatterplot comparing the percentage of residents with access to piped water (top)

and refuse collection (bottom) to the percentage living in urban areas from the 2010

census. Access to basic services was highly correlated to the level of urbanisation: highly urban

areas had highest access to piped water and refuse collection.
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B.1.1.4 Hierarchical levels of influence of cities

We extracted the level of influence of cities from the Regions of Influence of Cities (“Regifes
de Influéncia das Cidades”, REGIC) studies carried out by IBGE in 2007 and 2018 [16,17] to
use as a proxy for human movement within our models. REGIC aims to recreate the complex
urban network of Brazil using information from surveys about the frequency and reasons for
the movement of people and goods around the country. The level of influence assigned to each
city was based on the number of people travelling to the city but also the number of important
institutions that attracts the movement of people from outside the city, such as hospitals,
universities, business centres, government agencies, and cultural centres (such as theatres and

shopping centres). Cities were classified into five levels:

1. Metropolis: the largest cities in Brazil, with strong connections throughout the entire
country. This includes Sao Paulo, the capital Brasilia, and Rio de Janeiro.

2. Regional capital: large cities which are connected throughout the region in which they
are located and to metropoles. This includes state capitals that were not classified as
metropoles, such as Rio Branco, Campo Grande and Porto Velho.

3. Sub-regional capital: cities with a lower level of connectivity, mostly connected locally
and to the three largest metropoles.

4. Zone centre: smaller cities with influences restricted to their immediate area, often
neighbours.

5. Local centre: the smallest cities in the network which typically only serve residents of

the municipality and are not connected elsewhere.

There were 12 metropoles, consisting of 203 municipalities, according to the 2007 REGIC
study: S&o Paulo, Rio de Janeiro, Brasilia, Manaus, Belém, Fortaleza, Recife, Salvador, Belo
Horizonte, Curitiba, Goiania and Porto Alegre. In 2018, this increased to 15 metropoles,
consisting of 214 municipalities, as Campinas, Florianopolis and Vitoria were re-classified
from regional capitals to metropoles. The number of regional capitals and sub-regional centres
also increased between 2007 and 2018 from 70 to 97 and from 169 to 352 respectively. The
number of lower-level cities, zone centre and local centres, both decreased from 556 to 398,
and from 4473 to 4037 (Appendix B.3, S1 Table). The distribution of highly connected urban
centres is uneven across the country; the South and Southeast regions are particularly well
connected, while the North and Northeast contain fewer high-level centres (Chapter 2, Fig 3

and Appendix B.3, S1 Table). The proportion of higher-level centres has increased in each
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region of Brazil, although the Amazon rainforest remains less connected than other areas (Fig
B5). Metropoles, regional capitals and sub-regional centres had higher levels of urbanisation,
access piped water and refuse collection on average than less connected centres (Appendix B.2
Fig S6).

a) b)
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Fig B5: The proportion of cities in each region at each level of influence in the a) 2007
and b) 2018 REGIC study. The proportion of high-level cities has increased across the
country but the North and Northeast still have noticeably less well-connected cities than other

regions. The Southeast and South are by far the most connected regions.

B.1.1.5 Modelling approach

We formulated a spatio-temporal generalised additive model (GAM) to quantify the
relationship between temperature suitability, level of connectivity and socioeconomic
conditions on the odds of a municipality experiencing an outbreak. The response variable was
a binary outbreak indicator defined as an annual dengue incidence rate of more than 300 cases
per 100,000 residents. To account for spatial and temporal patterns in the data, smooth
functions of the year and the coordinates of the centroids of municipalities were included in
the model. We used thin plate regression splines to represent the smooth (2D) function of the
coordinates. Thin plate splines are data-driven and estimate the best fitting function for the data
[18]. To account for changes in spatial patterns over the period, we also included a space-time
interaction term created by applying a tensor product smooth to the coordinates and the year.
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Tensor product smooths allow interactions between variables that are measured on different

scales (in this case, space and time). The final model equation was as follows:

Yt ~Bernoulli(p;;)

m
logit(piy) = Bo + Z BiXjic + fspar(long, laty) + frme(t) + fine(lony, lat;, t)

j=1

Where Y;;, binary outbreak indicator for municipality i (i=1, ..., 5,560) in year t (t = 2001, ...,
2020), is expected to follow a Bernoulli distribution defined by p;., the probability of an
outbreak. The Bernoulli distribution is a special case of the binomial distribution where the

number of trials is equal to 1. B; are coefficient estimates associated with covariates Xj;;.
fspat (lon, lat;) is the spatial smooth field based on the coordinates (lon;, lat;) of the centroid

of municipality i, f;me(t) is the temporal smooth function applied to year t and
fine(lon;, lat;, t) is the spatio-temporal interaction term. This model is a type of structured
additive regression (STAR) model which allows for Bayesian interpretations of additive

models by specifying prior beliefs on the smooth functions [18,19].

We chose to include the number of months with temperature suitable for dengue transmission,
the proportion of residents living in urban areas, the level of influence from the REGIC study,
and the prior outbreak indicator as covariates in our final model to address our initial research
questions. We also tested the number of months considered extremely wet according to the
scPDSI as hydrometeorological factors are also recognised as important drivers of dengue
transmission [7,8]. Although this coefficient was statistically significant (adjusted odds ratio:
1.11, 95% credible interval: 1.09, 1.14), the model fit was not improved with the addition of

this covariate (S3 Table) and the covariate was excluded from further analysis.

Inference was performed using an empirical Bayesian approach with estimates calculated using
restricted maximum likelihood (REML), an approach that has been shown to give more stable
estimates than generalised cross validation [20], and more accurate estimates than a full
Bayesian approach for binomial models (a simulation study showed increased coverage
probability and reduced bias for the empirical Bayesian approach compared to fully Bayesian)

[19]. We used the mgcv package in R [18] to fit the spatio-temporal models and to simulate
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from the posterior distributions of the coefficients to produce mean estimates and 95% credible

intervals.

B.2 Results

B.2.1 Outbreak threshold comparisons

To check whether our model results were robust to the definition of an outbreak, we compared
our primary results to alternative outbreak indicators: over 100 cases per 100,000 residents
(considered medium risk by the Brazilian Ministry of Health [21]), and above the 75th
percentile of the yearly DIR between 2001 - 2020 for each municipality with a minimum
threshold set as over 5 cases per year. Although the models agreed that the odds of an outbreak
were significantly increased in highly connected, highly urbanised cities that had previously
experienced an outbreak and had a suitable temperature, the coefficient estimates differed
(Appendix B.4, S2 Table). The 75th percentile model had noticeably lower coefficient
estimates for each parameter compared to the fixed threshold models (Appendix B.2, Fig S8).
Most credible intervals for the coefficient estimates of the fixed threshold models overlapped,
however the odds of experiencing an outbreak in municipalities that had previously
experienced one was higher in the model using the DIR = 100 threshold (aOR: 2.42, 95% CI:
2.31, 2.56) compared to the DIR = 300 threshold (aOR: 2.03, 95% CI: 1.93, 2.15).

We assessed the model fit of these alternative outbreak threshold models using a receiver
operating characteristic (ROC) curve which plots the true positive rate against the true negative
rate at different thresholds to test the predictive ability of the model. The area under the ROC
curve was calculated as this gives a measure of predictive ability compared to chance, which
would return a value of 0.5. The closer the area under the ROC curve is to 1, the better the
model fits the data. Care should be taken when data are imbalanced as the ROC curve can
overestimate the accuracy of a model. The predictive ability of models were also compared
using the Brier score [22]. The Brier score is the mean squared difference between the observed
and expected outcomes; a lower Brier score represents a better fitting model. We found that
the fixed threshold models fit the data better according to the ROC curve (Appendix B.2, Fig
S7 and Appendix B.5, S3 Table), the Brier score also showed that these models had a better
predictive ability than the 75th percentile model (Appendix B.5, S3 Table).
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B.2 Supplementary Figures

Centre-West
Southeast

Fig S1: The organisation of Brazil into a) 5 geo-political regions, and b) 27 federal units.
Abbreviations: AC = Acre, AL = Alagoas, AP = Amapa, AM = Amazonas, BA = Bahia, CE =
Ceard, DF = Distrito Federal, ES = Espirito Santo, GO = Goias, MA = Maranhdo, MT = Mato
Grosso, MS = Mato Grosso do Sul, MG = Minas Gerais, PA = Pard, PB = Paraiba, PR = Parang,
PR = Pernambuco, Pl = Piaui, RJ = Rio de Janeiro, RN = Rio Grande do Norte, RS = Rio Grande
do Sul, RO = Rondoénia, RR = Roraima, SC = Santa Catarina, SP = S3o Paulo, SE = Sergipe, TO =
Tocantins.
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Fig S2: Average monthly mean temperature (°C) in each Brazilian state January 2001 -
December 2020.
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Fig S3: The average number of months suitable for dengue transmission per year a) 2001 -
2010, and b) 2011 - 2020. The average number of months with mean temperature between
16.2 and 34.5°C aggregated to the two decades of data. Most of Brazil experiences suitable
temperatures year-round apart from areas of South Brazil and areas of high altitude in the
Southeast which experience cool winters.
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Fig S4: The percentage of residents living in urban areas of each municipality from the
2000 (a) and 2010 (b) censuses. Levels of urbanisation differ greatly across Brazil, with the
majority of Southeast and South Brazil living in urban areas in comparison to the North and
Northeast which has a larger rural population.
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Fig S5: The proportion of municipalities in each region of Brazil experiencing an outbreak
per year 2001 - 2020. The proportion of municipalities affected by outbreak has increased
since 2010 in every region of the country, although outbreaks in South Brazil are still
focused on a small part of the region.
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Fig S6: Raincloud plots exploring the relationship between REGIC level of influence and a)
urbanisation, b) access to piped water, and c) refuse collection. Metropoles and regional
capitals have higher levels of urbanisation and access to basic services than municipalities
that had lower levels of connectivity within the urban network. Local centres were more
varied in terms of basic services and urban levels than the other levels and covered a wide
range of city types.
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Fig S7: Receiver operating characteristic (ROC) curve for the final model (solid black line),
the model using an outbreak threshold of over 100 cases per 100,000 residents (red
dashed line), and the model using an outbreak threshold of over the 75th percentile (blue
dashed line), compared to chance (black dashed line). The closer to the top-left corner, the
better the predictive ability of a model. As the ROC curve lies above the dashed reference
line, this model performs better than chance.
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Fig S8: The mean and 95% credible interval of the posterior distribution for each model
covariate under different outbreak threshold definitions. Coefficient estimates using the
outbreak indicator based on the 75th percentile were noticeably smaller than the fixed
threshold alternatives. The fixed threshold models (where outbreaks were defined as a
dengue incidence rate of over 100 or 300) produced similar estimates, however the odds of
an outbreak in municipalities after a previous outbreak was higher for the DIR = 100 model.
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Fig S9: The probability of an outbreak estimated from the model for each year 2001 -
2020. The mean probability of an outbreak estimated by taking 1000 simulations from the
posterior distribution of the response and transforming the outcome using a probit function
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Fig $10: Comparison of different risk thresholds to define current geographical barriers to
dengue outbreaks. Municipalities were considered 'protected’ if the probability of an
outbreak was less than or equal to the threshold a) 0%, b) 5%, c) 10% or d) 15%. The
threshold of 10% was chosen as it was the most comparable with previous studies.
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B.5 S3 Table

Table S3: Model comparison statistics. Area under the receiver operator curve (AUROC)
and Brier scores for models assuming an outbreak threshold of over 300 cases per 100,000
residents (high risk model), over 100 cases per 100,000 (medium risk model), over the 75th
percentile of incidence rates, and a model including the number of months considered

extremely wet.

Model formula AUROC (95% confidence Brier score
interval)

High risk model 0.858 (0.856, 0.861) 0.109

Medium risk model 0.864 (0.861, 0.866) 0.138

75th percentile model 0.809 (0.807, 0.812) 0.125

Extremely wet model 0.859 (0.856, 0.861) 0.109
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Appendix C: Supplementary Material Chapter

3
C.1 Technical appendix

Technical appendix to support Chapter 3: Spatial connectivity in mosquito-borne disease
models: a systematic review of methods and assumptions. Contains detailed descriptions about
the models identified within the review. Taken from https://doi.org/10.1098/rsif.2021.0096.
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Technical appendix: Detailed descriptions
of spatial models identified in the
systematic review

We identified 17 distinct spatial models in this review: 9 statistical, 4 machine learning and 4
mechanistic models. This document provides detailed information about how these models
are structured and the ways in which spatial connectivity was accounted for in these models.
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1. Statistical models

1.1 Generalised linear model (GLM)

A GLM aims to represent the relationship between a dependent variable (in this case, some
outcome related to mosquito-borne disease transmission) and one or more explanatory
variable(s) using a linear model. GLMs assume that the relationship between the outcome
and explanatory variables is fixed and constant over time and space. One limitation of these
models is that all observations are assumed to be independent. To overcome this, researchers
included spatial variables, which aim to account for connectivity within the data, as covariates
in the GLM. Spatial GLMs took the form:

nu(¥y)) = Bo + Zjn=1 Xijﬂj 2 Zi:l CieSikes

where u(Y;) is the mean of ¥;, the dependent variable, and X;; are m explanatory variable(s)
in location i. 1 is a link function determined by the model choice, f; are regression
coefficients, S;;, are the p spatial covariates and {; are the corresponding regression
coefficient(s).

There were 17 studies included in this review that used a GLM. Fifteen of these studies
included spatial covariates informed by other, connected locations. Spatial covariates
included the number of cases observed in connected regions (1-7) or the number of
connected regions that had a ‘high’ incidence (8), the coordinates of the centroid of a region
(9,10), the number of people moving between regions (11-13) or the amount of time they
spent there (14), the distance between regions (11,12), time taken to travel between regions
(12), and eigenvectors created using spatial filtering (15). Spatial filtering aims to account for
shared, unobservable characteristic between neighbours by decomposing Moran’s | (a
measure of spatial autocorrelation) into eigenvectors which were included in the model as
covariates (16). One GLM included connectivity within the dependent variable, modelling the
time taken between imported cases and indigenous cases in connected regions (17). The final
GLM did not include spatial covariates but used generalised estimating equations to fit the
model which does not assume independence between observations and allows for a more
flexible covariance structure when this structure is not known (18).

Spatial GLMs are easier to fit and interpret if it is possible to determine which regions or
observations are connected. Otherwise, spatial GLMs are not appropriate as any remaining
spatial autocorrelation not accounted for can lead to over-precise estimates. Including
information from connected regions allows the model to ‘borrow strength’ from other parts
of the data to obtain more precise estimates; this is particularly useful when a study area is
broken into small regions or where observed cases are low. However, the inclusion of a large
number of spatial covariates risks overfitting the data or introducing multicollinearity. The
inclusion of spatial covariates as fixed effects assumes that the relationship between them
and the outcome is stationary (the same across the whole spatial area) which may not be
appropriate, particularly in large-scale studies. Spatial GLMs may be a useful exploratory tool
but are not recommended for making inferences or predictions within a spatial study.
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1.2 Geographically weighted regression (GWR)

GWR fits a local GLM to each region using data from connected locations. Each local model
has different regression coefficients, overcoming the stationarity assumption of spatial GLMs:

nu(YD) = Bio + Xj=1 XijBij,

where p(Y;) is the mean of ¥}, the dependent variable, and 7 is a link function determined by
the model choice. X;; are m explanatory variable(s) in location /, and f;; are the
corresponding local regression coefficients for region i.

Local GLMs are estimated using information from connected regions, weighted using a
function based on distance that assumes regions are more connected the closer they are. The
functions used to estimate these weights are known as kernel density functions; they are
based on the distance between observations and some bandwidth, estimated as part of
model fitting. Kernels can be fixed (where a set number of connected regions are used to fit
each model) or adaptive (where the distance within which areas are considered connected
differs) (19).

We identified 20 studies that used GWR to model mosquito-borne disease transmission (20—
39). GWR is a useful exploratory tool to investigate how the relationship between variables
and the outcome differs across space. The model fitting process is fairly efficient, and
interpretation of the models is no different from standard GLMs. As GWR does not produce
a global model, it is inappropriate to use this method to make inferences about an entire
region. GWR can be used as an exploratory tool alongside an alternative spatial modelling
method when making inferences or predictions.

1.3 Generalised additive model (GAM)

GAMs extend the GLM framework to allow nonlinear relationships between covariates and
the dependent variable using smoothing functions. These smoothing functions can be applied
to spatial variables to account for spatial dependency, such as distance between
observations, or can be applied to coordinates to create a spatially structured random field,
which can be included in the model. Spatial GAMs take the form:

() = o+ XL1 XijBi + Tioi e Zi) + fspars

where u(Y;) is the mean of ¥;, the dependent variable, and 7 is a link function determined by
the model choice. X;; are m explanatory variable(s) in location i, Bj are the corresponding
regression coefficients. f, are smooth functions applied to each of the g covariates, Z;, in
location j, and fg, 4, is a spatially structured surface defined as either a bi-dimensional smooth
function in space or a random field based on the location of observation i.

We identified 18 studies that used a spatial GAM; 14 used a bi-dimensional smoothing
function which is applied to coordinates to define fi,q:. This function assumes that
connectivity between observations decays as the distance between them increases. The
smoothing function was either based on coordinates of cases (40—44), households (45-48),
or the centroid of a region (9,49-52). One study included f,,; defined by a Markov random

164



field (53); this assumes that regions are connected if and only if they share a border (54). The
remaining 3 studies included spatial covariates in their GAM to account for connectivity rather
than a spatially smoothed field. Two transformed these spatial covariates using a smoothing
function (the incidence of surrounding districts (55), and the distance from an index location
(56)), the other included case coordinates but did not specify whether a smoothing function
was applied (57).

Generalised additive models are useful to account for nonlinear, complex relationships
between the outcome and covariates. As with GLM, the inclusion of many spatial covariates
risks introducing multicollinearity and overfitting the data. Even if the spatial covariate has a
smoothing function applied to it, the model still assumes this relationship is stationary which
may not be appropriate for large-scale studies. The inclusion of a spatially structured random
field overcomes some of the issues associated with multicollinearity and overfitting as it
adjusts the covariance structure of the model rather than the estimated outcome. Spatially
structured random fields can be plotted to generate hypotheses related to connectivity and
identify factors that may improve the model.

1.4 Autoregressive distributed lag model (ADLM):

A distributed lag model is a GLM that assumes covariates have an influence on the outcome
over time rather than at a single time point. The model contains covariates from previous
time points to understand how this relationship changes through time, each with their own
regression coefficient. Researchers must choose a sensible lag period, in this equation j, which
is the length of time covariates are expected to be related to the outcome:

n(u(ie)) = Bo + Y1 Xig—iBips

where u(Y;,) is the mean of the dependent variable in region i at time t, and 7 is a link
function determined by the model choice. X;,_; are the explanatory variable(s) at time t - j,
and f,_; are their corresponding regression coefficients.

The ADLM extends this framework to take account of spatial autocorrelation by fitting a
separate regression model to error terms (the difference between the observed and fitted
outcomes) of the model, using lagged outcome values from connected areas as covariates.
The model is fitted using an iterative procedure:

Let w; . be the difference between the fitted values and observed values. These error terms
are regressed against previous outcomes in surrounding districts:

Wit = Zg=1 ¢i,p ZlELi Ai,ln(Yl,t—p)l

where 4;; are coefficients measuring the influence of the it" region belonging to the
neighbourhood L; (containing all regions connected to region i), and ¢;, measures the

relationship between connected regions at a lag of p time steps. We identified one ADLM
model (58).
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Although the ADLM allows researchers to investigate the impact covariates have on
transmission over time, it has several limitations. The inclusion of multiple spatial covariates
from neighbouring regions is likely to introduce multicollinearity into the model, making
results unstable. The high number of covariates risks overfitting the data, limiting broader
inferences. The iterative procedure makes model fitting more computationally intensive than
other statistical models and difficult to interpret, as well as making uncertainty quantification
not straightforward.

1.5 Generalised linear mixed model (GLMM) and Generalised additive mixed model
(GAMM)

GLMM and GAMM are extensions GLM and GAM respectively that include one or more
random effect(s). Random effects are used to overcome the independence assumption that
underpins GLM/GAM by accounting for residual autocorrelation and to allow for pooling of
the data in regions with little information. They can either be unstructured, where the source
of autocorrelation is unknown, or structured, for example in spatial or temporal data.
Structured random effects require a covariance structure to be specified that defines this
connectivity. GLMM/GAMMs are also known as hierarchical or multilevel models as they take
account of data that are clustered or grouped at different levels (for example within
households or administrative regions). GAMMs take the form:

nw(¥)) = Bo + X7ty XijB; + Y1 fe@y) + by,

where pu(Y;) is the mean of Y;, the dependent variable, and 7 is a link function determined by
the model choice. X;; are m explanatory variable(s) in location /, §; are the corresponding
regression coefficients. f;, are smooth functions applied to each of the g covariates, Zj, in
location j, and b; are one or more random effects. Note that GLMMs take the same form but
do not contain nonlinear f, (Z;;) terms.

We identified 139 studies that used a GLMM, 14 that used a GAMM, and one that used both.
Most (147/152) of these studies used spatially structured random effects to account for
connectivity between regions, the remaining 5 used spatial covariates (2 used spatial filtering
to create eigenvectors which were included as covariates (59,60), one used a covariate
created to measure the ‘risk of importation’ based on incidence and number of travellers
arriving from other countries (61), and one used geo-located Twitter data to create a
covariate that reflected commuting behaviour (62)), or a spatially smoothed random field
(based on the coordinates of villages (63)), combined with an unstructured random effect to
take account of other, unobserved variation between regions. Spatial structures used to
calculate random effects were either distance- or neighbourhood-based. There were 91
studies that used a neighbourhood-based approach (9,15,37,64—150): random effects were
structured using a Gaussian Markov random field which assumes regions are connected if and
only if they are neighbours (151) (either through a shared border or if they lay within a set
distance (64)), this is also known as a conditional autoregressive (CAR) model. 57 studies used
a distance-based structure to formulate their random effects, most often based on the
Matérn covariance function (152), which assumes that connectivity decays exponentially as
the distance between regions or observations increases (134,153-205).
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The inclusion of spatial connectivity within a random, rather than fixed, effect overcomes
issues of stationarity, multicollinearity and overfitting that were present when using spatial
covariates. These methods are more computationally intensive but the development of
methods designed to incorporate these spatial structures, such as integrated Laplace
approximations (INLA) (206), has made these more accessible in recent years. At present, only
two approaches to structuring random effects were identified which were both compatible
with distance-based assumptions of connectivity. No random effect structures were
identified that allowed for connectivity between distant regions or observations, for example
through international travel.

1.6 Distributed lag nonlinear models (DLNM)

DLNMs are an extension of the GAM framework that allow the model to explore nonlinear,
delayed associations between exposures, the response, and temporal lags. DLNMs do this by
including cross-basis functions, bi-dimensional functions that specify the dependency along
the exposure and along time lags. The cross-hasis function combines the exposure-response
smoothing function, f(x), used to model nonlinear associations in GAMs, with a lag-response
function, w(f), to create a bi-dimensional exposure-lag-response function f.w(x, £) (207). The
general form of a DLNM is:

n(Y) = Bo + L7_y XijBj + Linpi1 f- Wi, ),

where u(Y;) is the mean of Y;, the dependent variable, and 7} is a link function determined by
the model choice. X;; are m explanatory variable(s) in location i, §; are the corresponding
regression coefficients, and f.w(X;;,, £) are the exposure-lag-response functions with a
maximum lag of £.

These models can be extended to include structured or unstructured random effects (as seen
in mixed models), to include a spatially smoothed random field (as seen in GAMs), or to
include spatial covariates. We identified 4 papers that used a DLNM: 3 included spatially
structured random effects using a Gaussian Markov random field, assuming connectivity
exists between adjacent regions (208-210), the other included the number of cases observed
in surrounding regions, firstly as a smoothed spatial covariate, then within a cross-basis
function to account for lagged effects (55).

DLNM models allow for the relationship between covariates and the outcome to be explored
over time, rather than at a single point. This is particularly useful when studying the impact
of climate or vector control on mosquito-borne disease which is often complex, nonlinear and
delayed by a period of time (211). Unlike the ADLM, lagged variables are included within the
exposure-lag-response function rather than as separate fixed effects which overcomes some
issues related to overfitting and multicollinearity. The model structure is flexible and can be
extended to include different spatial methods (such as random effects or spatial covariates).
Due to the complex nature of the exposure-lag-response function, these models are more
difficult to interpret and visualise than other statistical models.
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1.7 Bespoke statistical models

Two statistical modelling studies carried out novel statistical methods that did not fall into
the above categories.

One study aimed to estimate the probability of a case, i, being the 'source' of another case, j,
based on the distance and time between them. The hazard of infection was estimated as the
product of a temporal kernel (an exponential function that reduces as time lag increases) and
a spatial kernel (an exponential function that decays as distance increases). The spatial kernel
used the distance between the original case and the potential connected case’s work and
home addresses. These addresses were estimated using data from the public transportation
network in Singapore. The probability of case j arising from case i is estimated using the
hazard as defined above, divided by the total hazard of all other cases that occurred prior to
casej(212). This study provided a novel approach to investigating the role of work places and
commuting in the risk of Zika transmission within an urban environment by treating humans
as vectors as well as hosts (as mosquitoes were largely naive, humans infecting mosquitoes
were expected to drive expansion rather than mosquitoes infecting humans). Although this
may be appropriate for investigating a newly-emerging or re-emerging disease in a largely
naive mosquito population, the impact of people infecting mosquitoes becomes less
important in endemic settings. The method may be less suitable for diseases transmitted by
night-biting mosquitoes (such as malaria) or larger-scale studies where other forms of travel
drive importation.

Another study estimated the instantaneous risk of chikungunya transmission between areas
as a product of connectivity measures (including distance, number of air passengers and
mobility estimated using the gravity model) and a coefficient. This was then used to estimate
the likelihood of importation of dengue, although the underlying probability assumptions and
the method used to estimate coefficients were not given in the paper (213).
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2. Machine learning methods

2.1 Neural network models

Neural networks combine multiple models to approximate the relationship between an
outcome (or output) and a number of covariates (or inputs). A neural network involves
weighting the inputs together to create a temporary output called a node. This process is
repeated to create multiple nodes, which are referred to as a layer. This process is repeated
by weighting the nodes together to create a new layer of nodes. The process is repeated
multiple times and the layers are referred to as hidden layers. The nodes in the final hidden
layer are then weighted together to create the output. The use of multiple layers and the
flexibility of functions that can be used for the weighting allows neural networks to be used
for relationships that are nonlinear and complex (Figure 1). Without the hidden layers, a
neural network is equivalent to a nonlinear regression model (214). As the relationships are
hidden and complex, it is difficult to use a neural network to understand the relationship
between covariates and an outcome, but they are capable of providing accurate predictions
if carried out correctly.
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Figure 1. A visual representation of the neural network framework

There were 4 studies that included a neural network. Two studies included spatial variables
within their input: one included the number of cases observed in adjacent districts (35), the
other included connectivity-risk variables calculated the volume of passengers moving
between countries and the incidence rate at their origin and destination (214). The other 2
studies created movement matrices based public transportation data; one used this matrix
to weight links between hidden layers (216), the other used this matrix as an input for their
network (217).

Neural networks typically require a large amount of data, however they are able to include
complex dependencies between variables without being limited by a priori model
assumptions as is the case with statistical models. Neural networks are useful for studies that
require accurate predictions where a large amount of data is available but are less
appropriate to understand the relationships between covariates and the outcome or the
underlying process of transmission.
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2.2 Regression trees

There were two papers that used regression tree methods: one used random forest
regression (13) and the other used boosted regression trees (218). Regression trees are a
machine learning approach that partitions the outcome of interest using a series of binary
rules based on covariates and computes a summary statistic of the outcome in each partition
(214). Both random forest and boosted regression methods fit many regression trees and
combine the results to overcome issues of overfitting and bias; random forest regression
combines the results of these trees at the end of the process, in this case using bootstrapping,
to obtain an overall result, whereas boosted regression trees refit regression trees iteratively,
weighting observations that were poorly modelled to produce a final, parsimonious additive
model (219). Unlike neural networks, regression trees may be used to explore the association
between covariates and the outcome by calculating their relative importance in the model.
Both papers included spatial covariates as inputs, such as distance and number of people
moving between countries or cities, to account for connectivity.

Regression tree methods are more flexible than standard regression; as with other machine
learning methods, the model structure does not need to be defined prior to model fitting, the
method ‘learns’ from the data. Models allow multiple interactions and complex models to be
explored and can provide more robust predictions than statistical regression models (214).
Although the relative importance of a covariate can be calculated from this method, the
binary separation of covariates means these models cannot explore continuous relationships.
This method should only be used in studies that require accurate predictions from a large
amount of data but are not suitable for causal inference or to understand the process of
transmission.

2.3 Bayesian networks

Bayesian networks use directed acyclic graphs to illustrate the causal relationship between
an outcome and covariates. Each variable is represented by a node and these nodes are
connected by arrows representing causal pathways. Bayesian networks assign conditional
probabilities to each of these arrows, describing the relationship between nodes. One study
was identified that used a spatial Bayesian network to understand the relationship between
environmental covariates and malaria (220). Researchers included the total number of cases
in connected regions within the network. Bayesian networks require prior understanding of
the research area to determine where causal pathways exist. They also require numerical
variables to be categorised before the conditional probabilities could be obtained, losing
information about continuous relationships.
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3. Mechanistic models

3.1 Compartmental model

Compartmental models describe the movement of hosts (in this case, humans) through
infectious stages (e.g. susceptible, infected and recovered) to replicate the process of disease
transmission in the real world. The movement between infectious stages is described using
differential equations and may include biological, environmental, and entomological factors
as parameters that explain this process. Some studies also include a compartmental model
for vectors that interacts with the human model. The choice of compartments depends on
how the disease progresses. A graphical representation of a compartmental model used to
explain mosquito-borne disease is given in Figure 2.
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Figure 2. A visual representation of an SEIR-SEI compartmental model. At any given time, humans are
susceptible (S), exposed but not infectious (E), infectious (1) or recovered (R) from a given mosquito-
borne disease, and mosquitoes are either susceptible (S) or infectious (l). Arrows represent potential
movement or interaction between compartments: susceptible humans can become exposed after
interaction with an infectious mosquito, and a susceptible mosquito can become infectious after an
interaction with an infectious human.

We identified 5 studies that used compartmental models. Three included a spatial parameters
within the model equations to allow for connectivity between regions within the transmission
process: two used an exponential distance-decay function to estimate the force of infection
between individuals (221,222), the other included a 'source term' to account for infected
individuals travelling into the area from other cities (223). The remaining two studies used
statistical models to estimate parameters that were included in the compartmental model
equations: one estimated mosquito abundance as a proxy for biting patterns using a spatial
GAM containing a spatially structured random field, accounting for distance between
mosquito traps (224), the other used a GLMM with CAR random effects to estimate a
coefficient accounting for the movement of infectious individuals from neighbouring regions.

Compartmental models are useful to investigate the process of transmission. These models
require less data as parameters can be taken from previous experiments when data is not
available, making them useful when studying rare or (re-)emerging diseases. Mechanistic
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models require knowledge of the biological and entomological processes that drive
transmission as incorrect parameter specification may lead to invalid results. The models can
extrapolate beyond the data, making them useful to investigate the impact of vector control
and eradication programmes, but only within the specific settings they have been
parameterised for.

3.2 Metapopulation model

Metapopulations are spatially separate groups of the same population that are connected in
some way. In metapopulation models, these are generally towns, villages, or clusters within
a region of interest. Metapopulation models identified in this review modelled mosquito-
borne transmission within each metapopulation whilst allowing for migration between these
regions. We identified 24 metapopulation modelling studies; 20 fitted separate
compartmental models to each metapopulation (217,225-243) and 4 estimated disease
transmission but did not explicitly model movement between compartments (244-247).
There were 17 metapopulation models that used a movement matrix to represent the
number of people (and in one case, vectors and livestock (229)) moving between
metapopulations. These were created using movement models, such as gravity or radiation
models, that aimed to mimic human commuting behaviour (226,228-232,243,245,246),
movement data collected from geo-located tweets (232,239,247), air travel (234,235) or
public transportation (217), distance (227), or using a fixed value based on the type of
neighbourhood (e.g. city or suburb) (237,238). There were 7 metapopulation models that
used a spatial parameter to account for connectivity, including it within the model process
rather than explicitly modelling movement between metapopulations (225,233,236,240—
242,244). O'Reilly et al. (233) fitted separate compartmental models for each location for the
population that remained and the population that left.

Due to their design, metapopulations are ideal for accounting for complex mobility patterns
by explicitly allowing movement around a network, however this added complexity means
the method is computationally intensive and often difficult to implement. As with other
mechanistic models, metapopulation models can ‘borrow’ parameters from other
experiments and so require less data than statistical or machine learning, but prior knowledge
of the transmission process is required. Although human movement can be included into a
metapopulation model, obtaining unbiased, adequate data can be difficult. It is important to
consider the most appropriate data or proxy to represent the type of movement expected to
drive transmission (short- vs. long-term, domestic vs. international, etc.). Mathematical
models of human movement, such as gravity and radiation models, provide an appealing
alternative when the process is thought to be driven by commuting but may not be useful in
large, international studies.

3.3 Agent-based model (ABM)

ABMs simulate the movement of individuals (or agents) around a system whilst measuring
their impact on the outcome. Agents may interact with one another (for example, infected
mosquitoes may interact and infect susceptible humans at a given time step) and are tracked
through infectious stages, either within a compartmental system or alternative methods. We

172



identified 4 studies using an ABM: three used a compartmental model for each agent (248-
250), simulating movement between infectious stages as well as around the spatial system
based on a movement matrix, the other model did not explicitly use a compartmental model
but estimated the number of new infections based on where agents were in the system and
the distance between them (251). The compartmental-based ABMs used a movement matrix
to describe the movement of agents around the study area which were informed by
commuting patterns for humans (based on mobile phone or survey data, estimating home
and work/school addresses (249,250)) or based on flight patterns of mosquitoes (either
weighted by proximity to humans and breeding grounds (248), or into adjacent cells (249)).

As with metapopulations models, the ABM structure is useful for settings where human
and/or vector movement is thought to be an important driver of disease and allows this to be
explicitly included within a model. Mixing between hosts and vectors is also explicitly
measured, rather than implicitly through parameters as is the case in metapopulation models,
allowing more complex mixing dynamics to be explored. Due to their extra complexity, ABMs
are extremely computationally intensive and can be hard to fit. Inclusion of movement
matrices requires appropriate data which may be difficult or, in the case of vector movement,
impossible to obtain.

3.4 Generalised inverse infection model (GIIM)

The GIIM was developed to estimate parameters of the transmission process using outbreak
data rather than simulating the outbreak itself. The model is based on a network, similar to
the metapopulation model, where each node of the network represents a metapopulation
which has experienced an outcome. Nodes may also be separated into disease
compartments. Nodes are connected to one another by edges. Unlike the metapopulation
model, it is the edge parameters that are estimated and the process of transmission rather
than the outcome itself (which has already been observed). There was one study that used a
GIIM to investigate the emergence of Zika in the Americas (252). Each node was a country or
state classified using a compartmental model (susceptible or infected based on case data) and
each edge represented the probability of importation from an infectious node to a susceptible
one. The GIIM is useful when the process of transmission is not fully understood and may be
used to inform other mechanistic models. The model requires accurate outcome data (in this
case, information regarding Zika outbreaks) so cannot be used to investigate areas with poor
surveillance or places currently experiencing an outbreak.
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Appendix D: Supplementary Material Chapter
4

D.1 Supplementary material

Supplementary material to support Chapter 4. A Bayesian modelling framework to quantify
multiple sources of spatial variation for disease mapping. Contains additional simulation
studies and a sensitivity analysis. Taken from https://doi.org/10.1098/rsif.2022.0440.
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D.1.1 Comparison of spatial smooth and random effect models: a single

source of distance-based connectivity

In this section, we provide a comparison between the proposed penalised regression spline
modelling approach and the more conventional neighbourhood-based conditional
autoregressive (CAR) model. Full details of data generation and model structure are provided
in section 3 of the main text. We compared the spatial smooth approach to the BYM2 random
effect models fitted using integrated nested Laplace approximations (INLA) in the main text.
However, as the spatial smooth model was fitted using Markov chain Monte Carlo (MCMC)
methods, we refitted the BYM2 random effects model using MCMC via NIMBLE [1]. We
compared this to our spatial smooth approach to ensure that any differences between our new
approach and the conventional BYM2 random effects approach were not caused by differences

in inferential methods.

D1.1.1 Modelling approach
Briefly, we applied two Poisson models to fictional count data with an intercept of 0 and a

known underlying spatial structure:

Vi ~ Poisson(E(yi))
log(E(yy)) = log(&) + a +u; +v; 1)
log(E(y)) = log(§) + a + = (Ypu.; + /1 ¢v.,) 2

In model (1), u; is a spatially structured term, formulated using a thin plate regression spline
on the coordinates of the centroid of each municipality, and v; is a spatially unstructured term,
assumed to follow a zero-mean normal distribution, representing heterogeneity between
regions. Model (2) represents the BYM2 model, a scaled version of the BYM approach that
includes a spatially structured random effect w,;, assuming a CAR neighbourhood-structure,

and an unstructured Normal random effect v,; [2,3]. Model (2) contains a mixing parameter ¢

which measures the contribution of each random effect to the marginal variance riz [2,4]. Here,
¢ = 0 indicates no spatial structure within the data and ¢ = 1 represents a purely spatial
model. Both models were fitted using MCMC simulations via the NIMBLE package [1], model

(2) was also fitted using the R-INLA package [5].
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Model comparison was based on mean absolute error (MAE) and WAIC [6]. The relative
contribution of each spatial term in model (1) to the overall random structure was estimated
using the proportion of the overall random term variance explained by u (var(uw) /var(u + v))
for the spatial smooth model based on simulations from the posterior distribution of u and v.
This was compared to estimates of the ¢ parameter from model (2) and the known mixing
parameter from data generation. All analyses were carried out using R version 4.1.1 [7]. Code
used to simulate data and perform analyses is available here: https://github.com/sophie-a-

lee/spatial_smooth_framework.
D1.1.2 Results

All three models were able to accurately estimate the true intercept coefficient value of 0, with

all models capturing 0 within the 95% credible interval (Figure D1).
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Figure D1: Mean and 95% credible interval of the intercept coefficient estimates from

the smoothing spline (black) and BYM2 models fitted using INLA (blue) and MCMC

simulations (pink), compared to the true simulated value, 0.

Figure D2 shows that the BYMZ2 random effects model produced comparable estimates of the
mixing parameter when it was fitted via INLA or MCMC approaches. The spatial smooth
model provided estimates that were closer to the true value of ¢ than the BYM2 models for
most simulations, although all models could detect changes to the relative contribution of the

spatial structure within the data.
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Figure D2: The mean and 95% credible interval of estimated ¢ values extracted from
models including a smoothing spline (black) and BY M2 models fitted using INLA (blue)
and MCMC simulations (pink), compared to the known value (dashed line).

Mean absolute errors and WAIC values were similar between all 3 models (Table D1). In
particular, the results from the BYM2 model fitted using MCMC are almost identical to the
spatial smooth model showing that this approach performs as well as the standard approach
(BYM2). We noticed some systematic discrepancies between the INLA model goodness of fit
statistics and those extracted from NIMBLE. However, as these differences were not apparent
between the models fitted using MCMC, they appear to be a result of using different software
packages rather than the differences in model formulations. The objective of these comparisons
was to show that the spatial smoothing model performs as well as the current standard (the
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BYM2 approach) which, given the very small differences between the goodness of fit statistics,

is supported by this analysis.

Table D1: Model comparison statistics and mean estimates of the mixing parameter, ¢,
from the smoothing spline and BY M2 models fitted using INLA and MCMC methods.
Mean absolute error (MAE), the mean absolute difference between observed and predicted
outcomes, and the Watanabe-Akaike information criterion (WAIC), the negative of the average
log pointwise predictive density, calculated for the spatial spline and BYM2 models for each

simulated dataset. The lowest MAE and WAIC, and the ¢ estimate closest to the value used in

each simulation are highlighted in bold.

Smoothing spline model INLA BYM2 model NIMBLE BYM2 model

¢ MAE | WAIC .d) MAE | WAIC 'qb MAE | WAIC .d)
estimate estimate estimate
0| 1.51| 996.94 0.041 | 1.04 | 1005.79 0.072 | 1.51 997.96 0.052
0.1 | 1.54 | 1030.64 0.121 | 1.11 | 1034.29 0.279 | 1.54 | 1032.92 0.244
0.2 | 1.33| 932.42 0.260 | 1.04 | 931.79 0.486 | 1.37 935.52 0.480
0.3 | 1.27 | 909.42 0.253 | 0.93 | 912.50 0.572 | 1.30 912.79 0.599
0.4 | 1.39| 961.67 0.375 | 1.08 | 976.12 0.625 | 1.46 974.02 0.637
0.5| 1.54 | 935.09 0.601 | 1.21 | 954.34 0.668 | 1.58 953.01 0.654
0.6 | 1.50 | 881.09 0.512 | 1.13 | 973.61 0.757 | 1.55 900.05 0.763
0.7 | 1.45| 931.85 0.641 | 1.17 | 989.24 0.890 | 1.50 935.66 0.919
0.8 | 1.63| 947.51 0.808 | 1.37 | 983.96 0.951 | 1.70 944.76 0.960
09| 1.59| 876.37 0.918 | 1.37 | 922.29 0.963 | 1.69 876.18 0.975
1| 1.48 | 875.42 0.797 | 1.25 | 924.14 0.948 | 1.57 872.03 0.964

D1.2 Human movement coordinates

To create a smooth surface describing the spatial structure of data under a given connectivity
assumption, we apply penalised smoothing splines to coordinates describing this relative
connectivity. For example, when describing distance-based connectivity, we apply smoothing
splines to the coordinates of observations. However, when a coordinate system does not
currently exist that describes the relative connectivity between observations, we must create
one. Multidimensional scaling (MDS) is a mathematical approach that translates continuous
measures of distance (in this case, connectivity) onto an abstract cartesian space and returns a
set of coordinates [8]. When considering human movement-based connectivity, we can apply
MDS to a continuous measure of human movement, i.e., the number of people moving between
areas, and use the resulting coordinates to construct the smooth spatial surface. Note that MDS

requires the continuous measure of connectivity to be symmetric. In the case of human

205



movement, this means the number of people moving in one direction is assumed to be equal to

the number travelling in the opposite direction.

Continuous measures of human movement-based connectivity can include observed data, such
as the number of air travel passengers, or can be estimated using movement models, such as
gravity and radiation models [9,10], that assume the number of people moving between areas
is a function of population and distance. To imitate these movement models, we used
smoothing splines to investigate the relationship between ‘connectedness’, distance and
population. In Brazil, the Regides de Influéncia das Cidades [Regions of Influence of Cities]
(REGIC) study aims to recreate the Brazilian urban network which explains the movement of
people, goods, and services around the country [11]. Based on a survey of residents, the study
produced a binary matrix classifying all cities within Brazil as either 'connected' or not in 2018
(Figure D3). We used a logistic generalised additive model to estimate the relationship between

the binary measure of connectedness, and the Euclidean distance and population in each city:

cij ~ Bernoulli(p; ;)

lOglt(pl']) = a +f(di,jlri'7}')

Where p; ; is the probability that cities i and j are connected, c; ; was the binary connectedness
indicator taken from the REGIC study, f(d; j,1;,7;7) is a 3-dimensional tensor smoothing spline
applied to the Euclidean distance between cities (d; ;) and the populations in city i (r;) and city
J (r;). Tensor smoothing splines allow interactions between covariates measured on different
scales (in this example, population and distance) [12]. The model was implemented using the
mgcv package [13] using restricted maximum likelihood (REML), allowing for Bayesian
interpretation of the results [14,15]. The predicted probability that cities are connected (p; ;)
was extracted from the model by taking simulations from the posterior distribution. MDS was
applied to the predicted probabilities to produce a coordinate system describing the relative

connectivity of municipalities based on human movement.
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Figure D3: Connections between municipalities in South Brazil extracted from the
REGIC 2018 study [11].

D1.3 Simulation study: a single source of human movement-based spatial

structure
In this section, we present a simulation study with a single source of spatial connectivity in the

data, arising due to human movement.
D.1.3.1 Data generation

Fictitious disease data was generated from a Poisson distribution for each of the 1,013

municipalities in South Brazil:

Vi~ Poisson(E(yi))

log(E(y)) = log(§) + a+S; (3)

Where y; is the number of cases in municipality i,, E(y;) is the expected count, and &; is an

offset term set to the population divided by 100,000 so that y;/&; is the incidence rate per
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100,000 residents for municipality i. « = 0 is the intercept, or baseline risk, and S; is the

underlying spatial structure of the data:

S = \/E ssm(x,z) /(1 — @) g (4)

Where ¢ is a mixing parameter that determines the relative contribution of a spatially
structured surface, sm(x;, z;), and an unstructured random term, &; ~ N(0, 1). sm(x;,z;) is a
smooth function applied to human movement-based connectivity coordinates, defined above,
which emulates a spatially structured surface (taken from [12]):

(%)

—(x=0.7)% (z-0.8)2
sm(x, z) = o0, <1.Ze_("_0'2)2/"%‘(2‘0-3)2/‘722 +08e % o3 >

o, =03, 0,=04
The smooth function was centred around 0 by subtracting the overall mean from each value.

11 simulated datasets were produced using equation (3), setting values of ¢ between 0 and 1
at intervals of 0.1 (Figure D4).
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Figure D4: Simulated disease counts (left) and spatial random effects (right) under a
human movement-based structure using different spatial structure combinations. The
number of cases simulated from a Poisson model and the underlying spatial structure where
the data has a) no spatial structure (¢ = 0), b) a human movement-based structure only (¢ =
1), and c) equal contribution of both structures (¢p = 0.5). Note that the number of cases is

shown on the log scale.

D.1.3.2 Modelling approach
A spatial Poisson model containing spatially structured and unstructured random effects was

applied to each simulated dataset:

y; ~ Poisson(E(y;))

log(E(yy)) =log(E) + a+u; +v; (6)

u; is a spatially structured random term, created by applying a thin plate regression spline to
human movement-based coordinates generated using MDS (see section S2). v; is a spatially
unstructured term, expected to follow a zero-mean normal distribution, representing
heterogeneity between regions. The smooth surface used to structure u; was generated using
the mgcv package and extracted using the jagam function [13,16]. Models were implemented

using MCMC via NIMBLE [1,17]. The relative contribution of each random term to the overall
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marginal variance was calculated from simulations and compared to the known value of ¢ used

to generate the data (see equation (4)).

D.1.3.3 Results

The 95% credible interval of the estimated intercept contained the true value of zero for all but
one of the simulations (Figure D5). The proportion of the random effect variance explained by
the structured term provided an accurate estimate of the known contribution from each
simulation (Figure D6), showing that alternative spatial structures can be considered within the
proposed modelling framework. Multidimensional scaling allows coordinate systems to be
derived from any continuous measure of connectivity, allowing assumptions of connectivity

beyond distance-based to be included and tested.

coo+-4----¢----}p----p----fF---4----=----- ————t---- R e

Intercept estimate
o
N
(4}

-0.50

T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure D5: Mean and 95% credible interval of intercept coefficient estimates compared
to the true simulated value, 0.
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Figure D6: The mean and 95% credible interval of estimated ¢ values compared to the
known value. Estimated ¢ values are calculated using the proportion of the random effect

variance explained by the spatially structured term.

D.1.4 Simulation study: spatial modelling of binary data

Although the primary purpose of this paper is to develop a modelling framework compatible
with count data, the smoothing spline approach could be used to structure random terms for
other models, such as logistic models for binary outcomes. In this simulation study, we
compare the proposed penalised smoothing spline approach to INLA's BYM2 model applied
to a generated binary response.

D.1.4.1 Data generation
Binary response data, y;, was generated for each of South Brazil's 1,013 municipalities from a

binomial distribution with 20 trials or events, with a distance-based spatial structure:

y; ~ Binomial(p;, 20),
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log (13—;91) = B+S (7)

Where £ is an intercept set to 0, p; is the probability of an event, and S; is the spatial structure
of the data, defined as:

Si = smlx,z)+/(A—¢) &

Where ¢ is a mixing parameter defining the relative contribution of a spatially structured term,
sm(x;, z;), and an unstructured term, &; ~ N(0,1). A smooth function, sm (see equation (5)),
was applied to the coordinates of the centroid of municipalities that were scaled to take values
between 0 and 1. sm(x;, z;) was centred around O by subtracting the overall mean from each
value. 11 simulated datasets were produced by setting ¢ values between 0 and 1 at intervals of
0.1 (Figure D7).
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Figure D7: Simulated data (left) and probability of an event (right) under a distance-based
structure using different spatial structure combinations. The number of events simulated from
a binomial model and the probability of an event where the data has a) no spatial structure
(¢ = 0), b) a distance-based structure only (¢ = 1), and c) equal contribution of both
structures (¢ = 0.5).

D.1.4.2 Modelling approach
Two logistic models containing spatially structured and unstructured random effects were

applied to each simulated dataset:

y; ~ Binomial(p;, 20)

log( pip.) =a+tu+v; (8)

i 1
log(lfp> =a+;(\/$u*i+,/1— v*i) 9

i

In model (8), u; is a spatially structured random term representing spatial connectivity within
the data, created be applying a thin plate regression spline to coordinates of the centroid of each
municipality. v; is a spatially unstructured term, expected to follow a zero-mean normal
distribution, representing heterogeneity between regions. This spatial smooth model was

compared to a CAR-based random effect model using R-INLA’s BYM2 model specification,
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given in equation (9) [4,18,19]. Here, u,; is a spatially structured random effect assuming a
CAR structure, where municipalities are considered connected if and only if they share a
border. v,; are unstructured random effects, and ¢ are mixing parameters that measure the
relative contribution of the structured and unstructured random effects to the overall marginal

variance (le) of the random effect. The penalised smoothing spline structure was generated

using R's mgcv package [20] and extracted using the jagam function [16]. Spatial smooth
models were implemented using Markov chain Monte-Carlo (MCMC) simulations in R via the
NIMBLE package [1]. The CAR model was created using INLA's BYM2 model [18,21].

We compared model performance between the spatial smooth and BYM2 models using
receiver operating characteristic (ROC) curves, a comparison of the true positive and true
negative rates, the Brier score, the mean squared difference between the predicted probability
and observed outcomes, and WAIC. Higher values of area under the ROC (AUROC) curve
and lower values of the Brier score and WAIC indicate a better model fit. The proportion of
the random variance attributed to the spatially structured term was calculated from the
smoothing spline model and compared to estimates of ¢ extracted from the INLA model output

and the known values for each simulation.

D.1.4.3 Results

Model comparison statistics AUROC were almost equivalent between the spatial smooth and
BYM2 models, while the Brier scores and WAIC values preferred the spatial smooth models
(Table D2), indicating that the spatial smooth model performs as well (if not better) than one
of the current standard approaches. This shows that the smoothing spline structure provides an
alternative to CAR-based structures in binomial models as well as models for count data,
particularly when the full spatial structure may not be fully understood or where the structure
is neither stationary nor isotropic. Both models were able to accurately estimate the intercept

coefficient (Figure D8).
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Table D2: Model comparison statistics and mean estimates of the mixing parameter, ¢,

from the smoothing spline and INLA BYM2 models. Area under the receiver operating

characteristic curve (AUROC), Brier score, WAIC, and ¢ estimates extracted from logistic

models fitted to simulated data using smoothing splines or INLA's BYM2 model to structure

random effects. The optimal goodness-of-fit statistic is given in bold, that is, the highest

AUROC, the lowest Brier score and WAIC, and the ¢ estimate closest to the value used in

each simulation.

Smoothing spline model INLA BYM2 model
[0) AUROC | Brier WAIC ¢ AUROC | Brier WAIC ¢
score estimate score estimate

0 0.764 0.199 4937.1 | 0.008 0.764 0.246 5084.4 | 0.014
0.1 0.764 0.199 4932.8 | 0.077 0.764 0.247 5075.3 | 0.126
0.2 0.762 0.2 4926.1 | 0.204 0.762 0.246 5053.6 | 0.283
0.3 0.763 0.199 4909.4 | 0.278 0.764 0.246 5031.1 | 0.358
0.4 0.759 0.201 4906.1 | 0.373 0.759 0.246 5002.8 | 0.457
0.5 0.758 0.201 4884.1 | 0.487 0.758 0.247 4967.6 | 0.533
0.6 0.749 0.204 4849.7 | 0.615 0.749 0.247 4906.3 | 0.682
0.7 0.749 0.204 4806.5 | 0.71 0.75 0.248 4857.2 | 0.747
0.8 0.754 0.202 4733.2 | 0.797 0.754 0.245 4756.5 | 0.934
0.9 0.751 0.203 4645.8 | 0.877 0.754 0.246 4626.3 | 0.976
1 0.733 0.208 4289.2 | 0.995 0.748 0.246 4324.6 | 0.998
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Figure D8: Mean and 95% credible interval of the intercept coefficient estimates from

the smoothing spline (black) and BYM2 (blue) models, compared to the true simulated

value, 0.

The proportion of the random effect variance explained by the spatially structured term in the

smoothing spline model provided an accurate estimation of the true value from simulations

(Figure D9). This value was comparable to the ¢ hyperparameter extracted from the BYM2

model using INLA and can therefore be interpreted in a similar way.
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Figure D9: The mean and 95% credible interval of estimated ¢ values extracted from the
smoothing spline (black) and INLA BYM2 (blue) models compared to the known value.
Estimated ¢ values for the smoothing spline model were calculated using the proportion of the
random effect variance explained by the spatially structured term and were extracted from
INLA output for the BY M2 model.

D1.5 Simulation study: binary data with two sources of spatial structure

The binomial simulation study above was extended to also include a source of human

movement-based connectivity.
D1.5.1 Data generation
Binary response data, y;, was generated for each of South Brazil's 1,013 municipalities from a

binomial distribution with 20 trials or events, using the same process as simulation study in

Section S3, but with an extended spatial structure:

S; =1 - sm(a;, by) + /s - sm(ci, di) + /s - & (10)

b1+ P+ Pp3=1
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sm is a smoothing function (equation (5)), applied to scaled coordinates of the centroid of
municipalities, a; and b;, to create a distance-based smooth term, and applied to human
movement-based connectivity coordinates, c; and d;, derived using multidimensional scaling
and the Brazilian REGIC study [11] as described previously. ; is a random draw from a normal
distribution (g; ~ N (0, 1)), representing heterogeneity between municipalities. ¢;, ¢, and ¢
are mixing parameters which define the relative contribution of the spatially structured and
unstructured terms to the underlying spatial surface. ¢p;was fixed at 0.2, ¢p;and ¢, took values

between 0 and 0.8 at intervals of 0.1 to create 9 simulated datasets (Figure D10).

Probability
1.00

0.75
0.50
0.25
0.00

Figure D10: Simulated data (left) and probability of an event (right) containing two
sources of spatial structure. An example of simulated data used to test the model, where ¢, =
0.4, ¢, = 0.4, and 5 = 0.2.

D1.5.2 Modelling approach
A logistic model containing two spatially structured random terms and one unstructured
random terms was applied to each simulated dataset:

y; ~ Binomial(p;, 20)

log( Pi )= ptuy;+uy; +v; (11)
1-p;
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Where u4 ; is a distance-based spatially structured random term, created by applying a thin
plate regression spline to the coordinates of the centroid of municipalities. u,; is a human
movement-based spatially structured random term, created by applying a thin plate regression
spline to coordinates describing relative connectivity between municipalities based on human
movement (see Section D1.2). v; is a spatially unstructured term, expected to follow a zero-
mean normal distribution, representing heterogeneity between municipalities. Spatially
structured terms were generated using R's mgcv package [20] and extracted using the jagam
function [16]. Spatial smooth models were fitted using Markov chain Monte-Carlo (MCMC)
simulations in R via the NIMBLE package [1].

D1.5.3 Results

The extended spatial model was able to accurately estimate the intercept coefficient for each
simulated dataset (Figure D11). The ability for each model to detect the contribution of each
spatial structure to the random effects varied across simulated datasets and between
assumptions of connectivity (Figure D12). Although the model estimates were able to detect
increases in the contribution of these structures, the estimates and 95% credible intervals did
not always contain the true mixing parameter values from the simulation. In particular, this
model underestimated the contribution of human movement to the spatial structure and
attributed this to either distance-based or independent, unstructured terms for larger values of
¢, (Figure D12). Therefore, as with the INLA BYM2 models compared previously, care

should be taken when interpreting the estimates of the mixing parameters.
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Figure D12: Mean and 95% credible interval of the proportion of variance of the random
effects explained by a) the distance-based structure, b) the human movement-based

structure, and c¢) unstructured random terms. Dashed lines represent the true value from

simulations.
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D.2 Supplementary figures

Figure S1: Offset, log(§;), the log of the population of each municipality divided by 100,000
in South Brazil.
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Figure S2: Mean and 95% credible interval of the intercept coefficient estimates from the
smoothing spline (black) and BYM2 (blue) models, compared to the true simulated value,
0.

227



25
0.0
-25
-5.0

Figure S3: Human movement-based smooth function created by applying the function
sm(x;, z;) to coordinates describing the connectivity between municipalities in South Brazil
arising from human movement.
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Figure S4: Mean and 95% credible interval of the intercept coefficient estimates, compared
to the true simulated value, 0 (sorted by ¢p,man)-
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Appendix E: Supplementary Material Chapter

5

E.1 Supplementary figure
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Figure E1: Human movement-based coordinates describing the connectivity between

municipalities based on the number of residents moving between them. A coordinate

system created by applying multidimensional scaling to the proportion of residents moving

between municipalities. Dots closer together represent municipalities that experience more

movement between them.
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