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Abstract 

Over the past 50 years, dengue has been expanding globally into previously unaffected areas. 

This has been attributed to climate change, urbanisation, and increased connectivity driven by 

human movement. In Brazil, the rapid expansion of dengue has led to outbreaks occurring in 

previously unaffected areas, including the temperate South region and remote areas of the 

Amazon rainforest. In this thesis, I use spatial models to explore the drivers of dengue re-

emergence and expansion in 21st century Brazil. Spatial modelling techniques are used to 

disentangle the effect of increasing temperatures in South Brazil and the contribution of human 

movement around the Brazilian urban network to the expansion of the dengue transmission 

zone. 

  

First, using Bayesian spatiotemporal models, I found an increased odds of dengue outbreaks in 

highly urbanised, well-connected cities which had already experienced an outbreak and had 

year-round temperatures suitable for dengue transmission (Chapter 2). Although these models 

were able to capture the significant impact of temperature on the expansion of dengue into 

South Brazil, they were unable to quantify the role of human movement in dengue expansion. 

I conducted a systematic review to identify how spatial connectivity had been accounted for in 

models of mosquito-borne disease transmission and the assumptions made about how spatial 

connectivity arises (e.g., human movement between regions) (Chapter 3). Although the number 

of spatial modelling papers had increased rapidly over the past 5 years, very few statistical 

models considered connectivity arising due to human movement and there were no models 

identified capable of accounting for multiple sources of spatial connectivity. Expanding current 

state-of-the-art statistical frameworks using ideas from network-based mechanistic models 

identified in this systematic review became the focus of the remainder of the thesis.  

 

I developed a novel statistical modelling approach which can include multiple sources of 

spatial connectivity, such as similarities between close areas and human movement, and 

quantify the relative contribution of each source to the overall spatial structure of the model 

outcome (Chapter 4). This framework was applied to dengue outbreak data for the whole of 

Brazil between 2001 – 2020 (Chapter 5). Model results showed that human movement based 

on commuting for work or education contributed very little to the overall spatial structure of 

the number of outbreaks per municipality in Brazil, but this contribution was significantly 

higher in North and Northeast Brazil compared to South Brazil.  
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In this thesis, I have explored the complex, interacting drivers of dengue expansion in Brazil 

since 2001, including increasing temperatures in South Brazil and connections between cities 

arising from human movement around the Brazilian urban network. Although this thesis 

focuses on dengue expansion in Brazil, the methods presented here are flexible enough to be 

applied in any Bayesian hierarchical model where spatial connectivity exists within the data. 

Given the increasing risk of future pandemic pathogens due to increasing climate and 

globalisation, robust modelling tools are essential to gain better understanding of infectious 

disease emergence and identify areas at future risk of expansion. 
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1. Introduction 

1.1 Motivation 

Recent public health emergencies such as the Zika epidemic in the Americas [1,2], the western 

Africa Ebola outbreak [3,4] and the ongoing COVID-19 pandemic [5] have brought emerging 

infectious diseases to the forefront of global health research. Changes in climate and land use 

have led to increased cross-species contact and therefore increased the risk of spillover from 

infectious zoonotic pathogens [6]. This, coupled with an increasingly connected world means 

emerging diseases are spreading faster and further than ever [7]. Mathematical models are 

important tools in understanding emerging infectious disease dynamics and predicting the 

spread and persistence of these viruses [8]. Where expansion of a disease has occurred, spatial 

models can be employed to explore the potential drivers of this emergence and identify areas 

at risk of future expansion whilst accounting for spatial autocorrelation or connectivity across 

a geographical area. 

 

In this thesis, a spatial modelling framework is developed to quantify the role of climate 

change, socioeconomic factors, and human movement on the expansion of emerging infectious 

diseases. This framework is developed in the context of dengue re-emergence and expansion 

in Brazil. In this chapter I introduce dengue and discuss its epidemiology and global burden. 

Following this, I discuss the re-emergence of dengue in Brazil and introduce the hypothesised 

drivers for the expansion of the dengue transmission zone. Finally, I introduce statistical 

modelling methods that can be used to quantify the impact of potential drivers on emerging 

infectious diseases. This chapter is concluded with the thesis aims, objectives, and the structure 

of the thesis. 

 

 

1.2 Dengue  

Dengue is one of the world’s fastest growing communicable diseases, with the number of cases 

doubling every decade over the past 30 years [9,10]. Dengue is transmitted to humans by the 

bite of an infected female mosquito of the Aedes genus, primarily Aedes aegypti although Aedes 

albopictus can transmit the virus less efficiently [9]. Aedes aegypti are now ubiquitous in 

tropical and sub-tropical regions worldwide, while Aedes albopictus continue to expand into 
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temperate regions [11]. The rapid expansion of the global distribution of Aedes mosquitoes 

and, subsequently, the arboviruses transmitted by them, has been attributed to rising 

temperatures, increasing urbanisation, and increased global connectivity arising from human 

movement [9,12–17]. Around half the world’s population are believed to live in areas at risk 

of dengue infection [18].  

 

Dengue is caused by a virus of the Flaviviridae family of which there are four genetically 

distinct dengue serotypes (DENV-1 – 4). Infection from one serotype provides long-term 

immunity against that particular serotype and short-term protection against others. However, 

the risk of severe dengue increases upon secondary infection from another serotype [9]. Most 

people with dengue will remain asymptomatic or develop mild symptoms, only around 25% of 

cases are clinically apparent [18]. Dengue symptoms include fever, nausea, rashes, aches, and 

lethargy. A small proportion of clinically apparent cases will progress to severe dengue or 

dengue haemorrhagic fever (DHF), a potentially lethal form of the disease, characterised by 

severe bleeding, plasma leakage and organ involvement [19]. Although there is no specific 

treatment for dengue, supportive care can reduce mortality rates of severe dengue to below 1% 

[20]. Despite low mortality rates compared to other mosquito-borne diseases like malaria, 

dengue still has a huge burden, contributing to an estimated 2.9 million disability-adjusted life-

years (DALYs) across the globe in 2017 [21].  

 

Despite the huge global dengue burden, there is still no consensus on the optimal disease 

control strategy. The World Health Organisation’s (WHO) current recommendations focus on 

vector control, promoting an integrated vector management programme that combines 

targeting mosquitoes directly (i.e., kill mosquitoes or their larvae using insecticides or 

biological control agents), and indirectly (e.g., improvements in sanitation or environmental 

modifications that aim to reduce potential mosquito habitat) [19]. However, there is a lack of 

evidence that these measures are effective at reducing disease incidence or would be 

sustainable in a wide-scale application [22,23]. Although several dengue vaccine candidates 

are in development, only one has completed phase 3 trials, DENGVAXIA® [24,25]. The 

vaccine has been licensed for use in 20 dengue-endemic countries but has been found to 

significantly increase the risk of serious dengue and hospitalisations in patients that were 

seronegative at administration [25,26]. The WHO currently recommends pre-vaccination 

screening of serostatus before administering DENVAXIA® [27]. However, no rapid diagnostic 

test validated for this purpose currently exists, and even if there were, this would present major 
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practical issues in a large-scale vaccination programme. A promising innovation in vector 

control is releasing mosquitoes infected with Wolbachia, a bacteria that has been shown to 

inhibit arbovirus infection in Aedes mosquitoes [28,29]. Modelling studies predict that 

releasing Wolbachia-infected mosquitoes into dengue-endemic settings would significantly 

reduce dengue infections, and in certain settings potentially lead to elimination [30,31]. These 

were supported by experimental and quasi-experimental studies showing significant reductions 

in dengue infections and hospitalisations in areas following the release of Wolbachia-infected 

mosquitoes [32–36]. For these interventions to be as successful as possible, it is important to 

target the most affected locations. 

 

 

1.3 Dengue in Brazil 

Dengue is hyper-endemic in Brazil, which means it experiences a persistent high level of 

transmission with all four genetically distinct serotypes co-circulating [37]. Dengue was re-

introduced to Brazil in the 1980s, following the end of a successful mosquito eradication 

campaign which led to the reinfestation of Brazil with Aedes aegypti [38]. Although the first 

outbreak occurred in Boa Vista in 1981, dengue only became a public health problem 5 years 

later when an outbreak in Rio de Janeiro spread rapidly along the coast to different states due 

to the large number of people moving to and from the city [37–39]. The frequency and intensity 

of dengue epidemics in Brazil have increased over the last 20 years [40]. The number of areas 

experiencing outbreaks has also increased over this period [41]. Previous studies had identified 

geographical barriers to dengue transmission, beyond which areas were relatively protected 

from outbreaks [42]. A barrier to transmission was identified in South Brazil, a temperate 

region which experiences cold winters, too cold for Aedes mosquitoes to effectively transmit 

dengue virus [43,44]. However, temperatures in this region are increasing [45], and recent data 

shows that outbreaks are now occurring as far south as Rio Grande do Sul [46]. Another barrier 

was identified in the western Amazon, a relatively remote region which is mostly disconnected 

from the Brazilian urban network [47], providing protection from the introduction of infectious 

hosts and vectors. However, recent rapid and unplanned urbanisation without adequate 

infrastructure, as well as improvements in transportation networks in the region have led to 

explosive dengue outbreaks [48,49]. 
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Dengue is a notifiable disease in Brazil and all suspected cases must be recorded in the Sistema 

de Informação de Agravos de Notificação (SINAN) portal within 60 days [50]. During non-

epidemic periods, it is recommended all suspected cases are laboratory confirmed. However, 

during epidemic periods cases are more often notified based on the Ministry of Health’s 

syndromic definition. That is, someone that resides in an area or has travelled in the past 14 

days to an area with occurrence of Aedes aegypti mosquitoes, experiences fever for between 2 

and 7 days, and has at least 2 of the following symptoms: nausea/vomiting, rash, myalgia, 

headache, petechiae and leukopenia [50]. Although the system is unified across the country 

and covers all 5,570 municipalities, reporting rates can differ drastically across the country and 

between epidemic and non-epidemic periods [51,52]. Surveillance is passive in Brazil which 

means cases are likely underreported as many cases are mild or asymptomatic [18] and patients 

may not seek medical assistance due to perceived low quality of healthcare or long waits during 

epidemic periods [53]. One study estimated that there were 12 actual cases for every notified 

case in Brazil, rising to over 17 in periods of low transmission [52]. Despite these issues, the 

surveillance system is considered sensitive and robust [53], and although the accuracy of case 

counts may differ, the Brazilian Observatory of Climate and Health noted that "there is no way 

to hide an epidemic” [42]. 

 

1.3.1 Dengue and climate in Brazil 

Due to its size, Brazil experiences a wide range of climatic, socioeconomic, and geographical 

settings that may contribute to an areas’ suitability for dengue transmission. Brazil consists of 

6 distinct biomes, defined by their vegetation and climate system, according to the Brazilian 

Institute of Geography and Statistics (IBGE) [54]. These are Amazon, Atlantic Forest, Cerrado, 

Caatinga, Pampa and Pantanal (Figure 1a). The largest biome is the Amazon which covers 49% 

of Brazil and mostly consists of tropical rainforest. The Amazon biome experiences a humid, 

equatorial climate which means year-round high temperatures and high levels of precipitation. 

This contrasts greatly with the Caatinga biome which covers around 10% of Brazil and is 

characterised by a semi-arid climate with very little rainfall, and the Pampa biome which 

consists temperate grasslands with cold winter temperatures. An alternative definition of 

Brazil’s climate system is the Köppen climate classification, which uses temperature and 

precipitation to categorise climates [55]. Brazil consists of 3 zones: A (tropical climate), B (dry 

climate), and C (temperate climate), and 9 distinct climate types (Figure 1b) [56]. However, 
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there is evidence to suggest that these zones are no longer stable, and that climate change is 

leading to a reduction in the proportion of wet tropical and temperate climate zones [45].   

 

 
Figure 1.1: Climate systems of Brazil 

Figure 1: Climate zones of Brazil described using a) biomes and b) Köppen climate 

classification. Köppen classification groups: Af: Tropical rainforest climate, Am: Tropical 

monsoon climate, As: Tropical dry savanna climate, Aw: Tropical wet savanna, BSh: Hot semi-

arid climate, Cfa: Humid sub-tropical climate, Cfb: temperate oceanic climate, Cwa: Monsoon 

subtropical climate, Cwb: Subtropical highland climate. 

 

Ambient temperature is an important consideration in mosquito-borne disease dynamics as it 

affects mosquito biology. The ability of mosquitoes to survive, reproduce and transmit viruses 

are altered by temperature [17,43,44]. Temperatures can also modify human behaviour, which 

impacts interaction between hosts and vectors. In Brazil, dengue is transmitted by Aedes 

aegypti and, to a lesser extent, Aedes albopictus mosquitoes. A modelling study showed that 

Aedes mosquitoes were only able to transmit dengue virus between 16.2°C and 34.5°C [44]. 

Seasonal temperature variation has also been shown to impact the size and duration of 

epidemics [57]. Most of Brazil experiences year-round temperature suitability for dengue 

transmission, except South Brazil that experiences cold winters.  

 

Hydrometeorological factors, such as precipitation and drought, are also important drivers of 

dengue transmission, although their impacts are complex and often delayed. As Aedes 

mosquitoes breed in pools of standing water, increased precipitation can lead to additional 

habitat and therefore increased cases. However, too much precipitation can flush the larvae out 

and reduce the number of mosquitoes in an area [58,59]. Alternatively, periods of extreme 
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drought, particularly in areas with inadequate access to piped water, can change water storage 

behaviours and create additional breeding sites [60,61]. One study found that the risk of dengue 

in Brazil increased shortly after (0 – 3 months) extremely wet conditions but at a longer lag (3 

– 5 months) following drought conditions, particularly in areas that experienced a higher 

frequency of water supply shortages [62].  

 

1.2.2 Dengue, cities and connectivity in Brazil 

Brazil comprises 5 geo-political regions (North, Northeast, South, Southeast and Centre-West, 

Figure 2a) which consist of 26 states and one federal district containing the capital, Brasilia 

(Figure 2b). These regions vary greatly in terms of wealth, level of urbanisation and access to 

basic services. Dengue is typically an urban disease due to the evolution of Aedes mosquitoes 

to thrive alongside humans, breeding in manmade water storage containers or pools of water 

created by refuse [14]. Both Aedes aegypti and Aedes albopictus are widespread across Brazil 

[11], with Aedes aegypti predominantly found in urban settings and Aedes albopictus typically 

found in peri-urban and rural areas [12]. However, there is evidence that the primary vector, 

Aedes aegypti, is expanding into peri-urban and rural areas across Latin America [63,64].  

 

 
Figure 1.2: The organisation of Brazil into geo-political regions and federal units 

Figure 2: The organisation of Brazil into a) 5 geo-political regions, and b) 27 federal units. 

Abbreviations: AC = Acre, AL = Alagoas, AP = Amapá, AM = Amazonas, BA = Bahia, CE = 

Ceará, DF = Distrito Federal, ES = Espírito Santo, GO = Goiás, MA = Maranhão, MT = Mato 

Grosso, MS = Mato Grosso do Sul, MG = Minas Gerais, PA = Pará, PB = Paraíba, PR = Paraná, 

PR = Pernambuco, PI = Piauí, RJ = Rio de Janeiro, RN = Rio Grande do Norte, RS = Rio 
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Grande do Sul, RO = Rondônia, RR = Roraima, SC = Santa Catarina, SP = São Paulo, SE = 

Sergipe, TO = Tocantins. 

 

According to the 2010 census, the percentage of households with access to piped water, the 

sewage network, and refuse collection ranged from 0 to 100% [65]. Access to basic services is 

highly correlated to the level of urbanisation in Brazil (Appendix B.1, Figure D). In general, 

rural communities in the historically poorer North region had the lowest levels of access, 

compared to the traditionally wealthier, highly urbanised South and Southeast regions (Figure 

3a). However, levels of access to the piped water network does not guarantee this is reliable, 

as is the case in São Paulo which experiences intermittent water supply due to increasingly 

severe droughts despite being one of the wealthiest cities in Brazil with the highest access to 

basic services [66]. Residents without access to reliable water networks must rely on alternative 

approaches, such as rainwater collection, which may create Aedes breeding habitats if not 

properly maintained [67]. 

 

A      B 

 
Figure 1.3: Urbanisation and connectivity between cities in Brazil 

Figure 3: a) Percentage of residents with access to the piped water network in 2010 (source: 

IBGE demographic census [65]) and b) links between cities arising from the movement of 

people and goods around the Brazilian urban network (source: REGIC 2018 [47]). 

 

In addition to socioeconomic differences between regions, patterns of human movement also 

differ greatly across Brazil. Approximately every 10 years, IBGE publishes the Regions of 

Influence of Cities (“Regiões de Influência das Cidades”, REGIC) study which aims to recreate 
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the Brazilian urban network and describe the hierarchies and links between cities across Brazil. 

The latest REGIC study uses data from 2018 [47]. The urban network aims to explain the flow 

of people, goods, and services between cities within Brazil. This is based on a survey carried 

out in every municipality in Brazil which collects information including public transport 

connections, air travel connections, and residents’ travel habits: where residents travel for 

work, education, healthcare, shopping, and other recreational activities. Cities are categorised 

into five levels of influence based on their ‘attractiveness’ within the urban network. These are: 

 

1. Metropolis: the largest and most connected cities in Brazil, characterised by a strong 

connection across the entire country and internationally. There were 15 metropoles in 

the 2018 REGIC network (increased from 12 in the 2007 study [68]), including the 

capital Brasilia, other large state capitals such as São Paulo and Rio de Janeiro, and 

Campinas in São Paulo state, the only metropolis which is not a state capital. All 

connections within the urban network converge to one or more metropolis. 

2. Regional capital: large cities that are characterised by strong attraction within the region 

they are located and to metropoles. There were 97 municipalities classified as regional 

capitals in the 2018 study, including state capitals not classified as metropoles such as 

Rio Branco, Campo Grande and Porto Velho, and other large cities. 

3. Sub-regional capital: cities with a lower level of connectivity than regional capitals but 

still have visitors from smaller cities for ‘less complex’ activities (for example non-

specialist healthcare). These are mostly connected locally and to the three largest 

metropoles. 

4. Zone centre: smaller cities, mostly visited by residents from neighbouring cities for 

commerce. 

5. Local centre: smallest cities in the network that are generally used by residents for daily 

activities such as shopping. Local centres do not typically have any influence outside 

their limits and are not the main destination for any other city.  

 

The REGIC study found that patterns of movement and connectivity differed vastly between 

regions of Brazil. For example, the Southeast has the most ‘high-level’ centres (e.g., metropoles 

and regional capitals) as it is home to some of the largest cities in Brazil, contributing a large 

proportion of the national income. In contrast, the Northeast comprises mostly ‘lower-level’ 

cities (e.g., zone and local centres) as residents tend to travel to neighbouring cities rather than 

travel large distances (Figure 3b). There was only one metropolis located in the North region, 
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Manaus. Although Manaus is far from being classified as the most influential city in the urban 

network, it has the largest average distance travelled to reach the city (316km, over double the 

distance travelled to the second highest which is Brasilia at 145km). Despite this huge reach, 

Manaus’ region of influence has the lowest GDP of any metropolis (less than R$100 billion 

annually) [47].  

 

Human movement is an important consideration when modelling any infectious disease as 

movement drives contact between susceptible populations and infectious hosts. The 

contribution of human movement to disease transmission depends on the timescale and mode 

of transmission, and the geographical scale of interest [69,70]. Studies have shown that 

simplifying human movement behaviour, either by assuming no movement or random mixing, 

can lead to inaccurate and exaggerated inferences about mosquito-borne disease transmission 

patterns [71,72]. Within Brazil, there is evidence to suggest that long-distance travel between 

cities has contributed to the expansion of dengue outbreaks across the country [42,48,73] and 

that intra-city movement is important in predicting outbreaks at a local level [74].  

 

 

1.4 Statistical models of emerging infectious diseases 

Statistical models of emerging infectious diseases allow us to identify key drivers of disease 

expansion and predict regions at risk of future emergence based on observed data. Models can 

vary in complexity depending on the nature of relationships between the response and 

explanatory variables, including nonlinear and lagged variables where necessary. This is 

particularly important when investigating the impact of climatic change on arbovirus 

expansion, which is complex, nonlinear and often delayed by periods of up to several months 

[62,75]. When considering disease emergence across a geographical area, it is also important 

to consider the underlying spatial structure of the data, in particular spatial connectivity that 

can play an important role in the importation of diseases from endemic areas with ongoing 

transmission to disease-free areas [69,76,77].  

 

Statistical models assume some underlying probability model of the outcome described by 

unobserved parameters. These parameters are estimated via an inferential approach using 

observed data. There are many different approaches to making these inferences, this thesis uses 

a Bayesian approach. Bayesian inference is a branch of statistics based on Bayes theorem 
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(Equation 1), which allows the inclusion of some prior belief in the model fitting process. In 

Bayesian analysis, parameter estimates and model predictions are based on the posterior 

distribution 𝑝(𝜽|𝒚), the probability of parameters 𝜽 = 𝜃1, 𝜃2, … conditional on data 𝒚. This 

posterior distribution represents our current knowledge of the problem by updating the prior 

belief (represented by the prior distribution 𝑝(𝜽)) using observed data (represented by the 

likelihood 𝑝(𝒚|𝜽)) [78,79]: 

 

𝑝(𝜽|𝒚) =
𝑝(𝜽, 𝒚)

𝑝(𝒚)
=

𝑝(𝜽)𝑝(𝒚|𝜽)

𝑝(𝒚)
       (1) 

 
Where 𝑝(𝒚) = ∫ 𝑝(𝜽)𝑝(𝒚|𝜽)

 

𝜃
 when 𝜽 are continuous.  

 

Bayesian hierarchical models are a common approach used to model spatial and spatiotemporal 

data as expected spatial and/or temporal structures can be incorporated into their prior 

distribution [78,80,81]. Random terms are included in the model to account for residual 

autocorrelation and/or account for pooling within the data. In spatial models for emerging 

diseases, this autocorrelation can arise due to unobserved shared characteristics between close 

areas (for example, due to similar climates, vector-control programmes, and levels of immunity 

within communities) or from human and vector movement creating connections between areas. 

The prior distribution of these random terms is defined using some unknown 

hyperparameter(s), 𝝋, which has its own prior distribution and can be defined using some 

spatial and/or temporal structure (for examples, see [78–83]). The prior distribution therefore 

becomes a joint prior, defining the prior belief of model parameters 𝜽 and their 

hyperparameters 𝝋, 𝑝(𝜽, 𝝋) = 𝑝(𝜽|𝝋)𝑝(𝝋). The posterior distribution defined in Equation 1 

can be rewritten as: 

 

𝑝(𝜽, 𝝋|𝒚) =
𝑝(𝜽, 𝝋)𝑝(𝒚|𝜽, 𝝋)

𝑝(𝒚)
=

𝑝(𝜽|𝝋)𝑝(𝝋)𝑝(𝒚|𝜽)

𝑝(𝒚)
      (2) 

 
 
Note that 𝑝(𝒚|𝜽, 𝝋) = 𝑝(𝒚|𝜽) as the data distribution is only dependent on the model 

parameters 𝜽, as the hyperparameters only affect the data through 𝜽. 

 

1.4.1 Bayesian hierarchical model estimation 
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Although the formulation of the posterior distribution is generally well defined (Equation 2), 

the multi-dimensional integral in the denominator is often hard, if not impossible, to calculate. 

There are several approaches that have been developed to aid the derivation of the posterior 

distribution which can broadly be classified into three groups: simulation-based, 

approximation, and empirical approaches. 

 

Simulation-based Bayesian inference 

Markov chain Monte Carlo (MCMC) methods are a collection of algorithms used to simulate 

samples from probability distributions. Within Bayesian statistics, they remove the need to 

calculate the complex integral in the denominator of the posterior distribution (Equation 2). 

They work by drawing samples of parameters 𝜽 from approximate distributions and then 

correct these to obtain better approximations from the target posterior distribution [78]. MCMC 

is an iterative process, with each sampled value depending on the last value drawn, forming a 

Markov chain. As the approximate distribution is improved at each step, the basis of MCMC 

is that it will eventually converge to the target population, in this case the posterior distribution. 

 

One of the main advantages of MCMC is that we do not need to know the full form of the 

distribution we are sampling from (only up to the normalising constant), allowing estimation 

of very complex distributions with many parameters (as is often the case when including 

random terms into a model). The development of the user-friendly, flexible BUGS language 

[87] and the programmes inspired by this [87–91] have made implementation more accessible 

and efficient than ever. In particular, the NIMBLE package allows users to define novel 

modelling frameworks and sampling algorithms which allows inference beyond general 

models included in other software packages [91,92]. Despite these advances, MCMC methods 

are still extremely computationally intensive and issues can arise with convergence.  

 

Approximation methods for Bayesian inference 

Integrated nested Laplace approximation (INLA) presents a less computationally intensive 

alternative to Bayesian simulation approaches [93,94]. INLA performs approximate Bayesian 

inference on a class of models known as latent Gaussian models (LGMs) and returns an 

approximation of the posterior distribution. LGMs are a class of additive models that aim to 

explain the relationship between an outcome of interest and covariates whilst accounting for 

some unobservable (latent) structure, including hierarchical models (where the latent structure 

can define spatial and/or temporal autocorrelation [81,82]). The latent structure, consisting of 
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unobserved parameter and hyperparameters, is assumed to follow a Gaussian Markov random 

field (GMRF). That is, a random field that follows a multivariate Gaussian distribution and 

satisfies the Markov property of conditional independence [95]. A common example of a latent 

structure that satisfies the GMRF assumption is the conditional autoregressive (CAR) spatial 

structure where regions are considered connected if and only if they share a border [84]. This 

GMRF structure means that the parameters and hyperparameters will have a sparce precision 

matrix, speeding up computation. Under these conditions, INLA can calculate the joint 

posterior distribution of the latent field (model parameters and hyperparameter) and obtain the 

posterior marginal distributions using Laplace approximation, a mathematical approach used 

to estimate integrals of the form ∫ 𝑒𝑀𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 [93].  

 

Bayesian inference using INLA can be implemented using the R-INLA package which 

provides a range of pre-built options to specify model priors, including spatial and temporal 

structures [83,85,94,96]. R-INLA includes the most commonly used prior structures, including 

CAR models. However, this approximation method lacks the flexibility of MCMC approaches, 

which allow users to fully specify the model.  

 

Empirical Bayesian inference 

Both MCMC and INLA are examples of fully Bayesian approaches which require users to 

specify their prior beliefs of structures within the data before model fitting. Empirical 

approaches allow these underlying structures to be estimated as part of the model fitting process 

using the data. This is particularly useful in scenarios where the spatial structure of the data is 

not fully understood. Although generalised additive models (GAMs) are typically considered 

a frequentist modelling approach, they can be extended to include smooth spatial and/or 

temporal random terms which can be interpreted from a Bayesian perspective [97]. This class 

of models are also known as structured additive regression (STAR) models [98].  

 

Smooth terms are generated by applying smoothing splines to some representation of the 

structure within the data (e.g., coordinates if assuming spatial connectivity arising between 

close observations). Smoothing splines are estimated using restricted maximum likelihood 

(REML) which imposes a penalty matrix, ensuring that they are not ‘overly wiggly’ [99]. This 

penalty matrix can be viewed as a prior belief from a Bayesian perspective and can be 

formalised into a prior distribution [97]. The mgcv package in R can fit these models and 



 13 

generate simulations from the posterior distribution of model parameters [100]. The empirical 

smoothing spline approach presents an efficient, flexible alternative to fully Bayesian 

approaches when the structure of the data is not fully understood. A more detailed description 

of this approach can be found in Appendix A. 

 

 

1.5 Aim  

The overall aim of this research is to understand the complex, interacting drivers of dengue 

expansion in Brazil. In particular, the goal is to understand the contribution of increasing 

temperatures in South Brazil and connectivity between cities arising from human movement to 

the expansion of the dengue transmission zone in Brazil.  

 

1.5.1 Objectives 

To achieve this aim, I will address the following objectives: 

 

1. Explore the impact of temperature suitability, urbanisation, and connectivity of cities 

to the Brazilian urban network on the expansion of the dengue transmission zone in 

Brazil. 

2. Identify spatial modelling techniques currently used to study mosquito-borne disease 

transmission and the assumptions made in modelling studies about how spatial 

connectivity arises, and describe the data used to inform spatial models. 

3. Develop a statistical modelling framework capable of accounting for multiple sources 

of spatial connectivity and quantifying the relative contribution of each source to the 

overall spatial structure of the data. 

4. Quantify the relative contribution of human movement to the expansion of dengue 

outbreaks in Brazil. 

 

 

1.6 Thesis structure 

This thesis is written in a research paper style, where analysis chapters are written in the style 

of a scientific paper for publication and are preceded by a bridging section. This thesis includes 

four analysis chapters, preceded by the current introductory chapter, followed by a discussion 

section. The remaining chapters are as follows: 
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Chapter 2: The impact of climate suitability, urbanisation, and connectivity on the 

expansion of dengue in 21st century Brazil. This chapter was published in PLOS Neglected 

Tropical Diseases in December 2021 [101] and addresses Objective 1. It uses a Bayesian 

spatiotemporal model to explore the association between dengue outbreaks in Brazil between 

2001 – 2020, and temperature suitability, urbanisation and level of influence of cities in the 

Brazilian urban network. The paper also quantifies the relative contribution of each factor in 

turn and provides refined geographical barriers and updated limits to the dengue transmission 

zone in Brazil based on new data and modelling results. 

 

Chapter 3: Spatial connectivity in mosquito-borne disease models: a systematic review of 

methods and assumptions. This chapter was published in the Journal of the Royal Society 

Interface in May 2021 [102]. This systematic review addresses Objective 2 by synthesising the 

spatial methods described in the literature to model mosquito-borne diseases, their spatial 

connectivity assumptions and the data used to inform spatial model components. 

 

Chapter 4: A Bayesian model framework to quantify multiple sources of spatial variation 

for disease mapping. This chapter was published in the Journal of the Royal Society Interface 

in September 2022 [103]. The paper addresses Objective 3 and presents a novel modelling 

framework which allows multiple sources of spatial connectivity to be included within a 

statistical model (in this case, autocorrelation between close regions and connections arising 

due to human movement). Through Bayesian inference and simulations, the relative 

contribution of each spatial connectivity element to the overall model structure can be 

quantified. This chapter contains model derivation, results of simulation studies, and a case 

study in which this method is applied to dengue incidence data from South Brazil. 

 

Chapter 5: Quantifying the relative contribution of human movement to the expansion 

of dengue outbreaks in Brazil. This paper is currently being prepared for submission and 

addresses Objective 4. The modelling framework presented in Chapter 4 is applied to dengue 

outbreak data between 2001 – 2020 from Brazil. The model includes spatially structured terms 

to account for spatial autocorrelation between close regions and connections arising due to 

human movement based on commuting. The relative contribution of the human movement-

based term is produced for Brazil as a whole, and for each region separately. 
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Chapter 6: Discussion. This chapter provides an overall conclusion of the thesis and presents 

strengths and limitations of the work carried out. Suggestions for future work are also 

presented. 
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2. The impact of climate suitability, 

urbanisation, and connectivity on the expansion 

of dengue in 21st century Brazil 

 

Bridging section 

In this chapter, I present a published research study, which explores the impact of temperature 

suitability, urbanisation, and connectivity to the Brazilian urban network on the expansion of 

the dengue transmission zone in Brazil between 2001 and 2020 (Objective 1).  

 

Previous studies identified geographical barriers to dengue transmission, beyond which areas 

of the country were relatively protected from outbreaks1. These barriers included South Brazil, 

a temperate part of the country which experiences cold winter temperatures, too cold for Aedes 

mosquitoes to effectively transmit dengue virus to humans. The other dengue transmission 

barrier existed in the western Amazon region of Brazil, a relatively remote area of the country 

with many municipalities only accessible by long boat journeys. More recent epidemiological 

reports showed that these barriers have been eroded and dengue outbreaks now occur beyond 

these previous barriers2.  

 

This chapter uses dengue incidence data from the Brazilian surveillance system between 2001 

– 2020 to redefine the geographical limits of the dengue transmission zone in Brazil1 and 

investigate potential drivers of the erosion of transmission barriers. I use a Bayesian 

spatiotemporal model to quantify the role of increased temperatures in South Brazil and 

increased connectivity to and within the western Amazon region in the expansion of the dengue 

transmission zone.  
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This chapter was published in PLOS Neglected Tropical Diseases in December, 20213. I have 

included the published version of this paper. Supplementary materials referred to in the paper 

can be found in Appendix B.  
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3. Spatial connectivity in mosquito-borne disease 

models: a systematic review of methods and 

assumptions 

 

Bridging section 

In Chapter 2, model results showed that the relationship between the level of influence of cities 

and dengue expansion was significant but nonlinear, with a greater odds of dengue outbreaks 

in regional capitals rather than the more influential metropoles. There are many reasons this 

could be the case, for example differences in healthcare investment and health-seeking 

behaviours that were not included in the model. Another potential reason is the Brazilian urban 

network structure that means people from cities of low influence often travel to metropoles via 

less influential cities such as the regional capitals. This means that although regional capitals 

are considered less influential, they may have many connections across Brazil due to their 

proximity in the urban network to metropoles that could not be captured in the model presented 

in Chapter 21. Chapter 2 considered levels of influence in the hierarchical urban network as a 

proxy for human movement using a categorical variable rather than accounting for direct links 

between cities arising from human movement.  

 

This chapter presents a systematic review that aimed to identify spatial models used to 

investigate the transmission of mosquito-borne diseases to humans, the spatial connectivity 

assumptions made by these models, and the data used to inform spatial models (Objective 2). 

I aimed to examine whether any statistical modelling frameworks existed that could incorporate 

human movement into the spatial structure of the model. Although statistical model 

frameworks are used in this thesis, the review included mechanistic and machine learning 

frameworks to gain insight into how other approaches account for complex networks of 

connectivity. 
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The chapter was published in the Journal of the Royal Society Interface in May 20212. The 

published version of the paper is included below. Supplementary materials referred to in the 

paper can be found in Appendix C.  
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4. A Bayesian modelling framework to quantify 

multiple sources of spatial variation for disease 

mapping 

 

Bridging section 

In Chapter 3, I found that most spatial statistical models of mosquito-borne disease 

transmission assumed that spatial connectivity existed only because of distance, either between 

neighbouring regions or between close observations. The only statistical approach identified 

that could include human movement explicitly was the inclusion of spatial covariates, such as 

the number of people moving between areas, into a generalised linear model. However, these 

models require one covariate per connection which risks introducing multicollinearity, 

particularly in metropoles such as São Paulo, Brasilia and Rio de Janeiro which have 

connections across the whole of Brazil. There were no statistical approaches identified by the 

systematic review capable of accounting for multiple sources of spatial connectivity within the 

same model. In reality, spatial connectivity in dengue outbreak data likely arises due to multiple 

factors. For example, levels of immunity in the population, vector control measures, and 

climate variation which is likely shared between close areas, and long-distance connections 

created by people travelling between cities across Brazil.  

 

In this chapter, I developed a novel statistical modelling framework capable of simultaneously 

accounting for multiple sources of spatial connectivity, including a complex human movement 

network (Objective 3). This model can be used to quantify the relative contribution of different 

sources of spatial connectivity (i.e., spatial autocorrelation between close areas and human 

movement) to the overall spatial structure of the outcome. 
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The chapter was published in the Journal of the Royal Society Interface in September 20221. 

The published version of the paper is included below. Supplementary materials referred to in 

the paper can be found in Appendix D. 
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5. The contribution of human movement to 

dengue expansion differs between regions in 

Brazil 

 

5.1 Bridging section 

The overall aim of this thesis was to understand the contribution of increasing temperatures in 

South Brazil and connectivity between cities arising from human movement to the expansion 

of the dengue transmission zone in Brazil. Model results from Chapter 2 showed that the odds 

of a dengue outbreak were significantly increased in municipalities with year-round 

temperatures suitable for dengue transmission, and that temperature suitability explained most 

spatiotemporal variation in dengue outbreaks in South Brazil. The model also found that the 

level of influence of cities was significantly associated with the odds of a dengue outbreak. 

However, this relationship was nonlinear and cities classified as regional capitals were found 

to have a higher odds of a dengue outbreak compared to the most influential cities in Brazil, 

metropoles. Although the level of influence indicator was used as a proxy for human 

movement, the model presented in Chapter 2 was not able to include direct connections 

between cities in Brazil arising due to human movement. Chapter 4 presented a statistical 

modelling framework that could incorporate explicit links between areas arising due to human 

movement and quantify the relative contribution of human movement to the overall spatial 

structure of the data. 

 

In this chapter, I applied the statistical modelling framework presented in Chapter 4 to model 

the number of dengue outbreaks between 2001 – 2020 per municipality in Brazil, with spatially 

structured terms designed to capture spatial connectivity within the data. Simulations from this 

model were used to quantify the relative contribution of human movement based on regular 

commuting to the odds of a dengue outbreak across Brazil (Objective 4). The relative 

contribution of regular commuting to the spatial structure of dengue outbreaks was estimated 

for the whole of Brazil and each region in turn.  

 

This paper is yet to be submitted to a journal. Supplementary materials referred to in this 

chapter can be found in Appendix E. 
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Abstract 

Dengue transmission has been expanding across Brazil since its re-introduction into areas that 

were previously thought to be protected. Previous studies have shown that geographical 

barriers to dengue transmission are being gradually eroded in South Brazil and the western 

Amazon. In this study, we quantify the relative contribution of regular commuting to the 

geographical expansion of dengue outbreaks between 2001 and 2020 in Brazil using a Bayesian 

hierarchical model. Spatially structured terms were included in the model and generated by 

applying penalised regression splines to coordinate systems that describe the relative 

‘connectedness’ of municipalities. Spatial connectivity arising from regular commuting was 

described using coordinates generated from the 2010 census in Brazil, and connectivity 

between close regions due to unobserved shared characteristics e.g., climate type and 

socioeconomic conditions, were described using coordinates of the centroid of municipalities. 

We found that regular commuting contributed very little (1.3%) to the spatial structure of data 

when Brazil was considered as a whole. However, the relative contribution of commuting to 

dengue outbreaks was higher in the North and Northeast regions, particularly in the western 

Amazon. This supports previous findings that expansion in this region was a result of improved 

transportation infrastructure and increased human movement.  

 

 

5.2 Introduction 

Over the past 50 years, dengue has been expanding globally into previously unaffected areas. 

This has been attributed to climate change, urbanisation, and increased connectivity driven by 

human movement [1,2]. In Brazil, this expansion has taken place at an alarming rate since its 

re-emergence in the 1980s, resulting in an estimated 8.7 million new individuals at risk over 

the past 5 years [3]. One of the final frontiers of dengue transmission in Brazil was the western 

Amazon, a remote, mostly rural area with many communities reachable only by long boat 

journeys [3–5]. However, this barrier has been eroded over the past 20 years and there are now 

few municipalities in the area that have not experienced a dengue outbreak [4]. Evidence 

suggests that the introduction of dengue into the area was driven by increases in human 

movement to and within the region following improved road infrastructure and increased air 

travel [6]. Although dengue is typically an urban disease, rapid unplanned urbanisation has 

produced ideal habitats for the dengue vector, Aedes mosquitoes, to thrive. The humid, hot 

climate coupled with a lack of access to basic services, such as piped water, has seen dengue 
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vectors, and subsequently the viruses they transmit, move from larger urban centres into 

neighbouring peri-urban and rural areas within the Amazon [7].  

 

A previous study found that the odds of a dengue outbreak was significantly higher in cities 

that were considered very connected within the Brazilian urban network compared to less 

influential centres based on their classification in the Regions of influence of cities ("Regiões 

de Influência das Cidades”, REGIC) study [4,8]. However, this relationship was nonlinear and 

the cities considered most connected in Brazil, classified as metropoles, had lower odds of a 

dengue outbreak than those classified as regional capitals. This could be due to differences in 

infrastructure and health-seeking behaviour which could not be detected at the municipality 

level. Another potential reason for this nonlinear trend is that the level of influence indicator 

used in this study may not be an adequate proxy for connectivity arising due to human 

movement. The REGIC study found that small cities were connected to metropoles via less 

influential cities, such as regional capitals [8]. By not including the direct links between cities, 

we could be missing important connections within the data. 

 

Spatial connectivity, including connections between close geographical areas due to 

unobserved shared characteristics and behaviours (referred to here as distance-based 

connectivity), and connections arising due to human movement between areas, is an important 

consideration when modelling infectious diseases. Most spatial models for mosquito-borne 

disease transmission assume spatial connectivity only exists between close areas, represented 

as a function of distance [9]. This distance-based connectivity is often used as a proxy to 

account for unobserved characteristics such as shared climatic and environmental factors, 

vector control measures, and levels of immunity within communities. However, these 

connections do not account for long-distance human movement, which has been identified as 

an important driver of infectious disease expansion [10–12]. In this study, we aim to understand 

how human movement around the Brazilian urban network has contributed to the expansion of 

dengue between 2001 – 2020. We include direct links between pairs of cities across Brazil 

arising from regular commuting into a Bayesian spatial model, which allows us to quantify the 

relative contribution of human movement on the expansion of dengue in Brazil [13]. A 

distance-based spatial connectivity structure is also included to account for unobserved shared 

characteristics, such as climate, between close areas. By comparing the relative contribution of 

regular commuting to the spatial structure of dengue outbreaks between regions of Brazil, we 

hope to better understand the recent changes to the dengue transmission zone. 
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5.3 Methods 

5.3.1 Epidemiological data 

Notified dengue case data was obtained from Brazil’s Notifiable Diseases Information System 

(SINAN), freely available via the Health Information Department, DATASUS 

(https://datasus.saude.gov.br/informacoes-de-saude-tabnet/). This data is aggregated by month 

of first symptom (between January 2001 and December 2020) and the municipality of 

residence. Although there were 5,570 municipalities in 2020, these borders have changed over 

the period. To ensure municipalities were consistent over the entire period, we aggregated data 

to the 5,560 municipalities that were present in 2001 by combining the new municipalities’ 

data with their ‘parent municipality’. Data and code used to carry out the analysis are available 

from https://github.com/sophie-a-lee/dengue_human_movement_model.  

 

5.3.2 Human movement data 

The number of residents regularly commuting between municipalities for work or education 

was extracted from the 2010 Brazilian demographic census [14]. A random sample of residents 

were asked to give details about the country, state and municipality that they travel to for work 

or education. We excluded movements outside of Brazil and residents that did not provide any 

information about their destination (they responded that they leave the municipality for work 

or education but gave no further details about the destination). Some residents provided partial 

data, for example the state but not the municipality of their destination. These residents were 

assigned a destination proportionally based on complete answers of other residents from the 

same municipality (see [6] for more details).  

 

 

https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
https://github.com/sophie-a-lee/dengue_human_movement_model
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a) 

 
b) 

 
c) 

 
4Figure 5.1: Percentage of residents regularly commuting between cities in Brazil 

Figure 5.1: Percentage of residents regularly commuting between a) Brasilia, b) Rio 

Branco, and c) Porto Alegre. The percentage of residents commuting between cities in Brazil 

for work or education taken from the 2010 census, for all connections (left), and for connections 

where over 0.1% of the residents moved (right). Although connections exist across the country 

in each of these cities, these long-distance movements make up a small proportion compared 

to movements between neighbouring cities. 
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To measure the ‘strength’ of connection between municipalities based on the number of people 

commuting between them, the number of people was converted into the proportion of the 

source population using data from the 2010 Brazilian census obtained via DATASUS 

(http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptbr.def) (Figure 5.1). We applied 

multidimensional scaling (MDS) to these proportions to obtain an abstract cartesian coordinate 

system describing the relative connectivity between municipalities arising due to human 

movement [13,15] (Appendix E, Figure E1). 

 

5.3.3 Modelling framework 

To measure the expansion of the dengue transmission zone in Brazil between 2001 – 2020, we 

aggregated monthly dengue case data to annual dengue incidence rate (DIR), defined by the 

Brazilian Ministry of Health as the number of cases per 100,000 residents. The DIR was 

converted into a binary outbreak indicator using the Brazilian Ministry of Health’s definition 

of ‘high risk’, over 300 cases per 100,000 residents, as a cut-off [16]. Although other outbreak 

definitions could be considered, our definition is consistent with Brazilian public health policy 

[16], and results from a previous study found that different outbreak thresholds produced 

similar conclusions [4].  

 

We applied a Binomial spatial smooth model to the number of outbreaks per municipality 

between 2001 – 2020 using the spatial modelling framework outlined in [13]. Briefly, the 

model included 3 spatial terms: one assuming connectivity between municipalities as a function 

of distance (distance-based), one assuming connectivity between municipalities because of 

regular commuting (human movement-based), and another unstructured term to account for 

unobserved heterogeneity between municipalities. The final model equation was as follows: 

 

𝑦𝑖 ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖, 20) 

 

𝑙𝑜𝑔 (
𝑝𝑖

1 −  𝑝𝑖
) =  𝛼 +  𝑢1,𝑖 +  𝑢2,𝑖 + 𝑣𝑖 

 

Where 𝑦𝑖 is the number of outbreaks between 2001 – 2020 in municipality 𝑖 (𝑖 = 1, … , 5,560), 

expected to follow a Binomial distribution defined by the probability of an outbreak, 𝑝𝑖. 𝑢1,𝑖 is 

a distance-based spatially structured term, created by applying a thin plate regression spline to 

http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptbr.def
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latitude-longitude coordinates of the centroid of municipalities. 𝑢2,𝑖 is a human movement-

based spatially structured term, created by applying a thin plate regression spline to coordinates 

describing connectivity between municipalities arising due to regular commuting, described 

previously. 𝑣𝑖 is a spatially unstructured term, assumed to follow a zero-mean Normal 

distribution. This unstructured term aims to capture heterogeneity between municipalities 

which is not spatially correlated. Spatially smooth terms were generated using the mgcv 

package [17] and extracted using the jagam function [18]. Model fit was carried out using 

Markov chain Monte-Carlo (MCMC) simulations in R via the NIMBLE package [19]. 

 

The relative contribution of each spatial term to the overall marginal variance was defined as 

the proportion of the overall random term variance explained (for example, the contribution of 

distance-based connectivity is calculated as 𝑣𝑎𝑟(𝑢1,𝑖)/𝑣𝑎𝑟(𝑢1,𝑖 + 𝑢2,𝑖 +  𝑣𝑖)) using 

simulations from the MCMC [13]. This was calculated for Brazil as a whole and then separately 

for each region of Brazil. 

 

 

5.4 Results 

Between 2001 and 2020, there were 1,322 (23.8%) municipalities that did not experience a 

dengue outbreak. Most of these (845) were in the South region and only 4 municipalities in the 

Centre-West region did not experience an outbreak in this period. The Goiânia and Aparecida 

de Goiânia, municipalities, both situated in the state of Goiás in Centre-West Brazil, each had 

an outbreak in 19 out of 20 years. There were no municipalities that experienced an outbreak 

every year between 2001 – 2020 (Figure 5.2). The Centre-West region of Brazil is currently 

the region in which most outbreaks occur. This pattern diverges from the early spatial 

distribution of dengue in the 1980s and 1990s, when transmission was most intense in warm, 

coastal metropoles. The Centre-West region has a relatively recent introduction of outbreaks, 

promoted by the expansion of agricultural areas, increasing urbanisation, and the construction 

of an intricate road transport network [20]. Alternatively, there remain some areas of Brazil 

with a virtual absence of dengue outbreaks in the past two decades, mainly located in the South 

region, mountainous regions, along the northern coast, and in isolated areas of the Amazon. 
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5Figure 5.2: The number of years between 2001 - 2020 that each municipality in Brazil experienced an outbreak 

Figure 5.2: The number of years between 2001 and 2020 that each municipality in Brazil 

experienced an outbreak. The number of years between 2001 – 2020 that municipalities 

recorded a DIR of over 300 cases per 100,000 residents. Most municipalities that did not record 

an outbreak are located in South Brazil. 

 

5.4.1 The contribution of human movement to dengue expansion in Brazil 

Over the past 20 years, regular commuting for work or education was found to contribute very 

little to the spatial structure of dengue outbreaks in Brazil when it is considered as a whole 

(Figure 3, relative contribution: 0.013, 95% credible interval (CI): 0.009 – 0.017). The 

distance-based terms, included to account for spatial autocorrelation between close areas, 

contributed the most to the spatial structure in the number of dengue outbreaks, explaining 

78.6% of the spatial variation in the data (relative contribution: 0.786, 95% CI: 0.769, 0.802).  
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6Figure 5.3: The relative contribution of each spatial random term to the overall random variance 

Figure 5.3: The relative contribution of each spatial random term to the overall random 

variance. The relative contribution is estimated using the proportion of the combined random 

term variance explained by each spatial random term. Note that the density curves have been 

rescaled to a maximum of 1 to aid interpretation. 

 

However, when the relative contribution of spatial terms was calculated for each region 

separately, we found that South Brazil was mostly accounted for by distance (82.8%), whereas 

the unstructured term had the largest relative contribution to the spatial structure of the number 

of dengue outbreaks for all other regions (Figure 5.4). The contribution of the commuting term 

to the overall spatial variation in the model was found to be highest in the North and Northeast 

regions of Brazil (7.5% and 6.8% respectively). Although the contribution was relatively small, 

this finding suggests the expansion of outbreaks may be influenced by commuting between 

municipalities in these regions.  
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7Figure 5.4: The relative contribution of each spatial random term to the overall random term variance calculated separately 
for each of the 5 geo-political regions of Brazil 

Figure 5.4: The relative contribution of each spatial random term to the overall random 

term variance calculated separately for each of the 5 geo-political regions of Brazil. The 

map is coloured according to Brazilian region. Each panel shows the probability density of the 

relative contribution of distance (top), regular commuting for work or education (middle) and 

unstructured heterogeneity (bottom) to the overall spatial structure of dengue outbreaks. 

 

Although this model did not explicitly include covariates to describe potential drivers of 

dengue expansion (e.g., temperature or level of urbanisation), spatial patterns found using the 

random term estimates from the model can capture unmeasured or unexplained variation that 

may be attributable to variations in climate or socioeconomic factors across Brazil (Figure 5.5). 

For example, the distance-based random term estimate indicated that the odds of an outbreak 

in South Brazil was lower than the baseline average. This corresponds to the area of Brazil 

considered to be climate type C (temperate) according to the Köppen climate classification 

[21]. This climate type is characterised by strong seasonality and cold winter temperatures, 

suggesting that a temperature-based covariate might explain the difference in this area 

compared to the rest of Brazil (Fig 5.5a). In contrast, the regular commuting-based random 

term showed that the odds of an outbreak was higher in the western Amazon, where climate 



 101 

conditions are favourable to dengue transmission year-round, compared to the baseline 

average, suggesting that human movement based on commuting patterns has a more 

determinant role in dengue virus diffusion in the northern region, and may have contributed to 

the expansion of dengue outbreaks in the region (Fig 5.5b).  

 

a)                                              b) 

 

c)                                              d) 

 

8Figure 5.5: Mean estimates of each random term 

Figure 5.5: Mean estimates of the a) distance-based, b) human movement-based, c) 

unstructured, and d) combined random terms. Maps show regions where the odds of an 

outbreak was higher (lower) than the baseline average in pink (green). 

 

 

5.5 Discussion 

This study provides evidence that the contribution of regular commuting to the expansion of 

dengue differs substantially between regions of Brazil. When considering Brazil as a whole, 
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the model found minimal contribution of commuting to the spatial structure of dengue 

outbreaks between 2001 – 2020. However, when the contribution is calculated separately for 

each region, we can see that the relative contribution of different drivers of dengue expansion 

varies between regions (Figure 5.4). In particular, the increased odds of an outbreak in the 

western Amazon was captured by the commuting-based random term (Figure 5b), supporting 

our hypothesis that expansion into this region was influenced by human movement. In contrast, 

South Brazil had the strongest distance-based pattern of any region, indicating that other 

contextual factors, which are spatially structured, may play a more important role in the 

probability of outbreaks. The reduced odds of an outbreak in this region captured by the 

distance-based random term aligns with the area found to be protected due to regional 

temperatures, in particular, low winter temperatures [4].   

 

There were some parts of Brazil where the odds of dengue were increased but not explained 

by spatially structured random terms and were captured by the independent unstructured term 

(Figure 5.5c). These areas of increased odds often correspond to areas close to Brazil’s 

international borders such as the states of Roraima (bordering Venezuela and Guyana), Amapa 

(bordering French Guiana) and parts of Amazonas state (bordering Colombia). This suggests 

that dengue virus may have been imported into these regions of Brazil internationally, as is the 

case in other non-endemic countries such as Argentina, USA and Europe [22–24]. It is worth 

noting that the data used to inform the spatial random terms included in the model did not 

consider the international human movement nor distances to bordering international cities. 

Another municipality with a notable increase in odds captured by the unstructured term was 

Rio Branco, the capital of Acre state. Rio Branco was one of the first municipalities in the 

western Amazon to experience dengue transmission and has experienced explosive outbreaks 

since 2001. Although dengue was established in Rio Branco early in the 21st century, it took 

several years for the virus to affect surrounding municipalities. When this expansion did 

happen, outbreaks appeared to ‘jump’ between municipalities, potentially due to increased air 

travel and improvements to the road network within the state [6].  

 

There are several limitations to this study. First, the regular commuting data was sourced from 

the 2010 census. This provides a snapshot of connectivity across Brazil and does not allow us 

to investigate the impact of changes in commuting patterns over the past 20 years on the dengue 

transmission zone. Although the model indicated that commuting for work or education has 

contributed to patterns of dengue outbreaks in the western Amazon, this commuting behaviour 
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was assumed to be constant between 2001 – 2020. A previous study investigating the 

introduction of dengue into the state of Acre in the western Amazon noted that the census data 

is most likely representative of the situation since 2009 in the region, following the completion 

of major maintenance works on the highway connecting the two largest cities in the state [6]. 

Another limitation of the human movement data is that it only contains information about 

residents that travel regularly for work or education [14] and therefore does not include 

irregular, long-distance connections that are less frequent but have been shown to be important 

when considering (re-)emergence of mosquito-borne diseases [25]. Despite this, the data did 

capture some long-distance travel, particularly between large cities in the Amazon region 

(Figure 1). Future work could consider an alternative model formulation that allows temporal 

trends to be included and alternative sources of human movement data that capture different 

types of human movement and the changing patterns of movement over the period. 

 

Although this model does not explicitly include temperature or other explanatory variables, we 

are able to generate hypotheses about potential drivers of dengue outbreaks using the random 

term estimates. These hypotheses support previous research that showed South Brazil is 

protected due to its lower temperatures and North Brazil was previously protected due to its 

disconnection to the Brazilian urban network [4]. This work contributes to previous literature 

about the expansion of the dengue transmission zone in South America [4,5,23,26] and 

provides evidence that human movement plays a role in this expansion. Our results highlight 

the importance of considering different drivers that may be taking place across a large 

geographical region like Brazil, which varies enormously in terms of climatic, socioeconomic, 

and demographic factors.  
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6. Discussion  

6.1 Summary of findings 

The primary aim of this thesis was to understand the complex, interacting drivers of dengue 

expansion in Brazil. This aim led to the following four objectives: 

 

1. Explore the impact of temperature suitability, urbanisation, and connectivity of cities 

to the Brazilian urban network on the expansion of the dengue transmission zone in 

Brazil (Chapter 2) 

2. Identify spatial modelling techniques currently used to study mosquito-borne disease 

transmission and the assumptions made in modelling studies about how spatial 

connectivity arises, and describe the data used to inform spatial models (Chapter 3) 

3. Develop a statistical modelling framework capable of including multiple sources of 

spatial connectivity and quantifying the relative contribution of each source to the 

overall spatial structure of the data (Chapter 4) 

4. Quantify the relative contribution of human movement to the expansion of dengue 

outbreaks in Brazil (Chapter 5) 

 

In this section, I begin by summarising the main findings of previous chapters in relation to 

these objectives. Following this, I discuss the strengths and limitations of the research 

presented in this thesis. I then present future research opportunities that may arise from this 

project. 

 

6.1.1 Objective 1: Explore the impact of temperature suitability, 

urbanisation, and connectivity of cities to the Brazilian urban network on 

the expansion of the dengue transmission zone in Brazil  

In Chapter 2, a spatiotemporal generalised additive model (GAM) was applied to a binary 

dengue outbreak indicator, using an outbreak threshold of over 300 dengue cases per 100,000 

residents. The model included hypothesised drivers of dengue expansion as fixed covariates, 

and spatial, temporal and spatiotemporal smooth terms to account for patterns in the data which 

were not captured by the covariates. Results from this model showed that the odds of an 

outbreak were significantly increased in highly urbanised, highly connected municipalities that 

experienced year-round suitable temperatures and had previously experienced an outbreak. A 
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comparison of the spatiotemporal smooth terms to a baseline model containing no covariates 

showed that temperature suitability explained most interannual and spatial variation in South 

Brazil, supporting the hypothesis that this region was protected due to low winter temperatures. 

Barriers to the dengue transmission zone were redrawn using the results from this model. 

Although a southern border still exists, this has shifted further south, and the western Amazon 

no longer has a clear barrier. Another barrier was identified along the northern coast of Brazil 

which was not explained by the covariates in this model.  

 

The level of connectivity of cities was defined using the Regions of Influence of Cities 

(REGIC) study which categorised cities into 5 levels of influence from the most connected, 

metropoles, to least, zone centres [1]. Although connectivity within the Brazilian urban 

network was identified as a significant driver of dengue outbreaks, the relationship was 

nonlinear. Regional capitals had the highest increase in the odds of an outbreak but were 

considered less connected than metropoles. There are many potential reasons for this result, 

such as differences in socioeconomic factors, healthcare investment, or health seeking 

behaviours between metropoles and regional capitals that could not be captured at a 

municipality level. Another hypothesis was that this nonlinear trend was related to human 

movement which may not be fully captured within the REGIC connectivity indicators. 

Although the model presented in Chapter 2 included a spatially structured term, this was only 

able to capture spatial connectivity between close regions due to its smooth structure. As the 

current model was not able to incorporate human movement into the spatial structure of the 

random terms, or account for multiple (distance and human movement) sources of connectivity, 

identifying models that could became the basis for Objective 2. 

 

 

6.1.2 Objective 2: Identify spatial modelling techniques currently used to 

study mosquito-borne disease transmission and the assumptions made in 

modelling studies about how spatial connectivity arises, and describe the 

data used to inform spatial models 

The systematic review presented in Chapter 3 synthesised spatial modelling approaches 

described in the literature used to study the transmission of mosquito-borne diseases to humans, 

and the spatial connectivity assumptions that they made. Models were classified as statistical, 

mechanistic, machine learning or a combination of these approaches. Although this PhD 
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considers dengue expansion as a case study, the systematic review considered 9 mosquito-

borne diseases as the issue of spatial connectivity and the assumption of how this arises is likely 

shared across diseases.  

 

There were 248 published studies eligible for inclusion that used a spatial model to investigate 

the transmission of a mosquito-borne disease to humans. Of these, over 80% used a statistical 

model, most frequently a mixed effect model. All mixed effect models used a distance-based 

function to describe the relative ‘connectedness’ of areas or observations. The only statistical 

method identified that could include links arising due to human movement was the inclusion 

of spatial covariates (e.g., the number of people moving between areas) in a generalised linear 

model (GLM). Spatial covariates are a relatively quick and simple way to account for spatial 

connectivity in a model as they are added to a GLM in the same way as nonspatial covariates 

and can be interpreted in the same way. However, this approach required one covariate per 

connection in the data. In Brazil, metropoles such as Brasilia and São Paulo are connected 

across the entire country so would require thousands of covariates. The inclusion of many 

covariates in a GLM risks overfitting the data and introducing multicollinearity. GLMs also 

assume that the relationship between the outcome and spatial covariates is the same across time 

and space (stationarity). Given the size of Brazil and the diversity in the movement patterns 

across regions [1], the assumption of stationarity is not appropriate for this setting.  

 

Only 50 of the studies included in the review assumed that spatial connectivity was related to 

human movement, despite it being recognised as an important driver of mosquito-borne disease 

transmission [2–5]. The assumption of human movement-based connectivity was more likely 

when studying Aedes-borne diseases and within a mechanistic model. This was likely because 

some mechanistic models (i.e., metapopulation and agent-based models) are designed to 

include complex networks that describe the movement of a population between nodes.  

 

This systematic review found that there were no statistical modelling frameworks currently 

used for mosquito-borne disease transmission that were appropriate to quantify the role of 

human movement on the expansion of dengue in Brazil. Expanding the current statistical 

frameworks using ideas taken from network-based mechanistic models became the focus of 

Objective 3. 
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6.1.3 Objective 3: Develop a statistical modelling framework capable of 

including multiple sources of spatial connectivity and quantifying the 

relative contribution of each source to the overall spatial structure of the 

data 

Chapter 4 presented a novel Bayesian hierarchical modelling framework that allows multiple 

sources of spatial connectivity, in this case distance and human movement, to be included in a 

single model. Spatially structured terms were constructed using penalised smoothing splines 

of coordinates that describe the relative connectedness of areas. This creates a 2-dimensional 

smooth surface describing the spatial structure of the data which can be incorporated into a 

hierarchical model and interpreted similarly to traditional random effects. Smoothing splines 

such as these can be applied to any symmetric continuous measure of connectivity, for example 

distance or the number of people moving between areas. These functions require minimal user 

assumptions about the spatial structure of the data beyond smoothness.  

 

Using model inference and simulations, the proportion of the marginal variance explained by 

each spatial term can be computed from the proposed model. This result provides an estimate 

of the relative contribution of each spatial term to the overall structure, as demonstrated by 

simulation studies. This method could therefore be used to quantify the relative contribution of 

human movement to the expansion of dengue transmission in Brazil, the final objective of this 

thesis. A case study was carried out using dengue case data in South Brazil between 2001 – 

2020 and human movement data generated using a movement model, assuming the total 

number of people moving between municipalities was a function of distance and population. 

The model found that human movement between municipalities did not account for a 

significant proportion of the spatial structure of the average dengue incidence rate between 

2001 – 2020 in South Brazil. 

 

6.1.4 Objective 4: Quantify the relative contribution of human movement to 

the expansion of dengue outbreaks in Brazil  

The modelling framework presented in Chapter 4 was applied to the number of dengue 

outbreaks that occurred between 2001 – 2020 per municipality, defined as over 300 dengue 

cases per 100,000 residents, for the whole of Brazil. The model contained spatially structured 

random terms generated by applying penalised smooth splines to coordinates of the centroid of 

municipalities (aiming to capture spatial autocorrelation between close regions, referred to as 
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distance-based connectivity) and coordinates generated to describe the ‘connectedness’ of 

municipalities based on the number of people travelling between them for work or education 

taken from the 2010 census [6] (capturing spatial connectivity arising from human movement). 

The model also contained an unstructured, independent random term to capture the remaining 

heterogeneity in the number of dengue outbreaks between municipalities. The proportion of 

the marginal variance explained by each random term was estimated and used to describe the 

relative contribution of each term to the overall spatial structure of the data.  

 

When Brazil was considered as a whole, regular commuting was found to contribute very little 

to the overall spatial structure of the number of dengue outbreaks. However, when this 

contribution was calculated for each geo-political region of Brazil separately, the relative 

contribution differed substantially across the country. The distance-based term contributed the 

most to the South region, but the unstructured random term had the largest relative contribution 

to the spatial structure of the data in all other regions of Brazil. The North and Northeast regions 

had the highest contribution of regular commuting which, although still relatively small, was 

significantly higher than South Brazil. When the random terms were extracted and visualised 

on a map, the commuting term was shown to capture the increased odds of an outbreak in the 

western Amazon compared to a baseline average. The distance-based terms captured the lower-

than-average odds of an outbreak in South Brazil. This area corresponded to the ‘protected’ 

region identified in Chapter 2, which also aligned with the area classified as temperate by the 

Köppen climate classification [7,8]. This suggests that the spatial autocorrelation between 

municipalities in South Brazil captured by the distance-based term might be attributed to 

similar climate conditions across the region, particularly low winter temperatures, which are 

less suitable for dengue transmission than other parts of Brazil.  

 

In summary, the results from this thesis show that the dengue outbreak zone has expanded 

between 2001 and 2020, and the current barriers to dengue transmission are determined by 

temperature, levels of urbanisation, and connectivity within the Brazilian urban network. 

Although the barriers to dengue transmission presented in Chapter 2 are likely already outdated 

due to the rapid expansion of dengue across Brazil [9], they highlight the importance of 

focusing control efforts on areas at risk of future outbreaks as well as those in the current 

transmission zone. 
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6.2 Strengths  

Despite the importance of space in epidemiology being well recognised, spatial modelling 

studies have been underrepresented in mosquito-borne disease literature [10]. The systematic 

review presented in Chapter 3 found that the number of spatial modelling papers had increased 

rapidly over the past 10 years but that very few of these considered spatial connectivity arising 

due to human movement. Almost all spatial statistical models of mosquito-borne diseases 

assumed that spatial connectivity existed between observations if and only if they were ‘close’, 

defined using distance or adjacency. Many of these papers hypothesised that human movement 

was a driver of disease transmission but there were no statistical methods identified that could 

include additional sources of spatial connectivity, such as human movement, into a model to 

test this hypothesis. A major strength of this thesis is that it fills this important methodological 

gap. The modelling framework in Chapter 4 allows multiple sources of spatial connectivity to 

be include within a statistical model and can quantify their relative contribution to the overall 

spatial structure of the outcome.  

 

Although the modelling framework presented in Chapter 4 requires technical statistical 

knowledge and skills, the approach was based on existing statistical methods that are well-

documented and used throughout spatiotemporal epidemiology. Therefore, this approach 

should be accessible to any researcher familiar with conventional spatial modelling approaches 

and their interpretations, in particular Bayesian hierarchical models and generalised additive 

models. To aid this understanding, a detailed description of all models identified in the 

systematic review was provided as a technical appendix (Appendix C.1) which is freely 

available online [11]. These descriptions also include examples of how each model has been 

applied to mosquito-borne disease transmission. Care was taken throughout the entire thesis to 

provide full, detailed analysis methods in accessible language to ensure others could replicate 

these approaches. Where there was not sufficient space in a standard journal article full, 

detailed descriptions of analytical methods were provided as supplementary materials. All code 

contained within public repositories have detailed comments explaining each procedure to aid 

replicability.  

 

Another strength of this thesis is the wide applicability of the methods used and developed. 

Although dengue expansion in Brazil was presented as a case study, spatial connectivity plays 

an important role in the transmission of other infectious diseases. Spatial connectivity due to 
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human movement is particularly important when considering (re-)emerging infectious diseases 

as links created by human movement between regions with active disease transmission and 

currently unaffected but susceptible populations allows these diseases to spread [4,12,13]. 

Although the assumption of how spatial connectivity arises (e.g., human movement) may be 

shared across diseases, the structure of this connectivity is likely to be different. Empirical 

Bayesian inferential methods using penalised regression splines, such as the ones used in this 

thesis, estimate the spatial structure of the data as part of the model fitting process rather than 

requiring it to be specified a priori [14,15]. This means that the same model fitting approach 

can be used across different settings but produce a spatial surface describing spatial 

connectivity which is setting-specific and requires no assumptions of this structure beyond 

smoothness. The simulation studies presented in Chapter 4 show that this approach is 

applicable to models for count data and binary outcomes, however it is flexible enough to be 

applied in any Bayesian hierarchical model where spatial connectivity exists within the data. 

 

Great care has been taken to ensure that all research presented in this thesis is reproducible and 

as accessible as possible. There is some discussion about the true definition of ‘reproducible’ 

in scientific research. However, it is generally agreed that the minimum requirement is ensuring 

that all data and software used to carry out analysis are made available [16–18]. Each research 

chapter included in this thesis has its own public repository, published on Github, containing 

the analytical dataset and computer code used to carry out analyses. All analyses were carried 

out using the free, open-source statistical package R [19] to make reproduction as accessible 

as possible. In addition, all data used throughout the thesis are open-source and details of how 

to access these databases were provided within each chapter.  

 

 

6.3 Limitations 

All spatial models developed throughout this thesis have been applied to real-world, open-

source data providing evidence of their applicability and usefulness in studying emerging 

infectious diseases. However, real data is often messy and contains inherent biases depending 

on how it is collected. A major limitation of this thesis is that the conclusions drawn from 

modelling results rely heavily on the quality of the data used to fit them. Dengue case data used 

in this thesis was obtained from the Brazilian Notifiable Diseases Information System (SINAN) 

which is passive and therefore likely to miss mild and asymptomatic cases where individuals 
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do not require medical assistance [20–22]. The accuracy of the surveillance system is also 

known to vary across the country, particularly between areas with established dengue 

transmission and previously disease-free areas [23]. As it is impossible to know the true dengue 

incidence, it is difficult to accurately account for these inherent biases within models.  

 

Biases in dengue case data were likely further confounded by other infectious diseases co-

circulating within Brazil at the same time. Zika and chikungunya are arboviruses transmitted 

to humans via the same mosquito vector as dengue, Aedes aegypti, that have been co-

circulating in Brazil since approximately 2013 [24,25]. Dengue, Zika and chikungunya can 

produce similar clinical symptoms, including fever, joint pain and lethargy, making them 

difficult to distinguish between [26,27]. Although there are some differences in clinical 

manifestations, such as the severity and duration of symptoms, a study carried out in Northeast 

Brazil found that misclassification can occur, particularly in periods of intense simultaneous 

circulation of these arboviruses [28]. When suspected dengue cases are laboratory tested, this 

may not always overcome the issue of misclassification as cross-reaction between antibodies 

of the dengue and Zika viruses may lead to false positive serological tests [26].  

 

To reduce the potential impact of differences in dengue reporting across Brazil and between 

epidemic and non-epidemic periods, I used a binary outbreak indicator as an outcome rather 

than incidence when modelling the data. Although the raw case data may not always be 

accurate, the surveillance system should be able to detect when an outbreak is occurring [29]. 

There are several different approaches to defining outbreak thresholds and the definition of an 

outbreak is likely to differ between endemic and disease-free areas. Throughout this thesis, I 

have chosen to use an outbreaks threshold of over 300 cases per 100,000 residents, defined as 

‘high risk’ by the Brazilian Ministry of Health [30]. Sensitivity analyses in Chapter 2 confirmed 

that model results were similar when alternative outbreak thresholds were used (see Appendix 

B.1). Further investigation is necessary to assess the impact of arbovirus misclassification on 

the accuracy of results since the introduction of chikungunya and Zika.  

 

A further limitation of this thesis arising from data was the lack of temporal resolution in 

socioeconomic variables such as urbanisation and access to piped water used in Chapter 2, and 

in the commuting data used in Chapter 5. These variables were taken from the Brazilian census 

which is usually carried out every 10 years. The 2020 Brazilian census was postponed due to 

the COVID-19 pandemic and is currently underway [31,32]. Therefore, census data was only 
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available from 2010 for this research, with no information about how these factors have 

changed over time. This severely limits the inferences that can be made about how changes in 

socioeconomic factors and connectivity arising from human movement have driven the 

expansion of the dengue transmission zone within Brazil. Future work could consider 

alternative sources or measures with a finer temporal resolution to explore these drivers further, 

for example by using land use data as a measure of changing urbanisation [33]. 

 

One of the main focuses of this thesis was the inclusion of human movement within a spatial 

model of emerging infectious diseases. However, human movement is a very broad term and 

can refer to many different types of connections depending on the setting and the spatial and 

temporal scales of the problem [4,34]. Another limitation of this thesis was that only one source 

of human movement was considered which included regular commuting trips. The human 

movement data used to inform the model presented in Chapter 5 was taken from the 2010 

census and contains information about regular travel for work and education taken from a 

survey carried out on a random sample of the population [35]. This data fails to capture long-

distance, irregular trips which are known to drive disease (re-)emergence [4,34] and is likely 

biased towards shorter connections. Despite this, some long-distance connections were present 

in the data, particularly between large cities and in the North region. This suggests that this 

data captured some of the regional differences in human movement behaviour in Brazil 

identified in the Regions of Influence of Cities (REGIC) studies [1,36]. For example, journeys 

in North Brazil are much longer on average due to the remoteness of some municipalities. This 

has led to the exclusion of the North region in some studies to minimise the biases which arise 

due to the differences in travel patterns [37]. By using survey data rather than assuming the 

same patterns of movement across the country, which is commonly assumed in movement 

models [38,39], I have been able to compare differences in the relative importance of human 

movement between different regions of Brazil while accounting for these differences. Future 

work could consider additional data sources such as air travel information and mobile phone 

data to account for irregular movements and provide information about changing patterns of 

movement over time. 
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6.4 Future work 

There are several ways in which the work presented in this thesis could be extended and used 

to further understand (re-)emerging infectious disease transmission. 

 

The first objective of this thesis was to understand how changes in climate, socioeconomic 

factors, and connectivity have impacted the expansion of the dengue transmission zone in 

Brazil. However, the extent to which this could be addressed was limited by data availability 

and model design. Socioeconomic variables such as levels of urbanisation and access to basic 

services were obtained via the Brazilian census which is carried out every 10 years. There was 

no information about how these factors changed in the intermediate years, nor about how they 

have changed since as the 2020 census was delayed [31]. Future work could explore alternative 

data sources, such as land use data that can be used to extract fine-scale information about 

changes in urbanisation over time [33]. The relative contribution of each term could then be 

compared over time to explore whether the rapid urbanisation of some previously protected 

areas has had a larger impact.  

 

Increasing temperature was found to contribute to the expansion of dengue into South Brazil 

in Chapter 2. This was accounted for in the model using an indicator based on the temperatures 

Aedes mosquitoes can transmit the dengue virus to humans [40]. However, other climate 

variables such as precipitation, drought and humidity are also known to play a role in dengue 

transmission dynamics [41,42]. At present, there is no known optimal hydrometeorological 

conditions for dengue transmission, and the interaction between these conditions and 

socioeconomic factors, such as water storage practices, means this is likely to change across 

space [41]. An ‘extremely wet’ indicator was explored as part of the analysis carried out in 

Chapter 2 which was defined using the self-calibrating Palmer drought severity index 

(scPDSI), a measure of how wet or dry an area is relative to ‘normal’ conditions [43]. This 

indicator was not found to improve the model, however future work could be carried out to 

investigate other hydrometeorological indicators to investigate their role in dengue expansion.  

 

The models presented in this thesis to explore the relative contribution of human movement on 

infectious disease expansion requires the data to be symmetric and stationary. However, this is 

not how human movement behaves [38,44]. Patterns of human movement in Brazil have 

changed over the past 20 years, as shown by the two latest REGIC studies [1,36]. The REGIC 
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study in 2018 showed that, although the North region still has fewer highly influential cities 

than other regions, the number of regional capitals and sub-regional centres had increased in 

the North and the number of connections between them has also increased (Appendix B.1, 

Figure E). This is likely a result of improved infrastructure and connectivity by air travel in the 

region since 2009 [45]. Future work is needed to explore how the spatial models presented in 

Chapters 4 and 5 can be extended to include temporal trends to explore the impact of changing 

human movement patterns on disease expansion and include more complex, realistic human 

movement networks. An interaction between spatial and temporal random terms, similar to 

those included in the model in Chapter 2, would allow the spatial patterns to change over time 

and allow hypotheses to be drawn about how changing patterns of human movement could 

lead to further expansion of the dengue transmission zone in Brazil in the future. 

 

Finally, although this thesis uses dengue re-emergence and expansion in Brazil as a case study, 

spatial connectivity is an important driver of many infectious diseases. It would be interesting 

to apply the modelling framework developed in Chapter 4 to other infectious diseases and 

compare the relative importance of human movement. For example, Brazil was one of the most 

severely affected countries during the COVID-19 pandemic following the rapid spread of the 

virus across the country [46]. Human movement has been recognised as one of the major 

drivers of this spread, with São Paolo considered a ‘super spreader’ city due to its high level of 

influence and connectivity to the whole country [47]. In theory, a model with COVID-19 

incidence as the outcome would have a far higher contribution of human movement to the 

spatial structure than a mosquito-borne disease such as dengue.  

 

 

6.5 Concluding statement 

In this thesis, I have explored the complex, interacting drivers of dengue expansion in Brazil 

since 2001. I have shown that increasing temperatures in South Brazil, high levels of 

urbanisation, and connections between cities arising from human movement have all played a 

role in the erosion of geographical barriers to the dengue transmission zone in Brazil. As part 

of this thesis, I have considered existing spatial modelling frameworks and presented a novel 

statistical approach to deal with the issue of complicated spatial connectivity systems that exist 

within infectious disease epidemiology. Given the increasing risk of future pandemic 

pathogens due to changes in climate and increased global connectivity [48,49], robust spatial 
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modelling tools are essential to gain better understanding of infectious disease emergence and 

identify areas at future risk of expansion. 
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Appendix A: Spatial modelling with empirical 

Bayes 

A.1 Introduction 

Empirical Bayesian approaches use data to inform the prior distribution, with the prior being 

estimated as part of the model fitting process. This removes the requirement of having to fully 

specify prior beliefs before model fitting, making it particularly appealing in spatial statistical 

modelling where the spatial structure of the data may not be fully understood. In this section, I 

explain how penalised smoothing splines, in particular thin plate regression splines, can be 

used to produce a spatial smooth model, estimated using empirical Bayesian methods. I then 

show how these methods can be extended to more complex model structures and fitted using a 

fully Bayesian approach via Markov chain Monte Carlo (MCMC) methods. 

 

A.2 Empirical Bayes with generalised additive models 

Generalised additive models (GAMs) are statistical models that include smooth functions of 

covariates to allow flexibility in the nature of the relationships between an outcome and 

explanatory variables [1]. The original GAM was defined as: 

 
𝜂(𝑦𝑖) = 𝛼𝑜 + ∑ 𝛼𝑗𝑥𝑖𝑗

𝑛
𝑗=1 + ∑ 𝑓𝑘(𝑧𝑖)

𝑚
𝑘=1 , 

 
where 𝜂 is some link function determined by model choice, y are outcome variables, x and z 

are observed covariates, 𝜶 are unknown regression coefficients, and 𝒇 are some smooth 

functions to be estimated. To introduce the concepts underlying GAMs and smoothing 

functions, I will first focus on a linear model containing a single, univariate smooth function:   

 

𝑦𝑖 = 𝑓(𝑧𝑖) + 𝜀𝑖.             (1) 

 

Expansions to models with multiple smooths or functions applied to multiple covariates will 

be introduced in later sections. 

 
The inclusion of smooth functions allows for more flexible model specifications and the 

inclusion of nonlinear relationships between the outcome and explanatory variables. However, 

this additional flexibility comes at a cost: the structure of f must be determined and the degree 
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of ‘smoothness’ much be defined. The first assumption we make about this function is that it 

is smooth. One mathematical way to categorise this is that any function f is smoother than a 

function g if ∫ 𝑓′′(𝑧)2𝑑𝑥 < ∫ 𝑔′′(𝑧)2𝑑𝑧. Therefore, we want a function that will minimise the 

integrated square second derivative (also known as a cubic spline penalty) [2]. This can be 

included in the model as a penalty. However, even with this penalty, the best fitting model will 

likely be one that interpolates the data. To avoid this, a smoothing penalty parameter is 

introduced and, using a penalised least squared approach, the function we seek to minimise is: 

 

‖𝑦 −  𝑓(𝑧)‖2 +𝜆 ∫ 𝑓′′(𝑧)2𝑑𝑧,                       (2) 

 

where 𝜆 is the smoothing penalty parameter aiming to control smoothness and ensure the 

smooth function is not too ‘wiggly’ (i.e. the function does not simply interpolate between data 

points) [2,3]. 𝜆 → ∞ would produce a straight line and 𝜆 = 0 would lead to an unpenalized 

piecewise linear regression coefficient [4].  

 

Many smooth functions used in GAMs are constructed using smoothing splines and can be 

described as linear combinations of (known) basis functions, 𝑏𝑗 (functions applied to the 

covariate(s) at given intervals, determined by the type of smoothing spline chosen), multiplied 

by (unknown) regression coefficients, 𝛽𝑗 [3]. When considering a univariate smoothing spline, 

𝑓(𝑧), this can be expressed:  

 

𝑓(𝑧) = ∑ 𝛽𝑗𝑏𝑗(𝑧)𝐾
𝑗=1 ,           (3) 

 

where K is the number of knots, or turning points, in the function. The number of knots should 

be large enough to capture patterns in the data but not so large it leads to excessive 

computational cost or overfits the data [2,3]. Assuming the number and value of basis functions 

are known and fixed, the estimation problem (2) can be rewritten as a function of the unknown 

coefficients, 𝜷. Given 𝑓(𝑧) = 𝜷𝑇𝒃(𝑧), it follows that 𝑓′′(𝑧) = 𝜷𝑇𝒃′′(𝑧) and 𝑓′′(𝑧)2 =

𝜷𝑇𝒃′′(𝑧)𝒃′′(𝑧)𝑇𝜷. So, the smoothing penalty becomes ∫ 𝑓′′(𝑧)2𝑑𝑥 =

𝜷𝑇 ∫ 𝒃′′(𝑧)𝒃′′(𝑧)𝑇𝑑𝑧 𝜷 = 𝜷𝑇𝑺𝜷 and the estimation problem (2) can be rewritten: 

 

‖𝒚 −  𝒁𝜷‖2 + 𝜆𝜷𝑇𝑺𝜷 ,         (4) 
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where 𝒁 = 𝒃(𝒛) are the basis functions, 𝑆𝑖𝑗 = ∫ 𝑏𝑖
′′(𝑧)𝑏𝑗

′′(𝑧)𝑑𝑧 and 𝑺 can be thought of as a 

penalty matrix. By solving this expression, the penalised least squared estimator of the 

coefficients, 𝜷̂, is: 

 

𝜷̂ = (𝒁𝑇𝒁 + 𝜆𝑺)−1𝒁𝑇𝒚.          (5) 

 

The assumption that the spline is more smooth than wiggly can be viewed from a Bayesian 

perspective as a prior belief, with 𝜷̂ representing the posterior mode of 𝜷. An improper 

multivariate normal prior is used here as the penalised least squares estimate of 𝜷 (Equation 5) 

is also the maximum a posteriori (MAP) estimate of 𝜷|𝒚 where 𝜷 ~ 𝑁(0, 𝜎2𝑺−/𝜆) and 𝑺− is 

the generalised inverse of the penalty matrix [2,3]. The Bayesian posterior distribution of 𝜷 is 

then: 

 

𝜷|𝒚 ~ 𝑁(𝜷̂, (𝒁𝑇𝒁 + 𝜆𝑺)−1𝜎2).        (6) 

 

This interpretation gives the model the same structure as linear mixed models. Therefore, the 

resulting smooth functions can be interpreted in the same way as traditional random effects [3]. 

This also means that the parameters 𝜎 and 𝜆 can be estimated using restricted maximum 

likelihood (REML) [4]. As the prior and posterior distributions of 𝜷 depend on the smoothing 

parameter 𝜆 which is estimated using the data, this approach is known as an empirical Bayesian 

approach and is justified by large sample approximation. 

 

A.3 Thin plate regression splines 

The empirical Bayesian approach introduced in the previous section assumes that basis 

functions defining the smooth spline 𝑓(𝑧) in Equation (3) are known and fixed. However in 

practice, the type of splines 𝑏𝑗, the number of them 𝐾 and the position of the knots along the 

covariate range space need be defined prior to model fitting. There are many types of 

smoothing splines that can be used in GAMs to explore nonlinear relationships between an 

outcome and one or more explanatory variables (see [3] for some examples). The choice of 

spline depends on the nature of the relationship between the outcome and explanatory 

variables, and the number of explanatory variables being considered. Each spline has a 
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different definition of basis functions (𝑏𝑗(𝑧) from Equation 3) and their associated penalty 

matrices, S.  

 

Thin plate splines are a general class of smoothing splines that are incredibly flexible and can 

be applied to multiple variables [3,5]. Thin plate splines can be used to estimate smooth 

functions 𝒇 by minimising the equation:  

 

‖𝒚 −  𝒇‖2 + 𝜆 𝐽𝑚𝑑(𝒇 ),                       (7) 

 

where 𝜆 is the smoothing parameter introduced previously, 𝒇 is a vector of basis functions 

applied to 𝑑 covariate(s) (𝒛 = [𝜔1, … , 𝜔𝑑]𝑇), 𝐽𝑚𝑑(𝒇) is a penalty function measuring the 

wiggliness of f, 𝑚 is the order of differentiation in this penalty and can be any integer satisfying 

2𝑚 > 𝑑. However, for visually smooth results it is preferable that 2𝑚 > 𝑑 + 1, and often 𝑚 

is set to the minimum that satisfies this condition [3]. The wiggliness penalty is defined as  

 

𝑱𝑚𝑑 = ∫ … ∫ ∑
𝑚!

𝜈1!…𝜈𝑑!
(

𝑑𝑚𝒇

𝑑𝜔1
𝜈1…𝑑𝜔

𝑑

𝜈𝑑
)

2

𝑑𝜔1 … 𝑑𝜔𝑑𝜈1+⋯+𝜈𝑑=𝑚 . 

 

Note that the penalty matrix in Equation (2) is an example of a thin plate spline applied to a 

single covariate (𝑑 = 1) where 𝑚 = 2. One of the major benefits of using thin plate splines is 

that knot positions and basis functions arise naturally due to the mathematical properties of the 

smoothing penalty and do not have to be specified by the user (see [3] and [5] for full 

specification of these basis functions). If we take the two-dimensional case (𝑑 = 2, covariates 

𝜔1 and 𝜔2) and the minimum value of 𝑚 to satisfy the visually smooth condition (𝑚 = 2), 

then the smoothing penalty becomes: 

 

𝑱22 = ∫ ∫ (
𝑑2𝑓

𝑑𝜔1
2)

2

+ 2 (
𝑑2𝑓

𝑑𝜔1𝑑𝜔2
)

2

+ (
𝑑2𝑓

𝑑𝜔2
2)

2

𝑑𝜔1𝑑𝜔2. 

 

In this case, the basis function functions minimising Equation (7) has the form 

 

𝑓(𝒛) = ∑ 𝛿𝑖
𝑛
𝑖=1 𝛾(‖𝒛 − 𝒛𝑖‖) + ∑ 𝛼𝑗𝜙𝑗(𝒛)3

𝑗=1 , 

 



 128 

where 𝛿𝑖 and 𝛼𝑗 are coefficients to be estimated, 𝜙𝑗(𝒛) are linearly independent polynomial 

functions, and 𝛾(𝑟) =
−1

8𝜋
𝑟2log (𝑟). The 𝜙𝑗 functions span the null space of the 𝑱𝑚𝑑 penalty 

and are considered completely smooth (where 𝑑 = 𝑚 = 2, 𝜙1(𝒛) = 1, 𝜙2(𝒛) = 𝜔1 and 

𝜙3(𝒛) = 𝜔2). By defining the matrix 𝑬 as 𝐸𝑖𝑗 =  𝛾(‖𝒛𝑖 − 𝒛𝑗‖) and T as 𝑇𝑖𝑗 = 𝜙𝑗(𝒛𝑖), the 

spline fitting problem (7) requires the following equation to be minimised: 

 

‖𝒛 − 𝑬𝜹 − 𝑻𝜶‖2 +  𝜆𝜹′𝑬𝜹.          (8) 

 

The main drawback of using full thin plate splines is that they are extremely computationally 

intensive (they require one parameter per observation plus an additional smoothing parameter 

𝜆). To overcome this, thin plate regression splines were developed as truncated versions of full 

thin plate splines which reduce the computational cost of model fitting by substituting 𝑬 in 

Equation (8) with a rank deficient approximation [3,5]. It is important to note that thin plate 

regression splines are isotropic in nature, i.e. they smooth equally with respect to each covariate 

[3,5]. This makes them inappropriate where covariates included in the smoother are measured 

on a different scale (e.g. when considering spatio-temporal relationships). For these instances, 

another choice of smoother would be required.  

 

A.4 Bayesian spatially smoothed generalised additive models 

When considering spatial data, thin plate regression splines can be applied to geographical 

coordinates (longitude, latitude) to produce a spatially smoothed surface. These can be 

incorporated into generalised additive models as an alternative to traditional random effect 

terms where spatial autocorrelation between close areas is present in the data. This spatially 

smoothed model takes the form: 

 

𝜂(𝑦𝑖) = 𝛼𝑜 + ∑ 𝛼𝑗𝑥𝑖𝑗
𝑛
𝑗=1 +  𝑓𝑠𝑝𝑎𝑡(𝑎𝑖, 𝑏𝑖),        (9) 

 

where 𝜂 is a link function determined by model choice, y are outcome variables, x are observed 

covariates, 𝜶 are unknown regression coefficients, and 𝑓𝑠𝑝𝑎𝑡(𝒂, 𝒃) is a thin plate regression 

spline applied to coordinates 𝒂, 𝒃.  
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This model can be fit using the R package mgcv [3,6]. By default, this package uses thin plate 

regression splines to define smooth functions (although alternatives are available) and 

estimates the degree of spline smoothness (defined by the smoothing parameter 𝜆) using 

generalised cross-validation by default. The empirical Bayesian interpretation of smoothing 

splines as random effects introduced earlier require the smoothing parameter to be estimated 

using REML, this can be achieved by adding the argument method = “REML” to the smooth 

function definition.  

 

Users must specify an upper bound for the number of basis dimensions (k from Equation 3). 

Although there is no set rule for how to define this upper limit, it should be large enough to 

ensure the smooth represents the data adequately but small enough to ensure computational 

efficiency [3]. Often this choice is arbitrary and in practice, unless the dimensions are set 

restrictively small, this choice will only have a small impact on the model fit (the actual 

flexibility of the smooth is mainly controlled by the 𝜆 parameter). Informal checks performed 

using the gam.check function in the mgcv package help to determine whether the basis 

dimension is adequate [6]. This function estimates the residual deviance along the covariates 

of the smooth and compares it to close values. If there is little or no difference, this suggests 

that the function is too smooth and the maximum basis dimensions should be increased [3]. 

The output includes a p-value testing the difference between residual deviance estimates, 

generated using simulations by randomly resampling from the model results at different 

covariate values. If the p-value is low, this indicates a small difference, and the maximum 

number of basis dimensions should be increased.  

 

Given the smoothing parameter has been estimated using REML, this model can be viewed 

from an empirical Bayesian perspective. Following from Equation 6, the posterior distribution 

of 𝜷 is assumed to follow a multivariate Normal distribution with mean 𝜷̂ and precision matrix 

proportional to the smoothing penalty 𝑺𝜆 (assuming the prior distribution of 𝜷 takes a zero-

mean multivariate Gaussian prior). As these values are estimated as part of the model fitting 

process, this distribution is fully defined, and simulations can be performed to generate 

estimates or credible intervals of the coefficients via bootstrapping. Estimates of the 

coefficients can be combined with the basis functions used to generate the smooth surface and 

can be visualised to show the spatial structure of the data. An example of this approach can be 

found in Chapter 2. 
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A.5 Multidimensional scaling  

Multidimensional scaling (MDS) is a set of mathematical procedures that aim to convert 

measures of pairwise ‘distances’ or dissimilarity between data points into a set of points 

mapped onto an abstract coordinate space [7]. One common example of MDS is principal 

component analysis (PCA).  

 

Metric or classical scaling aims to return coordinates 𝑥𝑖 , 𝑥𝑗 based on dissimilarities 𝑑𝑖𝑗. Here, 

let 𝑿 be a matrix containing the coordinate values, and 𝑫 be a matrix of squared dissimilarities 

(where 𝐷𝑖𝑗 = 𝑑𝑖𝑗
2 ). If 𝑩 = 𝑿𝑿𝑻, then 𝑑𝑟𝑠

2 = 𝑏𝑟𝑟 + 𝑏𝑠𝑠 − 2𝑏𝑟𝑠. Therefore, given matrix 𝑫 is 

known, this process can be inverted and 𝑿 can be calculated by factorising the matrix 𝑩 [8]. 

Note that one of the major assumptions of MDS is that the measure of dissimilarities 𝑑𝑖𝑗 are 

symmetrical (𝑑𝑖𝑗 = 𝑑𝑗𝑖). 

 

In Chapter 5 of this thesis, I sought to project the measure of ‘connectivity’ between 

municipalities based on regular commuting onto a two-dimensional abstract cartesian space. 

As MDS requires a measure of dissimilarity 𝑑𝑖𝑗, the measure of connectivity (the proportion 

of residents of municipality i regularly travelling to municipality j for work or education, 𝑐𝑖𝑗) 

was converted using 𝑑𝑖𝑗 = 1 − 𝑐𝑖𝑗.  

 

A.6 Fully Bayesian simulations of generalised additive models 

The empirical Bayesian approach introduced in Section A.4 allows simulations from the 

posterior distribution of the smooth functions which can be used to generate credible intervals 

(via bootstrapping) and estimates of the spatial smooth function. However, there are limits to 

the complexity of the models that can be generated within the mgcv package. For example, it 

would not be possible to extend the spatial smooth model in Equation 9 to include an 

unstructured random effect that accounts for unobserved heterogeneity between areas. The 

jagam function has been developed to allow models with complex smooth structures (as can 

be defined in mgcv) and random structures (as can be defined in BUGS-based programmes) 

to be fit using a fully Bayesian MCMC approach [9]. This combines the flexibility of model 

specification available in BUGS language with the flexible structures available in mgcv. 
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To illustrate this approach, we will consider the model presented in Chapters 4 and 5 of this 

thesis that contain two spatially smoothed random terms and an unstructured random effect to 

account for spatial heterogeneity. The spatially smoothed terms are created by applying thin 

plate regression splines to sets of coordinates describing the relative ‘connectedness’ of areas. 

The first assumes connectivity based on distance, i.e. areas close together are more similar in 

terms of the outcome, and is defined using geographical lat-lon coordinates. The second 

assumes connectivity based on the number of people regularly commuting between areas and 

uses coordinates created using MDS (see Section A.5): 

 

𝜂(𝑦𝑖) = 𝛼𝑜 + ∑ 𝛼𝑗𝑥𝑖𝑗
𝑛
𝑗=1 +  𝑓𝑠𝑝𝑎𝑡(𝑎𝑖, 𝑏𝑖) + 𝑓𝑠𝑝𝑎𝑡(𝑐𝑖, 𝑑𝑖) + 𝑣𝑖. 

 

The thin plate regression splines are generated using the jagam function in mgcv which 

produces estimates of the basis functions, basis coefficients and the smoothing penalties. Note 

that the maximum value of k must still be defined in these functions and should be checked as 

described in Section A.4. These values are then extracted and used to define the prior 

distributions of the basis coefficients in the MCMC, assuming improper zero mean Normal 

distributions.  

 

A.7 Conclusion 

The empirical Bayesian approach presented in this section is a flexible, computationally 

efficient alternative to fully Bayesian approaches such as MCMC where sufficient data are 

available. Prior distributions are determined indirectly through the specification of each spline 

rather than having to choose a spatial structure subjectively. With splines, the spatial structure 

is estimated from the data objectively which is particularly appealing for spatial analysis where 

the spatial structure of the data may not be fully understood. Estimates of the smooth functions 

can be used to inform future analysis and generate hypotheses about underlying spatial 

structures in the data. This approach reduces some of the subjectivity involved in Bayesian 

analysis as users are not required to pre-specify the prior distribution. In addition, the empirical 

Bayesian approach in Section A.4 does not suffer issues with convergence and reduces the 

computational burden which can be an issue for simulation-based approaches, such as MCMC.  

 

However, an empirical Bayesian approach is not fully Bayesian as the choice of prior 

distributions is restricted and the inferential approximations underlying the computation of the 
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posterior distributions relies on large sample approximations. The approach presented in 

Section A.4 is also limited in terms of the complexity of the model structure that can be 

specified. Models with complex spatial structures involving multiple sources of spatial 

connectivity require MCMC to fit the models, increasing the computational cost of the model 

fitting process.  

 

Despite these limitations, empirical Bayesian approaches offer a flexible approach where the 

underlying structure of the data are not known. Future work could explore alternative 

specifications of the posterior distribution beyond multivariate normal. Additionally, the 

sensitivity analysis presented in Chapter 4 showed that spatial models fitted using the approach 

in Section A.6 performed as well as the current conventional approach fitted using MCMC or 

integrated nested Laplace approximations (INLA). 
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Appendix B: Supplementary Material Chapter 

2

B.1 Supplementary text  

Supplementary information to support Chapter 2: The impact of climate suitability, 

urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. Contains 

additional information about methods and materials used in the manuscript and the results of 

sensitivity analyses. Taken from https://doi.org/10.1371/journal.pntd.0009773.  

  

https://doi.org/10.1371/journal.pntd.0009773
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B.1.2 Methods and materials 

B.1.2.1 Dengue surveillance and outbreak definitions in Brazil 

Monthly dengue case data are freely available from Brazil's Notifiable Diseases Information 

System (SINAN), via the Health Information Department, DATASUS 

(https://datasus.saude.gov.br/informacoes-de-saude-tabnet/). Although notification of a 

suspected dengue case is mandatory in Brazil, the surveillance system is predominantly 

passive, which means that many mild and asymptomatic cases may be missed. One 

investigation of the Brazilian dengue surveillance system estimated that there were 12 actual 

infections per reported case overall, which rose to over 17 in periods of high incidence [1].  

 

Rather than use dengue case data which differs in accuracy between regions, and between 

epidemic and non-epidemic periods, we aggregated the cases by year and converted them into 

a binary outbreak indicator where cases exceeded some outbreak threshold. Several methods 

have been used to define outbreak thresholds Brazil, including a monthly moving average, 

where historical data are used to estimate the expected number of cases within a region [2,3], 

and a fixed threshold based on the dengue incidence rate (DIR), defined by the Brazilian 

Ministry of Health as the number of cases per 100,000 residents [4]. We chose to use a fixed 

threshold approach as the mean incidence was heavily influenced by outbreak years, making 

the probability of detecting an outbreak inconsistent between municipalities. Our primary 

analysis used an outbreak threshold of more than 300 cases per 100,000 residents, defined as 

'high risk' by the Brazilian Ministry of Health. We also tested a 'medium risk' indicator, defined 

as more than 100 cases per 100,000 residents [4].  

 

The annual DIR was calculated using estimates of the annual population for each municipality 

obtained from the Brazilian Institute of Statistics and Geography (IBGE) via DATASUS 

(https://datasus.saude.gov.br/populacao-residente). As an alternative, we used the 75th 

percentile of the DIR per municipality with a minimum threshold value equivalent to 5 cases 

per year to avoid very low cases triggering an outbreak in 'protected' areas. The 75th percentile 

of the DIR was calculated using all available data from 2001 - 2020 for each municipality. 

Many municipalities in previously 'protected' areas such as South Brazil and the western 

Amazon had lower thresholds using this method than the fixed thresholds used by the Brazilian 

Ministry of Health (Fig B1). However, the threshold was much higher (up to a maximum of 

DIR = 3275) in regions which had experienced high levels of dengue transmission in the past.  
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Fig B1: The outbreak threshold for each municipality based on the 75th percentile of 

dengue incidence rates between 2001 - 2020. Regions with historically low dengue 

transmission, such as South Brazil, had thresholds below 100 (shown in gold), whilst areas 

with sustained high transmission such as the Centre-West had much higher thresholds, up to a 

maximum of 3275. Maps were produced in R using the geobr package [5,6] 

(hsttps://ipeagit.github.io/geobr/). 

 

B.1.2.2 Hydrometeorological factors 

In addition to temperature suitability, hydrometeorological conditions such as precipitation and 

drought have been linked to dengue transmission. Prior studies have found that the risk of 

dengue increases immediately following extremely wet conditions [7,8], however the level of 

precipitation considered extreme varies greatly across Brazil between climate systems. To 

measure the relative wetness of municipalities, we used the self-calibrating Palmer Drought 

Severity Index (scPDSI). The scPDSI was obtained from the Climate Research Unit gridded 

Time Series (v4.05) [9,10] for the period January 2001 - December 2020, at a spatial resolution 

of 0.5° x 0.5°.  The PDSI is a widely used measure of meteorological drought ranging from -
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10 (dry) to 10 (wet) compared to 'normal conditions', with values below -4 and above 4 

considered extreme [11,12]. The scPDSI calibrates this index to the 'normal conditions' for 

each location of interest separately, providing a more spatially comparable measure [10,13]. 

The scPDSI was aggregated to each municipality using the exactextractr package [14] in R 

(version 4.0.3) by calculating the mean of the grid boxes lying within each municipality. Grid 

boxes partially covered by a municipality were weighted by the percentage of area that lay 

within the municipality.  

 

Most states, particularly those in North Brazil, have experienced increasingly severe drought 

conditions in recent years. However, there have been several extremely wet events, particularly 

in the Southeast of the country (Fig B2). To understand the relationship between wet conditions 

and dengue outbreaks, we calculated the number of months per year each municipality took an 

scPDSI value of 4 and above, considered 'extremely wet' by the scPDSI [10,12]. On average, 

the number of months considered extremely wet has increased in parts of South Brazil and in 

Pará, North Brazil, and has reduced in the Amazon and Southeast Brazil (Fig B3). 
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Fig B2: The average monthly self-calibrated Palmer Drought Severity Index (scPDSI) 

per state from January 2001 - December 2020. Values below -4 (shown in brown) are 

considered extremely dry compared to normal conditions, whereas values above 4 (shown in 

blue) are considered extremely wet. The north and east of Brazil has experienced increasingly 

severe droughts in recently years, in contrast states in the Southeast have experienced a number 

of extremely wet conditions. 
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Fig B3: Map showing the difference in the average number of months per year considered 

extremely wet (scPDSI > 4) between 2001 - 2010 and 2011 - 2020. The number of months 

considered extremely wet has increased on average in parts of South and North Brazil (shown 

in pink). In comparison, the number of extremely wet months per year in the western Amazon 

and parts of South and Southeast Brazil have reduced. Maps were produced in R using the 

geobr package [5,6] (https://ipeagit.github.io/geobr/). 

 

B.1.1.3 Socioeconomic factors 

We obtained information about the percentage of residents in each municipality living in urban 

areas, the percentage with access to the piped water system, and the percentage that had refuse 

collected (either privately or using the municipal service) from the 2000 and 2010 censuses via 

DATASUS. Despite Brazil having the largest economy in South America, it has been the most 

unequal since 2015 [15]. Access to basic services differs greatly across the country and the 
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traditionally wealthier regions in the South and Southeast have almost universal coverage at 

the municipality level in contrast to rural parts of the North and Northeast which had little or 

no access, even in 2010. We found that the level of urbanisation was highly correlated to access 

to piped water (Fig B4, r = 0.656, 95% confidence interval: [0.641, 0.671], p < 0.001) and 

refuse collection (Fig B4, r = 0.794, 95% confidence interval: [0.784, 0.804] p < 0.001) when 

aggregated to the municipality level. Therefore, access to piped water and refuse collection 

were not included in the models as they were not useful at explaining the differences within 

cities at this level of aggregation and would likely introduce multicollinearity into the model.  
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Fig B4: Scatterplot comparing the percentage of residents with access to piped water (top) 

and refuse collection (bottom) to the percentage living in urban areas from the 2010 

census. Access to basic services was highly correlated to the level of urbanisation: highly urban 

areas had highest access to piped water and refuse collection. 
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B.1.1.4 Hierarchical levels of influence of cities 

We extracted the level of influence of cities from the Regions of Influence of Cities (“Regiões 

de Influência das Cidades”, REGIC) studies carried out by IBGE in 2007 and 2018 [16,17] to 

use as a proxy for human movement within our models. REGIC aims to recreate the complex 

urban network of Brazil using information from surveys about the frequency and reasons for 

the movement of people and goods around the country. The level of influence assigned to each 

city was based on the number of people travelling to the city but also the number of important 

institutions that attracts the movement of people from outside the city, such as hospitals, 

universities, business centres, government agencies, and cultural centres (such as theatres and 

shopping centres). Cities were classified into five levels: 

 

1. Metropolis: the largest cities in Brazil, with strong connections throughout the entire 

country. This includes São Paulo, the capital Brasilia, and Rio de Janeiro. 

2. Regional capital: large cities which are connected throughout the region in which they 

are located and to metropoles. This includes state capitals that were not classified as 

metropoles, such as Rio Branco, Campo Grande and Porto Velho. 

3. Sub-regional capital: cities with a lower level of connectivity, mostly connected locally 

and to the three largest metropoles. 

4. Zone centre: smaller cities with influences restricted to their immediate area, often 

neighbours. 

5. Local centre: the smallest cities in the network which typically only serve residents of 

the municipality and are not connected elsewhere. 

 

There were 12 metropoles, consisting of 203 municipalities, according to the 2007 REGIC 

study: São Paulo, Rio de Janeiro, Brasilia, Manaus, Belém, Fortaleza, Recife, Salvador, Belo 

Horizonte, Curitiba, Goiânia and Porto Alegre. In 2018, this increased to 15 metropoles, 

consisting of 214 municipalities, as Campinas, Florianópolis and Vitória were re-classified 

from regional capitals to metropoles. The number of regional capitals and sub-regional centres 

also increased between 2007 and 2018 from 70 to 97 and from 169 to 352 respectively. The 

number of lower-level cities, zone centre and local centres, both decreased from 556 to 398, 

and from 4473 to 4037 (Appendix B.3, S1 Table). The distribution of highly connected urban 

centres is uneven across the country; the South and Southeast regions are particularly well 

connected, while the North and Northeast contain fewer high-level centres (Chapter 2, Fig 3 

and Appendix B.3, S1 Table). The proportion of higher-level centres has increased in each 
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region of Brazil, although the Amazon rainforest remains less connected than other areas (Fig 

B5). Metropoles, regional capitals and sub-regional centres had higher levels of urbanisation, 

access piped water and refuse collection on average than less connected centres (Appendix B.2 

Fig S6). 

 

a)           b) 

 

 

Fig B5: The proportion of cities in each region at each level of influence in the a) 2007 

and b) 2018 REGIC study. The proportion of high-level cities has increased across the 

country but the North and Northeast still have noticeably less well-connected cities than other 

regions. The Southeast and South are by far the most connected regions. 

 

B.1.1.5 Modelling approach 

We formulated a spatio-temporal generalised additive model (GAM) to quantify the 

relationship between temperature suitability, level of connectivity and socioeconomic 

conditions on the odds of a municipality experiencing an outbreak. The response variable was 

a binary outbreak indicator defined as an annual dengue incidence rate of more than 300 cases 

per 100,000 residents. To account for spatial and temporal patterns in the data, smooth 

functions of the year and the coordinates of the centroids of municipalities were included in 

the model. We used thin plate regression splines to represent the smooth (2D) function of the 

coordinates. Thin plate splines are data-driven and estimate the best fitting function for the data 

[18]. To account for changes in spatial patterns over the period, we also included a space-time 

interaction term created by applying a tensor product smooth to the coordinates and the year. 
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Tensor product smooths allow interactions between variables that are measured on different 

scales (in this case, space and time). The final model equation was as follows: 

 

𝑌𝑖𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑡) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗𝑖𝑡

𝑚

𝑗 = 1

+ 𝑓𝑠𝑝𝑎𝑡(𝑙𝑜𝑛𝑖, 𝑙𝑎𝑡𝑖) + 𝑓𝑡𝑖𝑚𝑒(𝑡) + 𝑓𝑖𝑛𝑡(𝑙𝑜𝑛𝑖, 𝑙𝑎𝑡𝑖, 𝑡) 

 

Where 𝑌𝑖𝑡, binary outbreak indicator for municipality i (i = 1, ..., 5,560) in year t (t = 2001, ..., 

2020), is expected to follow a Bernoulli distribution defined by 𝑝𝑖𝑡, the probability of an 

outbreak. The Bernoulli distribution is a special case of the binomial distribution where the 

number of trials is equal to 1. 𝛽𝑗 are coefficient estimates associated with covariates 𝑋𝑗𝑖𝑡.  

𝑓𝑠𝑝𝑎𝑡(𝑙𝑜𝑛𝑖, 𝑙𝑎𝑡𝑖) is the spatial smooth field based on the coordinates (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖) of the centroid 

of municipality i, 𝑓𝑡𝑖𝑚𝑒(𝑡) is the temporal smooth function applied to year t and 

𝑓𝑖𝑛𝑡(𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖, 𝑡) is the spatio-temporal interaction term. This model is a type of structured 

additive regression (STAR) model which allows for Bayesian interpretations of additive 

models by specifying prior beliefs on the smooth functions [18,19].  

 

We chose to include the number of months with temperature suitable for dengue transmission, 

the proportion of residents living in urban areas, the level of influence from the REGIC study, 

and the prior outbreak indicator as covariates in our final model to address our initial research 

questions. We also tested the number of months considered extremely wet according to the 

scPDSI as hydrometeorological factors are also recognised as important drivers of dengue 

transmission [7,8]. Although this coefficient was statistically significant (adjusted odds ratio: 

1.11, 95% credible interval: 1.09, 1.14), the model fit was not improved with the addition of 

this covariate (S3 Table) and the covariate was excluded from further analysis. 

 

Inference was performed using an empirical Bayesian approach with estimates calculated using 

restricted maximum likelihood (REML), an approach that has been shown to give more stable 

estimates than generalised cross validation [20], and more accurate estimates than a full 

Bayesian approach for binomial models (a simulation study showed increased coverage 

probability and reduced bias for the empirical Bayesian approach compared to fully Bayesian) 

[19]. We used the mgcv package in R [18] to fit the spatio-temporal models and to simulate 
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from the posterior distributions of the coefficients to produce mean estimates and 95% credible 

intervals.  

 

B.2 Results 

B.2.1 Outbreak threshold comparisons 

To check whether our model results were robust to the definition of an outbreak, we compared 

our primary results to alternative outbreak indicators: over 100 cases per 100,000 residents 

(considered medium risk by the Brazilian Ministry of Health [21]), and above the 75th 

percentile of the yearly DIR between 2001 - 2020 for each municipality with a minimum 

threshold set as over 5 cases per year.  Although the models agreed that the odds of an outbreak 

were significantly increased in highly connected, highly urbanised cities that had previously 

experienced an outbreak and had a suitable temperature, the coefficient estimates differed 

(Appendix B.4, S2 Table). The 75th percentile model had noticeably lower coefficient 

estimates for each parameter compared to the fixed threshold models (Appendix B.2, Fig S8). 

Most credible intervals for the coefficient estimates of the fixed threshold models overlapped, 

however the odds of experiencing an outbreak in municipalities that had previously 

experienced one was higher in the model using the DIR = 100 threshold (aOR: 2.42, 95% CI: 

2.31, 2.56) compared to the DIR = 300 threshold (aOR: 2.03, 95% CI: 1.93, 2.15). 

 

We assessed the model fit of these alternative outbreak threshold models using a receiver 

operating characteristic (ROC) curve which plots the true positive rate against the true negative 

rate at different thresholds to test the predictive ability of the model. The area under the ROC 

curve was calculated as this gives a measure of predictive ability compared to chance, which 

would return a value of 0.5. The closer the area under the ROC curve is to 1, the better the 

model fits the data. Care should be taken when data are imbalanced as the ROC curve can 

overestimate the accuracy of a model. The predictive ability of models were also compared 

using the Brier score [22]. The Brier score is the mean squared difference between the observed 

and expected outcomes; a lower Brier score represents a better fitting model. We found that 

the fixed threshold models fit the data better according to the ROC curve (Appendix B.2, Fig 

S7 and Appendix B.5, S3 Table), the Brier score also showed that these models had a better 

predictive ability than the 75th percentile model (Appendix B.5, S3 Table). 
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B.3 Table S1 
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B.4 Table S2 

  
Ta

b
le

 S
2

: 
P

o
st

er
io

r 
m

e
an

 a
n

d
 9

5
%

 c
re

d
ib

le
 in

te
rv

al
 (

C
I)

 e
st

im
at

e
s 

fo
r 

lin
e

ar
 e

ff
e

ct
 p

ar
am

e
te

rs
, c

al
cu

la
te

d
 u

si
n

g 
an

 o
u

tb
re

ak
 t

h
re

sh
o

ld
 o

f 
1

0
0

 c
as

e
s 

p
e

r 
1

0
0

,0
0

0
 r

e
si

d
e

n
ts

, c
al

cu
la

te
d

 u
si

n
g 

an
 o

u
tb

re
ak

 t
h

re
sh

o
ld

 b
as

e
d

 o
n

 t
h

e
 7

5
th

 p
e

rc
en

ti
le

 o
f 

d
e

n
gu

e
 in

ci
d

en
ce

 r
at

e
, a

n
d

 u
si

n
g 

te
m

p
e

ra
tu

re
 s

u
it

ab
ili

ty
 r

e
la

te
d

 t
o

 A
ed

es
 a

eg
yp

ti
 o

n
ly

 s
h

o
w

n
 o

n
 t

h
e

 a
d

ju
st

e
d

 o
d

d
s 

ra
ti

o
 (

aO
R

) 
sc

al
e

. 
 1
 R

es
p

o
n

se
 v

ar
ia

b
le

 is
 d

e
n

gu
e 

o
u

tb
re

ak
 d

e
fi

n
ed

 a
s 

o
ve

r 
1

0
0

 c
as

e
s 

p
er

 1
0

0
,0

0
0

 in
h

ab
it

an
ts

 
2
 R

es
p

o
n

se
 v

ar
ia

b
le

 is
 d

e
n

gu
e 

o
u

tb
re

ak
 d

e
fi

n
ed

 a
s 

ab
o

ve
 t

h
e 

7
5

th
 p

e
rc

e
n

ti
le

 o
f 

th
e 

an
n

u
al

 d
en

gu
e

 in
ci

d
e

n
ce

 r
at

e 
b

e
tw

e
en

 2
0

0
1

 -
 2

0
2

0
, w

it
h

 a
 

m
in

im
u

m
 in

ci
d

e
n

ce
 e

q
u

iv
al

en
t 

to
 5

 c
as

e
s 

p
er

 y
ea

r.
 

3
 T

em
p

er
at

u
re

 s
u

it
ab

ili
ty

 s
et

 t
o

 A
ed

es
 a

eg
yp

ti
 li

m
it

s,
 b

et
w

e
en

 1
7

.8
° 

an
d

 3
4

.5
°C

  
 

C
o

e
ff

ic
ie

n
t 

aO
R

 (
9

5
%

 C
I)

 

M
e

d
iu

m
 r

is
k 

m
o

d
e

l1
 

7
5

th
 p

e
rc

e
n

ti
le

 m
o

d
el

2
 

A
e

d
e

s 
ae

gy
p

ti
 m

o
d

e
l3

 

U
rb

an
is

at
io

n
 

2
.9

6
 (

2
.6

6
, 3

.3
0

) 
1

.8
6

 (
1

.6
6

, 2
.0

8
) 

3
.2

1
 (

2
.8

0
, 3

.6
5

) 

R
EG

IC
 le

ve
l: 

m
e

tr
o

p
o

lis
 

1
.6

5
 (

1
.4

4
, 1

.8
8

) 
1

.1
5

 (
1

.0
3

, 1
.2

8
) 

1
.3

8
 (

1
.2

0
, 1

.5
8

) 

R
EG

IC
 le

ve
l: 

re
gi

o
n

al
 c

ap
it

al
 

1
.7

7
 (

1
.6

3
 1

.9
2

) 
1

.1
1

 (
1

.0
3

, 1
.2

1
) 

1
.5

1
 (

1
.3

8
, 1

.6
6

) 

R
EG

IC
 le

ve
l: 

su
b

-r
eg

io
n

al
 c

e
n

tr
e

 
1

.4
2

 (
1

.3
3

, 1
.5

1
) 

1
.1

2
 (

1
.0

5
, 1

.1
9

) 
1

.2
3

 (
1

.1
4

, 1
.3

4
) 

R
EG

IC
 le

ve
l: 

zo
n

e 
ce

n
tr

e 
1

.3
3

 (
1

.2
6

, 1
.4

1
) 

1
.0

6
 (

0
.9

9
, 1

.1
2

) 
1

.2
4

 (
1

.1
6

, 1
.3

1
) 

P
ri

o
r 

o
u

tb
re

ak
: y

es
 

2
.4

2
 (

2
.3

0
, 2

.5
5

) 
1

.2
3

 (
1

.1
6

, 1
.2

9
) 

2
.0

1
 (

1
.9

1
, 2

.1
2

) 

M
o

n
th

s 
w

it
h

 s
u

it
ab

le
 t

e
m

p
er

at
u

re
 

1
.2

9
 (

1
.2

0
, 1

.3
7

) 
1

.1
1

 (
1

.0
7

, 1
.1

6
) 

1
.3

4
 (

1
.2

8
, 1

.4
0

) 



 160 

B.5 S3 Table 

 

 
 
 
 
 
 
 
 

Table S3: Model comparison statistics. Area under the receiver operator curve (AUROC) 
and Brier scores for models assuming an outbreak threshold of over 300 cases per 100,000 
residents (high risk model), over 100 cases per 100,000 (medium risk model), over the 75th 
percentile of incidence rates, and a model including the number of months considered 
extremely wet. 
 

Model formula AUROC (95% confidence 
interval) 

Brier score 

High risk model 0.858 (0.856, 0.861) 0.109 

Medium risk model 0.864 (0.861, 0.866) 0.138 

75th percentile model 0.809 (0.807, 0.812) 0.125 

Extremely wet model 0.859 (0.856, 0.861) 0.109 
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Appendix C: Supplementary Material Chapter 

3 

C.1 Technical appendix  

Technical appendix to support Chapter 3: Spatial connectivity in mosquito-borne disease 

models: a systematic review of methods and assumptions. Contains detailed descriptions about 

the models identified within the review. Taken from https://doi.org/10.1098/rsif.2021.0096.  

https://doi.org/10.1098/rsif.2021.0096
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C.2 Supplementary figures 
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C.3 Supplementary table 
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Appendix D: Supplementary Material Chapter 

4 

D.1 Supplementary material  

Supplementary material to support Chapter 4: A Bayesian modelling framework to quantify 

multiple sources of spatial variation for disease mapping. Contains additional simulation 

studies and a sensitivity analysis. Taken from https://doi.org/10.1098/rsif.2022.0440.  

  

https://doi.org/10.1098/rsif.2022.0440
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D.1.1 Comparison of spatial smooth and random effect models: a single 

source of distance-based connectivity 

In this section, we provide a comparison between the proposed penalised regression spline 

modelling approach and the more conventional neighbourhood-based conditional 

autoregressive (CAR) model. Full details of data generation and model structure are provided 

in section 3 of the main text. We compared the spatial smooth approach to the BYM2 random 

effect models fitted using integrated nested Laplace approximations (INLA) in the main text. 

However, as the spatial smooth model was fitted using Markov chain Monte Carlo (MCMC) 

methods, we refitted the BYM2 random effects model using MCMC via NIMBLE [1]. We 

compared this to our spatial smooth approach to ensure that any differences between our new 

approach and the conventional BYM2 random effects approach were not caused by differences 

in inferential methods. 

 
D1.1.1 Modelling approach 

Briefly, we applied two Poisson models to fictional count data with an intercept of 0 and a 

known underlying spatial structure: 

 

𝑦𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸(𝑦𝑖)) 

 

𝑙𝑜𝑔(𝐸(𝑦𝑖)) = 𝑙𝑜𝑔(𝜉𝑖) + 𝛼 + 𝑢𝑖 + 𝑣𝑖        (1) 

 

𝑙𝑜𝑔(𝐸(𝑦𝑖)) = 𝑙𝑜𝑔(𝜉𝑖) + 𝛼 +
1

𝜏
(√𝜙𝑢∗𝑖 + √1 − 𝜙𝑣∗𝑖)    (2) 

 

In model (1), 𝑢𝑖 is a spatially structured term, formulated using a thin plate regression spline 

on the coordinates of the centroid of each municipality, and 𝑣𝑖 is a spatially unstructured term, 

assumed to follow a zero-mean normal distribution, representing heterogeneity between 

regions. Model (2) represents the BYM2 model, a scaled version of the BYM approach that 

includes a spatially structured random effect 𝑢∗𝑖, assuming a CAR neighbourhood-structure, 

and an unstructured Normal random effect 𝑣∗𝑖 [2,3]. Model (2) contains a mixing parameter 𝜙 

which measures the contribution of each random effect to the marginal variance 
1

𝜏2
 [2,4]. Here, 

𝜙 = 0 indicates no spatial structure within the data and 𝜙 = 1 represents a purely spatial 

model. Both models were fitted using MCMC simulations via the NIMBLE package [1], model 

(2) was also fitted using the R-INLA package [5]. 
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Model comparison was based on mean absolute error (MAE) and WAIC [6]. The relative 

contribution of each spatial term in model (1) to the overall random structure was estimated 

using the proportion of the overall random term variance explained by 𝑢 (𝑣𝑎𝑟(𝑢)/𝑣𝑎𝑟(𝑢 + 𝑣)) 

for the spatial smooth model based on simulations from the posterior distribution of 𝑢 and 𝑣. 

This was compared to estimates of the 𝜙 parameter from model (2) and the known mixing 

parameter from data generation. All analyses were carried out using R version 4.1.1 [7]. Code 

used to simulate data and perform analyses is available here: https://github.com/sophie-a-

lee/spatial_smooth_framework. 

 

D1.1.2 Results 

All three models were able to accurately estimate the true intercept coefficient value of 0, with 

all models capturing 0 within the 95% credible interval (Figure D1). 
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Figure D1: Mean and 95% credible interval of the intercept coefficient estimates from 

the smoothing spline (black) and BYM2 models fitted using INLA (blue) and MCMC 

simulations (pink), compared to the true simulated value, 0. 

 

Figure D2 shows that the BYM2 random effects model produced comparable estimates of the 

mixing parameter when it was fitted via INLA or MCMC approaches. The spatial smooth 

model provided estimates that were closer to the true value of 𝜙 than the BYM2 models for 

most simulations, although all models could detect changes to the relative contribution of the 

spatial structure within the data. 
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Figure D2: The mean and 95% credible interval of estimated 𝝓 values extracted from 

models including a smoothing spline (black) and BYM2 models fitted using INLA (blue) 

and MCMC simulations (pink), compared to the known value (dashed line). 

 

Mean absolute errors and WAIC values were similar between all 3 models (Table D1). In 

particular, the results from the BYM2 model fitted using MCMC are almost identical to the 

spatial smooth model showing that this approach performs as well as the standard approach 

(BYM2). We noticed some systematic discrepancies between the INLA model goodness of fit 

statistics and those extracted from NIMBLE. However, as these differences were not apparent 

between the models fitted using MCMC, they appear to be a result of using different software 

packages rather than the differences in model formulations. The objective of these comparisons 

was to show that the spatial smoothing model performs as well as the current standard (the 
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BYM2 approach) which, given the very small differences between the goodness of fit statistics, 

is supported by this analysis. 

 

Table D1: Model comparison statistics and mean estimates of the mixing parameter, 𝝓, 

from the smoothing spline and BYM2 models fitted using INLA and MCMC methods. 

Mean absolute error (MAE), the mean absolute difference between observed and predicted 

outcomes, and the Watanabe-Akaike information criterion (WAIC), the negative of the average 

log pointwise predictive density, calculated for the spatial spline and BYM2 models for each 

simulated dataset. The lowest MAE and WAIC, and the 𝜙 estimate closest to the value used in 

each simulation are highlighted in bold. 

𝜙 
Smoothing spline model INLA BYM2 model NIMBLE BYM2 model 

MAE WAIC 
𝜙 

estimate 
MAE WAIC 

𝜙 
estimate 

MAE WAIC 
𝜙 

estimate 

0 1.51 996.94 0.041 1.04 1005.79 0.072 1.51 997.96 0.052 

0.1 1.54 1030.64 0.121 1.11 1034.29 0.279 1.54 1032.92 0.244 

0.2 1.33 932.42 0.260 1.04 931.79 0.486 1.37 935.52 0.480 

0.3 1.27 909.42 0.253 0.93 912.50 0.572 1.30 912.79 0.599 

0.4 1.39 961.67 0.375 1.08 976.12 0.625 1.46 974.02 0.637 

0.5 1.54 935.09 0.601 1.21 954.34 0.668 1.58 953.01 0.654 

0.6 1.50 881.09 0.512 1.13 973.61 0.757 1.55 900.05 0.763 

0.7 1.45 931.85 0.641 1.17 989.24 0.890 1.50 935.66 0.919 

0.8 1.63 947.51 0.808 1.37 983.96 0.951 1.70 944.76 0.960 

0.9 1.59 876.37 0.918 1.37 922.29 0.963 1.69 876.18 0.975 

1 1.48 875.42 0.797 1.25 924.14 0.948 1.57 872.03 0.964 
 

D1.2 Human movement coordinates 

To create a smooth surface describing the spatial structure of data under a given connectivity 

assumption, we apply penalised smoothing splines to coordinates describing this relative 

connectivity. For example, when describing distance-based connectivity, we apply smoothing 

splines to the coordinates of observations. However, when a coordinate system does not 

currently exist that describes the relative connectivity between observations, we must create 

one. Multidimensional scaling (MDS) is a mathematical approach that translates continuous 

measures of distance (in this case, connectivity) onto an abstract cartesian space and returns a 

set of coordinates [8]. When considering human movement-based connectivity, we can apply 

MDS to a continuous measure of human movement, i.e., the number of people moving between 

areas, and use the resulting coordinates to construct the smooth spatial surface. Note that MDS 

requires the continuous measure of connectivity to be symmetric. In the case of human 
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movement, this means the number of people moving in one direction is assumed to be equal to 

the number travelling in the opposite direction. 

 

Continuous measures of human movement-based connectivity can include observed data, such 

as the number of air travel passengers, or can be estimated using movement models, such as 

gravity and radiation models [9,10], that assume the number of people moving between areas 

is a function of population and distance. To imitate these movement models, we used 

smoothing splines to investigate the relationship between ‘connectedness’, distance and 

population. In Brazil, the Regiões de Influência das Cidades [Regions of Influence of Cities] 

(REGIC) study aims to recreate the Brazilian urban network which explains the movement of 

people, goods, and services around the country [11]. Based on a survey of residents, the study 

produced a binary matrix classifying all cities within Brazil as either 'connected' or not in 2018 

(Figure D3). We used a logistic generalised additive model to estimate the relationship between 

the binary measure of connectedness, and the Euclidean distance and population in each city: 

 

𝑐𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑗) 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗) =  𝛼 + 𝑓(𝑑𝑖,𝑗, 𝑟𝑖, 𝑟𝑗) 

 

Where 𝑝𝑖,𝑗 is the probability that cities i and j are connected, 𝑐𝑖,𝑗 was the binary connectedness 

indicator taken from the REGIC study, 𝑓(𝑑𝑖,𝑗, 𝑟𝑖, 𝑟𝑗) is a 3-dimensional tensor smoothing spline 

applied to the Euclidean distance between cities (𝑑𝑖,𝑗) and the populations in city i (𝑟𝑖) and city 

j (𝑟𝑗). Tensor smoothing splines allow interactions between covariates measured on different 

scales (in this example, population and distance) [12]. The model was implemented using the 

mgcv package [13] using restricted maximum likelihood (REML), allowing for Bayesian 

interpretation of the results [14,15]. The predicted probability that cities are connected (𝑝𝑖,𝑗) 

was extracted from the model by taking simulations from the posterior distribution. MDS was 

applied to the predicted probabilities to produce a coordinate system describing the relative 

connectivity of municipalities based on human movement.  
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Figure D3: Connections between municipalities in South Brazil extracted from the 

REGIC 2018 study [11]. 

 

D1.3 Simulation study: a single source of human movement-based spatial 

structure 

In this section, we present a simulation study with a single source of spatial connectivity in the 

data, arising due to human movement. 

 

D.1.3.1 Data generation 

Fictitious disease data was generated from a Poisson distribution for each of the 1,013 

municipalities in South Brazil: 

 

𝑦𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸(𝑦𝑖)) 

 

𝑙𝑜𝑔(𝐸(𝑦𝑖))  =  𝑙𝑜𝑔(𝜉𝑖)  +  𝛼 + 𝑆𝑖    (3)   

 

 

Where 𝑦𝑖 is the number of cases in municipality i,, 𝐸(𝑦𝑖) is the expected count, and 𝜉𝑖 is an 

offset term set to the population divided by 100,000 so that 𝑦𝑖/𝜉𝑖 is the incidence rate per 
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100,000 residents for municipality i. 𝛼 = 0 is the intercept, or baseline risk, and 𝑆𝑖 is the 

underlying spatial structure of the data: 

 

𝑆𝑖 = √𝜙 ∙ 𝑠𝑚(𝑥𝑖, 𝑧𝑖) + √(1 − 𝜙) ∙ 𝜀𝑖    (4) 

 

Where 𝜙 is a mixing parameter that determines the relative contribution of a spatially 

structured surface, 𝑠𝑚(𝑥𝑖, 𝑧𝑖), and an unstructured random term, 𝜀𝑖 ~ 𝑁(0, 1). 𝑠𝑚(𝑥𝑖, 𝑧𝑖) is a 

smooth function applied to human movement-based connectivity coordinates, defined above, 

which emulates a spatially structured surface (taken from [12]): 

 

𝑠𝑚(𝑥, 𝑧) = 𝜋𝜎𝑥𝜎𝑧 (1.2𝑒−(𝑥−0.2)2/𝜎𝑥
2−(𝑧−0.3)2/𝜎𝑧

2
+ 0.8𝑒

−(𝑥−0.7)2

𝜎𝑥
2 −

(𝑧−0.8)2

𝜎𝑧
2

)   (5) 

 

𝜎𝑥 = 0.3,   𝜎𝑧 = 0.4 

 

The smooth function was centred around 0 by subtracting the overall mean from each value. 

11 simulated datasets were produced using equation (3), setting values of 𝜙 between 0 and 1 

at intervals of 0.1 (Figure D4). 
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a) 

 
b) 
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c) 

 
 
Figure D4: Simulated disease counts (left) and spatial random effects (right) under a 

human movement-based structure using different spatial structure combinations. The 

number of cases simulated from a Poisson model and the underlying spatial structure where 

the data has a) no spatial structure (𝜙 = 0), b) a human movement-based structure only (𝜙 =

1), and c) equal contribution of both structures (𝜙 = 0.5). Note that the number of cases is 

shown on the log scale. 

 

D.1.3.2 Modelling approach  

A spatial Poisson model containing spatially structured and unstructured random effects was 

applied to each simulated dataset: 

 

𝑦𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸(𝑦𝑖)) 

 

𝑙𝑜𝑔(𝐸(𝑦𝑖)) = 𝑙𝑜𝑔(𝜉𝑖) +  𝛼 + 𝑢𝑖 + 𝑣𝑖      (6) 

 

𝑢𝑖 is a spatially structured random term, created by applying a thin plate regression spline to 

human movement-based coordinates generated using MDS (see section S2). 𝑣𝑖 is a spatially 

unstructured term, expected to follow a zero-mean normal distribution, representing 

heterogeneity between regions. The smooth surface used to structure 𝑢𝑖 was generated using 

the mgcv package and extracted using the jagam function [13,16]. Models were implemented 

using MCMC via NIMBLE [1,17]. The relative contribution of each random term to the overall 
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marginal variance was calculated from simulations and compared to the known value of 𝜙 used 

to generate the data (see equation (4)). 

 

D.1.3.3 Results 

The 95% credible interval of the estimated intercept contained the true value of zero for all but 

one of the simulations (Figure D5). The proportion of the random effect variance explained by 

the structured term provided an accurate estimate of the known contribution from each 

simulation (Figure D6), showing that alternative spatial structures can be considered within the 

proposed modelling framework. Multidimensional scaling allows coordinate systems to be 

derived from any continuous measure of connectivity, allowing assumptions of connectivity 

beyond distance-based to be included and tested.   

 

 

 
Figure D5: Mean and 95% credible interval of intercept coefficient estimates compared 

to the true simulated value, 0. 
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Figure D6: The mean and 95% credible interval of estimated 𝝓 values compared to the 

known value. Estimated 𝜙 values are calculated using the proportion of the random effect 

variance explained by the spatially structured term. 

 

D.1.4 Simulation study: spatial modelling of binary data 

Although the primary purpose of this paper is to develop a modelling framework compatible 

with count data, the smoothing spline approach could be used to structure random terms for 

other models, such as logistic models for binary outcomes. In this simulation study, we 

compare the proposed penalised smoothing spline approach to INLA's BYM2 model applied 

to a generated binary response. 

 

D.1.4.1 Data generation 

Binary response data, 𝑦𝑖, was generated for each of South Brazil's 1,013 municipalities from a 

binomial distribution with 20 trials or events, with a distance-based spatial structure: 

 

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖, 20), 
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𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
)  =  𝛽 + 𝑆𝑖   (7)  

 

Where 𝛽 is an intercept set to 0, 𝑝𝑖 is the probability of an event, and 𝑆𝑖 is the spatial structure 

of the data, defined as: 

 

𝑆𝑖 = √𝜙 ∙ 𝑠𝑚(𝑥𝑖 , 𝑧𝑖) + √(1 − 𝜙) ∙ 𝜀𝑖  

 
Where 𝜙 is a mixing parameter defining the relative contribution of a spatially structured term, 

𝑠𝑚(𝑥𝑖, 𝑧𝑖), and an unstructured term, 𝜀𝑖 ~ 𝑁(0,1). A smooth function, 𝑠𝑚 (see equation (5)), 

was applied to the coordinates of the centroid of municipalities that were scaled to take values 

between 0 and 1. 𝑠𝑚(𝑥𝑖, 𝑧𝑖) was centred around 0 by subtracting the overall mean from each 

value. 11 simulated datasets were produced by setting 𝜙 values between 0 and 1 at intervals of 

0.1 (Figure D7). 
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a) 

 
b) 
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c) 

 
Figure D7: Simulated data (left) and probability of an event (right) under a distance-based 

structure using different spatial structure combinations. The number of events simulated from 

a binomial model and the probability of an event where the data has a) no spatial structure 

(𝜙 = 0), b) a distance-based structure only (𝜙 = 1), and c) equal contribution of both 

structures (𝜙 = 0.5).  

 
D.1.4.2 Modelling approach 

Two logistic models containing spatially structured and unstructured random effects were 

applied to each simulated dataset: 

 

𝑦𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖, 20) 

 

𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
)  =  𝛼 + 𝑢𝑖 + 𝑣𝑖     (8) 

 

𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
)  = 𝛼 +

1

𝜏
(√𝜙𝑢∗𝑖 + √1 − 𝜙𝑣∗𝑖)   (9) 

 

In model (8), 𝑢𝑖 is a spatially structured random term representing spatial connectivity within 

the data, created be applying a thin plate regression spline to coordinates of the centroid of each 

municipality. 𝑣𝑖 is a spatially unstructured term, expected to follow a zero-mean normal 

distribution, representing heterogeneity between regions. This spatial smooth model was 

compared to a CAR-based random effect model using R-INLA’s BYM2 model specification, 
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given in equation (9) [4,18,19]. Here, 𝑢∗𝑖 is a spatially structured random effect assuming a 

CAR structure, where municipalities are considered connected if and only if they share a 

border. 𝑣∗𝑖 are unstructured random effects, and 𝜙 are mixing parameters that measure the 

relative contribution of the structured and unstructured random effects to the overall marginal 

variance (
1

𝜏2) of the random effect. The penalised smoothing spline structure was generated 

using R's mgcv package [20] and extracted using the jagam function [16]. Spatial smooth 

models were implemented using Markov chain Monte-Carlo (MCMC) simulations in R via the 

NIMBLE package [1]. The CAR model was created using INLA's BYM2 model [18,21].  

 

We compared model performance between the spatial smooth and BYM2 models using 

receiver operating characteristic (ROC) curves, a comparison of the true positive and true 

negative rates, the Brier score, the mean squared difference between the predicted probability 

and observed outcomes, and WAIC. Higher values of area under the ROC (AUROC) curve 

and lower values of the Brier score and WAIC indicate a better model fit. The proportion of 

the random variance attributed to the spatially structured term was calculated from the 

smoothing spline model and compared to estimates of 𝜙 extracted from the INLA model output 

and the known values for each simulation. 

 
D.1.4.3 Results 

Model comparison statistics AUROC were almost equivalent between the spatial smooth and 

BYM2 models, while the Brier scores and WAIC values preferred the spatial smooth models 

(Table D2), indicating that the spatial smooth model performs as well (if not better) than one 

of the current standard approaches. This shows that the smoothing spline structure provides an 

alternative to CAR-based structures in binomial models as well as models for count data, 

particularly when the full spatial structure may not be fully understood or where the structure 

is neither stationary nor isotropic. Both models were able to accurately estimate the intercept 

coefficient (Figure D8). 
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Table D2: Model comparison statistics and mean estimates of the mixing parameter, 𝝓, 

from the smoothing spline and INLA BYM2 models. Area under the receiver operating 

characteristic curve (AUROC), Brier score, WAIC, and 𝜙 estimates extracted from logistic 

models fitted to simulated data using smoothing splines or INLA's BYM2 model to structure 

random effects. The optimal goodness-of-fit statistic is given in bold, that is, the highest 

AUROC, the lowest Brier score and WAIC, and the 𝜙 estimate closest to the value used in 

each simulation. 

𝜙 

Smoothing spline model INLA BYM2 model 

AUROC Brier 
score 

WAIC 𝜙 
estimate 

AUROC Brier 
score 

WAIC 𝜙 
estimate 

0 0.764 0.199 4937.1 0.008 0.764 0.246 5084.4 0.014 

0.1 0.764 0.199 4932.8 0.077 0.764 0.247 5075.3 0.126 

0.2 0.762 0.2 4926.1 0.204 0.762 0.246 5053.6 0.283 

0.3 0.763 0.199 4909.4 0.278 0.764 0.246 5031.1 0.358 

0.4 0.759 0.201 4906.1 0.373 0.759 0.246 5002.8 0.457 

0.5 0.758 0.201 4884.1 0.487 0.758 0.247 4967.6 0.533 

0.6 0.749 0.204 4849.7 0.615 0.749 0.247 4906.3 0.682 

0.7 0.749 0.204 4806.5 0.71 0.75 0.248 4857.2 0.747 

0.8 0.754 0.202 4733.2 0.797 0.754 0.245 4756.5 0.934 

0.9 0.751 0.203 4645.8 0.877 0.754 0.246 4626.3 0.976 

1 0.733 0.208 4289.2 0.995 0.748 0.246 4324.6 0.998 
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Figure D8: Mean and 95% credible interval of the intercept coefficient estimates from 

the smoothing spline (black) and BYM2 (blue) models, compared to the true simulated 

value, 0. 

 

The proportion of the random effect variance explained by the spatially structured term in the 

smoothing spline model provided an accurate estimation of the true value from simulations 

(Figure D9). This value was comparable to the 𝜙 hyperparameter extracted from the BYM2 

model using INLA and can therefore be interpreted in a similar way.  
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Figure D9: The mean and 95% credible interval of estimated 𝝓 values extracted from the 

smoothing spline (black) and INLA BYM2 (blue) models compared to the known value. 

Estimated 𝜙 values for the smoothing spline model were calculated using the proportion of the 

random effect variance explained by the spatially structured term and were extracted from 

INLA output for the BYM2 model. 

 

D1.5 Simulation study: binary data with two sources of spatial structure 

The binomial simulation study above was extended to also include a source of human 

movement-based connectivity. 

 

D1.5.1 Data generation     

Binary response data, 𝑦𝑖, was generated for each of South Brazil's 1,013 municipalities from a 

binomial distribution with 20 trials or events, using the same process as simulation study in 

Section S3, but with an extended spatial structure: 

 

𝑆𝑖 = √𝜙1 ∙ 𝑠𝑚(𝑎𝑖, 𝑏𝑖) + √𝜙2 ∙ 𝑠𝑚(𝑐𝑖, 𝑑𝑖) + √𝜙3 ∙ 𝜀𝑖   (10)    

 

𝜙1  +   𝜙2 + 𝜙3 = 1 
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𝑠𝑚 is a smoothing function (equation (5)), applied to scaled coordinates of the centroid of 

municipalities, 𝑎𝑖 and 𝑏𝑖, to create a distance-based smooth term, and applied to human 

movement-based connectivity coordinates, 𝑐𝑖 and 𝑑𝑖, derived using multidimensional scaling 

and the Brazilian REGIC study [11] as described previously. 𝜀𝑖 is a random draw from a normal 

distribution (𝜀𝑖  ~ 𝑁(0, 1)), representing heterogeneity between municipalities. 𝜙1,  𝜙2 and 𝜙3 

are mixing parameters which define the relative contribution of the spatially structured and 

unstructured terms to the underlying spatial surface. 𝜙3was fixed at 0.2, 𝜙1and 𝜙2 took values 

between 0 and 0.8 at intervals of 0.1 to create 9 simulated datasets (Figure D10). 

 

 
 

Figure D10: Simulated data (left) and probability of an event (right) containing two 

sources of spatial structure. An example of simulated data used to test the model, where 𝜙1 =

0.4, 𝜙2 = 0.4, and 𝜙3 = 0.2. 

 
D1.5.2 Modelling approach 

A logistic model containing two spatially structured random terms and one unstructured 

random terms was applied to each simulated dataset: 

 

𝑦𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖, 20) 

 

𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
)  =  𝛽 + 𝑢1,𝑖 + 𝑢2,𝑖 + 𝑣𝑖      (11) 
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Where 𝑢1,𝑖 is a distance-based spatially structured random term, created by applying a thin 

plate regression spline to the coordinates of the centroid of municipalities. 𝑢2,𝑖 is a human 

movement-based spatially structured random term, created by applying a thin plate regression 

spline to coordinates describing relative connectivity between municipalities based on human 

movement (see Section D1.2). 𝑣𝑖 is a spatially unstructured term, expected to follow a zero-

mean normal distribution, representing heterogeneity between municipalities. Spatially 

structured terms were generated using R's mgcv package [20] and extracted using the jagam 

function [16]. Spatial smooth models were fitted using Markov chain Monte-Carlo (MCMC) 

simulations in R via the NIMBLE package [1]. 

 
D1.5.3 Results 

The extended spatial model was able to accurately estimate the intercept coefficient for each 

simulated dataset (Figure D11). The ability for each model to detect the contribution of each 

spatial structure to the random effects varied across simulated datasets and between 

assumptions of connectivity (Figure D12). Although the model estimates were able to detect 

increases in the contribution of these structures, the estimates and 95% credible intervals did 

not always contain the true mixing parameter values from the simulation. In particular, this 

model underestimated the contribution of human movement to the spatial structure and 

attributed this to either distance-based or independent, unstructured terms for larger values of 

𝜙2 (Figure D12). Therefore, as with the INLA BYM2 models compared previously, care 

should be taken when interpreting the estimates of the mixing parameters. 
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Figure D11: Mean and 95% credible interval of the intercept coefficient estimates, 

compared to the true simulated value, 0 (sorted by 𝝓𝒉𝒖𝒎𝒂𝒏). 
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a) 

 
 
b) 
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c) 

 
 
Figure D12: Mean and 95% credible interval of the proportion of variance of the random 

effects explained by a) the distance-based structure, b) the human movement-based 

structure, and c) unstructured random terms. Dashed lines represent the true value from 

simulations. 
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D.2 Supplementary figures 
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Appendix E: Supplementary Material Chapter 

5 

E.1 Supplementary figure 

  

 
 
Figure E1: Human movement-based coordinates describing the connectivity between 

municipalities based on the number of residents moving between them. A coordinate 

system created by applying multidimensional scaling to the proportion of residents moving 

between municipalities. Dots closer together represent municipalities that experience more 

movement between them. 

 


