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ABSTRACT
Importance: There is growing recognition that recent global increases in obesity are the product of a complex interplay between individual genetic and environmental factors. However, in gene-environment studies of obesity, ‘environment’ usually refers to individual behavioural factors that influence energy balance, while more upstream environmental factors are overlooked.
Objectives: To investigate interactions between genetic risk of obesity and neighbourhood characteristics likely to be associated with overweight and obesity (proximity to fast food and availability of physical activity facilities) in relation to BMI.
Design: Population-based cross-sectional study using objective measures of BMI and food and physical activity environments near home, and polygenic risk scores and individual SNPs associated with BMI. 
Setting: United Kingdom
Participants: 332,174 adults aged 40-70 in the UK Biobank cohort
Main outcome measures: Body Mass Index
Results: The association between proximity to fast-food and BMI was stronger among those at increased genetic risk of obesity, with evidence of an interaction with polygenic risk scores (P=0.017) and in particular with a SNP linked to MC4R (P=0.009), a gene known to regulate food intake. We found no evidence of a gene-environment interaction for availability of physical activity facilities. 
Conclusions: Individuals at an increased genetic risk of obesity may be more sensitive to exposure to the local fast-food environment.   
 




BACKGROUND
Obesity has a heritable component1, but the rapid rise in global obesity prevalence suggests an important role for environmental influences2. However, individuals may have differing physiological or behavioural responses to the increasingly ‘obesogenic’ environment, suggesting that a complex interplay between genetic and non-genetic factors affects weight3,4. 
Advances in genotyping technologies have enabled the investigation of gene-environment (GxE) interactions4,5. For obesity outcomes, the ‘environment’ in GxE studies is often operationalised as the lifestyle or behavioural factors that influence energy balance6, rather than more upstream features of the built and natural environment; the settings where behavioural ‘choices’ are made and constrained. Despite long being recognised in social epidemiology as potentially important determinants of weight status, these ‘socio-ecological’ environmental factors have been examined in only a small number of GxE studies7–11.
The residential environment comprises many features that potentially influence energy balance. These include the proximity, density and relative proportions of healthy and unhealthy food retailers12–14, and resources for physical activity (PA), such as leisure centres, swimming pools, gyms and sports fields15–18. Other neighbourhood features linked to energy balance include walkability, access to public transport and local resources such as public parks and greenspace19,20. If the genetic risk of obesity modifies the influence of these neighbourhood exposures, we would expect to observe differential effects of the residential environment on BMI according to level of genetic risk. The influence of the environment may be strongest in people with high genetic risk due to increased sensitivity to external factors21,22, or it may be strongest in people with low genetic risk, who maximise their genetic ‘advantage’ within a healthier environment while those at greater risk express a higher BMI phenotype regardless of environmental factors6.
In this study we use the UK Biobank cohort to examine whether genetic risk of obesity modifies the effect of two residential environment exposures likely to influence BMI: proximity to fast-food and availability of formal PA facilities. We operationalise genetic risk in two ways. First, using polygenic risk scores derived from single nucleotide polymorphisms (SNPs) linked to BMI, and second, using the individual SNPs most strongly linked to BMI and thought to be involved in diet or PA pathways. 

METHODS
Data
We used baseline data from UK Biobank (project 17380)23. Data were potentially available from 502,656 individuals who visited 22 UK Biobank assessment centres across the UK between 2006 and 2010. Individuals aged 40–69 years living within 25 miles of an assessment centre and listed on National Health Service (NHS) patient registers were invited to participate. 
Linked to UK Biobank is UKBUMP, a high-resolution spatial database of objectively measured characteristics of the physical environment surrounding each participant’s residential address, derived from multiple national spatial datasets24. Environmental measures include densities of various land uses and proximity to various health-relevant resources. Measures for the current study are available for 96% of the UK Biobank sample. 
Genome-wide genetic data are available for 488,363 participants. Genetic data are missing from the remaining 3% of the sample as insufficient DNA was extracted from blood samples for genotyping assays. Procedures used to derive the genetic data and undertake quality assurance are reported in Bycroft et al25. Genetic data were downloaded, decrypted and linked to participant IDs. Data for the relevant SNPs were extracted for use in analysis.
Outcome 
Body Mass Index (BMI, kg/m2) was calculated from weight and height measurements collected by trained staff using standard procedures23. The variable was normally distributed and analysed as a continuous outcome variable.
Neighbourhood exposures 
We examined interactions between genetic risk and two neighbourhood characteristics likely to influence BMI: availability of formal PA facilities (number of indoor and outdoor sporting and leisure facilities within a one-kilometre street-network distance of an individual’s home) and fast-food proximity (distance in metres to nearest takeaway/fast-food outlet). Greater neighbourhood availability of PA facilities may influence BMI through increased opportunities for physical activity, while greater distances from home to fast-food outlets may influence BMI by reducing access to fast food26,27.  In prior analyses we found both were associated with BMI in the expected direction15. Both exposures were analysed as continuous variables, with higher values of each (more facilities; greater distance to nearest fast-food outlet) representing lower exposure. Due to the positively skewed distribution of these variables, number of PA facilities was capped at 15 (<1% recoded from >15) and distance to nearest fast-food outlet was log transformed (base 10) such that regression coefficients were interpreted as the mean difference in BMI associated with a 10-fold increase in distance to nearest fast-food outlet e.g. 100 metres to  one kilometre. In the UKBUMP dataset only fast-food proximity measures are present, and although there is evidence that alternate measures of the food environment (e.g. count of fast-food facilities; relative density of healthy and unhealthy stores) may be superior to proximity measures28, the two have been shown to be correlated in the UK29.  
Genetic risk scores and individual SNPs 
A recent genome-wide association study (GWAS) identified 97 SNPs associated with BMI30. Of these, 77 SNPs were identified in a primary meta-analysis of studies of individuals of European descent, and a further 20 SNPs from secondary meta-analyses of studies of regional, sex-stratified or non-European-descent populations. Of the 97 SNPs, one (rs12016871) was unavailable in UK Biobank. In a study of UK Biobank participants of White British ancestry, Tyrrell et al31 tested interactions between genetic risk and behavioural exposures using a genetic risk score (GRS) derived only from the SNPs identified in the primary meta-analysis. They excluded a further six SNPs on the basis of linkage disequilibrium with other SNPs (rs17001654, rs2075650 and rs9925964) and possible pleiotropy (rs11030104, rs3888190, rs13107325), both of which may produce bias in associations between the genetic risk score and the outcome, and in interaction analyses32. Here we apply those restrictions, but include one additional SNP identified in the GWAS that has become available (rs2033529), giving a total of 70 SNPs. We also constructed an alternative GRS including additional SNPs identified in the secondary meta-analyses, using 90 SNPs in total. Full lists of the SNPs included in each GRS are provided in Supplementary Table 1.
The GRSs were constructed by summing the number of BMI-increasing alleles across the set of 70 or 90 loci, and weighting the allele count at each SNP by its published effect size30. Thirty-eight percent of the sample had a missing genotype for at least one SNP in the 70-SNP GRS (74% missing one; 18% missing two) and 50% were missing genotype data for at least one SNP in the 90-SNP GRS (66% missing one; 23% missing two). To maximise the available sample for analyses, we imputed missing genotypes using the mean allele count for a given SNP within quintiles of BMI. We only imputed data for individuals missing data for a maximum of two SNPs. The remaining 3-6% of the sample with missing genotypes for three or more SNPs were excluded.      
From the literature we identified individual SNPs with a well-established link to obesity and the largest published effect sizes (rs1558902 rs6567160 rs13021737, markers of the FTO, MC4R and TMEM18 genes respectively)1,30, and three SNPs recently linked to physical activity (rs13078960, rs10938397 and rs7141420, markers of CADM2, GNPDA2 NRXN3)33,34. We tested for interactions between the number of BMI-increasing alleles (0, 1 or 2) at each of these loci, and each neighbourhood variable. 
Covariates 
Models were adjusted for potential confounding by age, sex, educational attainment, household income, employment status, area deprivation (Townsend score), urban/non-urban status, and neighbourhood residential density and mutually adjusted for the other neighbourhood exposure. We also corrected for population stratification by adjusting for ten UK Biobank-provided genetic ancestry principal components from a genome-wide PCA of UK Biobank’s genetic data25.
Statistical analysis & analytic sample
Accounting for the nested structure of the data (individuals within assessment areas), we used mixed effects models with a random coefficient for the neighbourhood exposure and assuming an unstructured variance/covariance matrix. Models included an interaction term between the neighbourhood exposure and the genetic risk score, with both analysed as continuous variables. BMI difference per unit change in the exposure was estimated for each quintile of genetic risk. The P value for the additive interaction term was interpreted as strength of evidence of effect modification. The marginal predicted values of BMI associated with different levels of each neighbourhood exposure from these models were plotted for the top and bottom quintile of genetic risk, to visualise observed effect heterogeneity according to genetic risk. A complete case analysis was used, restricted to UK Biobank participants of White British ancestry (defined by concordant self-report and PCA results for White British/Caucasian ancestry) for the primary analyses because the smaller GRS was limited to SNPs associated with BMI in analyses of individuals with European ancestry. Sample sizes for the 70-SNP and 90-SNP analyses were 332,174 and 326,698 respectively. Sample sizes for the analysis of GxE interactions with individual SNPs varied according to the extent of missing data at each locus, and are reported in Table 3. Analysis was performed using Stata SE v14.2 (Stata Corp, Texas USA).
Sensitivity analyses 
As the 90-SNP GRS included SNPs associated with BMI in populations of non-European descent, we undertook a sensitivity analysis which tested for an interaction with the 90-SNP GRS in a sample unrestricted by ethnicity to test generalisability to a more ethnically diverse population. 
Finally, although weighting of the polygenic risk scores is appropriate due to the varying degree to which each SNP is associated with BMI, we performed sensitivity analyses using an unweighted version of each GRS.  Evidence of a GxE interaction using unweighted scores is expected to be weaker, due to dilution of the effects of the more influential SNPs.
Ethics
UK Biobank has ethical approval from the North West Multi-centre Research Ethics Committee (reference 16/NW/0274), the Patient Information Advisory Group (PIAG), and the Community Health Index Advisory Group (CHIAG). Additional ethical approval for the specific study was obtained from the London School of Hygiene and Tropical Medicine’s Research Ethics Committee in September 2016 (reference 11897).

RESULTS
The sample was 52.2% female, with a mean age of 56.5 years (range 40-70 years at baseline). Mean BMI was 27.4 kg/m2 (SD=4.7), median distance to nearest fast-food outlet was 1170 metres and median number of PA facilities within one kilometre of home was one. Sample characteristics are summarised in Table 1. 
Using the two alternative weighted genetic risk scores, we observed evidence of an interaction between fast-food proximity and genetic risk (P=0.017 for the 70-SNP GRS, P=0.026 for the 90-SNP GRS). The magnitude of the estimated effect between fast-food proximity and BMI was small at all levels of genetic risk, but increased as genetic risk increased. In the highest quintile of genetic risk of obesity, each 10-fold increase in distance to the nearest fast-food store was associated with a 0.204kg/m2 lower mean BMI (95%CI: -0.339,-0.068), which was more than twice the magnitude of association in the lowest risk quintile (β=-0.078; 95%CI: -0.214,0.057) (Table 2; Figures 1 and 2).  
There was less evidence that the association between availability of PA facilities and BMI was modified by genetic risk. The magnitude of the association between number of formal PA facilities within 1km of home and BMI was similar at all levels of genetic risk, and while effect estimates did increase slightly with increasing genetic risk, differences between risk groups were small with weak evidence of interaction for the 70-SNP GRS (P=0.206) and 90-SNP GRS (P=0.195). For both environmental exposures, the results obtained from the two different weighted GRSs were substantively identical (Table 2).
Examination of interactions between neighbourhood variables and specific SNPs revealed strong evidence of one interaction: among people with higher risk allele counts at the marker of MC4R, which encodes the melanocortin-4 receptor previously shown to be important in the regulation of food intake, living nearer to a fast-food store was more closely associated with higher BMIs than it was among people with fewer risk alleles at this locus (Pinteraction=0.009, Table 3; Figure 3). Some evidence of an interaction between fast-food proximity and rs1558902, the marker of the FTO gene (P=0.067), where again the higher risk group showed a stronger association between fast-food proximity and BMI was observed. We also observed some evidence of a GxE interaction between the availability of PA facilities and rs13021737  (in the TMEM18 gene) (P=0.076). In this case, increased genetic risk attenuated the association between availability of PA facilities and BMI (Figure 3).
In sensitivity analyses, interactions between fast-food proximity and genetic risk were – as expected – weaker when the genetic risk scores were not weighted by the effect sizes of the component SNPs, with mean differences in BMI more similar across levels of genetic risk than we observed using the weighted score (Supplementary Table 1). Expanding the sample to include non-White ethnicities, we observed slightly increased P-values for the interaction terms but otherwise no substantive difference from the primary analysis (Table 4).

DISCUSSION
In UK Biobank we found evidence that genetic risk of obesity modifies sensitivity to the neighbourhood food environment, though effects are small. We found that people at higher genetic risk of obesity have higher average BMI the closer they live to a fast-food outlet, whereas for those at low genetic risk of obesity, distance to the nearest fast-food outlet does not appear to be associated with BMI. In contrast, an overall negative association between neighbourhood availability of PA facilities and BMI varies very little across levels of polygenic risk.
The observed gene-environment interaction for fast-food proximity using polygenic risk scores was supported by stronger evidence of an interaction between fast-food proximity and a specific SNP near MC4R, a gene known to be involved in regulation of food intake35. Previous research has linked MC4R specifically to binge eating36 although this remains contested37. We also observed some evidence of a possible interaction with a SNP marker of FTO, a gene with well-established links to obesity. While FTO has long been recognised as an obesity-associated locus, and has been implicated in central nervous system regulation of appetite, its exact function remains poorly understood1. In a study of gene-diet interactions, genetic risk scores for BMI were found to be associated with fried food consumption, and, consistent with our results, individual loci in or near both MC4R and FTO contributed to this38. 
Weak evidence for an interaction between genetic risk and the PA environment is consistent with findings from a recent study in adolescents that found that availability of recreation facilities did not contribute to the attenuation by PA of genetic risk of obesity33. While overall genetic risk of obesity did not interact with the PA environment in our study, the weaker association we observed between the availability of PA facilities and BMI in those with more risk alleles at the TMEM18 locus suggests that some specific SNPs might. Further examination of other SNPs are warranted.  Lack of interaction with specific SNPs might be explained by the pathways they influence being less sensitive to environmental exposures. As the functional pathways by which most BMI-associated loci influence BMI remain poorly understood, it is difficult to speculate further.
[bookmark: _GoBack]Stronger evidence for interactions with specific SNPs highlights the lack of specificity of polygenic risk scores. While useful in exploratory studies, grouping all SNPs statistically associated with a complex phenotype such as BMI into a single score, regardless of the function of the genes they represent, may dilute or obscure important interactions. Scores based on known or putative biological mechanisms may prove more valuable, particularly for elucidating causal relationships. We observed almost identical results for both the 70-SNP and 90-SNP genetic risk scores, which suggests that the additional 20 SNPs contribute substantially more to these GxE interactions. Extending analysis to all ethnic groups resulted in similar findings suggesting results are broadly generalisable to a more diverse UK population, and/or that any interaction between the neighbourhood environment and the additional 20 SNPs was negligible in both populations.    
We have reported elsewhere that the main association between fast-food proximity and BMI in UK Biobank may be attenuated due to measurement error in the exposure15. Others have recently improved on the measure and found stronger associations in a regional sub-sample39. Also, proximity measures of the fast-food environment may produce smaller effect sizes than count or density measures28 and that measures of relative densities of healthy/unhealthy food stores may better capture food environment exposure40. However, in this study we were limited by the available measures. As main effect sizes are relatively small, even the reasonably strong interaction effects we observed translate to small differences between high and low risk groups. Given the likely measurement error and the distal and complex nature of the relationships under investigation, detecting even weak associations and small differences might point to potentially important processes. Here we examined only two characteristics of neighbourhood environments; others may also interact with genetic risk. For example, GxE interactions have recently been reported for neighbourhood walkability and obesity11, and neighbourhood deprivation and BMI10. Given that unhealthy characteristics of neighbourhoods often cluster together41, the combined effects of multiple ‘obesogenic’ features on those at increased genetic risk of obesity may be substantial.
Our findings provide evidence for a potentially important GxE interaction, but further confirmatory studies are required. Geographical genetic structure in the sample remains a risk, even after adjustment for ancestry components and geography. Such structure may induce spurious associations with polygenic risk scores42. GxE interactions are also sensitive to the scaling of environmental variables, and the power to detect a GxE interaction can depend on the main effect sizes, and distribution and measurement quality of the genetic and environmental variables43. It is important these analyses are replicated in other samples at lower risk of these biases. 
It is widely accepted that environmental factors are important in explaining the recent rise in the global prevalence of overweight and obesity. In this study, we find evidence that those at higher genetic risk of obesity may more sensitive to exposure to the residential fast-food environment. Ensuring that neighbourhood residential environments are designed to promote a healthy weight may be particularly important for those with genetic susceptibility for obesity.  
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Table 1. Characteristics of total sample and top and bottom quintile of 70-SNP genetic risk score
	
	70-SNP genetic risk score
	Total sample

	
	Quintile 1
(lowest risk of obesity)
	Quintile 5
(highest risk of obesity)
	

	Total number of participants
	64965
	67760
	332174

	
	
	
	

	BMI (kg/m2) (mean, SD)
	27.0 (4.5)
	27.8 (4.9)
	27.4 (4.7)

	
	
	
	

	Distance to nearest fast-food outlet (m) (median, IQR)
	1168 (634 - 2294)
	1177 (636 - 2289)
	1170 (630-2302)

	
	
	
	

	Number of PA facilities within 1km of home address (median, IQR)
	1 (0 - 3)
	1 (0 - 3)
	1 (0 - 3)

	
	
	
	

	Age (mean, SD)
	56.5 (8.0)
	56.6 (8.0)
	56.5 (8.0)

	
	
	
	

	Sex (female)
	34080 (52.5%)
	35200 (52.0%)
	173417 (52.2%)

	
	
	
	

	Income
	
	
	

	Less than 18,000
	14440 (22.2%%)
	15284 (22.6%)
	73910 (22.3%)

	18,000 to 30,999
	16713 (25.7%)
	17638 (26.0%)
	86200 (26.0%)

	31,000 to 51,999
	17068 (26.3%)
	17890 (26.4%)
	87952 (26.5%)

	52,000 to 100,000
	13342 (20.5%)
	13582 (20.0%)
	67313 (20.3%)

	Greater than 100,000
	3402 (5.2%)
	3366 (5.0%)
	16799 (5.1%)

	
	
	
	

	Education
	
	
	

	College or University degree
	21439 (33.0%)
	22000 (32.5%)
	109165 (32.9%)

	A levels/AS levels or equivalent
	7604 (11.7%)
	7979 (11.8%)
	38706 (11.7%)

	O levels/GCSEs or equivalent
	14644 (22.5%)
	15092 (22.3%)
	74353 (22.4%)

	CSEs or equivalent
	3652 (5.6%)
	3795 (5.6%)
	18541 (5.6%)

	NVQ or HND or HNC or equivalent
	4388 (6.8%)
	4587 (6.8%)
	22711 (6.8%)

	Other professional qualifications
	3335 (5.1%)
	3414 (5.0%)
	16824 (5.1%)

	None of the above
	9903 (15.2%)
	10893 (16.1%)
	51874 (15.6%)

	
	
	
	

	Employment status
	
	
	

	Paid employment or self-employed
	38689 (59.6%)
	40106 (59.2%)
	197572 (59.5%)

	Retired
	21405 (33.0%)
	22720 (33.5%)
	110167 (33.2%)

	Unable to work
	1846 (2.8%)
	1935 (2.9%)
	9372 (2.8%)

	Unemployed
	827 (1.3%)
	853 (1.3%)
	4197 (1.3%)

	Home duties/carer/student/other
	2198 (3.4%)
	2146 (3.2%)
	10866 (3.3%)

	
	
	
	

	Urbanicity (% urban dwelling)
	55155 (84.9%)
	57733 (85.2%)
	282046 (84.9%)

	
	
	
	

	Area deprivation† (mean, SD)
	-1.6 (2.9)
	-1.6 (2.9)
	-1.6 (2.9)

	
	
	
	

	Residential density* (median, IQR)
	1796 (1043 - 2920)
	1795 (1048 - 2910)
	1798 (1044 - 2918)


† 2001 Townsend index score
* Residential address points per 1km street-network bufferTable 2. Associations between neighbourhood variables and BMI, by quintile of genetic risk based on 70-SNP and 90-SNP risk scores 
	 
	70-SNP GRS (n=332,174)
	90-SNP GRS (n=326,698)

	 
	Quintile of genetic risk
	Mean BMI difference for unit increase in neighbourhood exposure
	P-interaction
	Quintile of genetic risk
	Mean BMI difference for unit increase in neighbourhood exposure
	P-interaction

	Fast-food proximitya,b
(log (base 10) of distance (m) to nearest fast-food outlet)
	Q1
	-0.078 (-0.214, 0.057)
	0.017
	Q1
	-0.086 (-0.219, 0.048)
	0.026

	
	Q2
	-0.116 (-0.244, 0.011)
	
	Q2
	-0.121 (-0.246, 0.003)
	

	
	Q3
	-0.140 (-0.266, -0.014)
	
	Q3
	-0.144 (-0.266, -0.021)
	

	
	Q4
	-0.164 (-0.291, -0.037)
	
	Q4
	-0.166 (-0.290, -0.042)
	

	
	Q5
	-0.204 (-0.339, -0.068)
	
	Q5
	-0.203 (-0.336, -0.070)
	

	Availability of PA facilitiesa,c 
(beta represents BMI difference for each additional facility)
	Q1
	-0.070 (-0.097, -0.044)
	0.206
	Q1
	-0.071 (-0.098, -0.044)
	0.195

	
	Q2
	-0.073 (-0.099, -0.047)
	
	Q2
	-0.074 (-0.100, -0.048)
	

	
	Q3
	-0.075 (-0.101, -0.049)
	
	Q3
	-0.076 (-0.102, -0.050)
	

	
	Q4
	-0.077 (-0.103, -0.051)
	
	Q4
	-0.078 (-0.104, -0.052)
	

	
	Q5
	-0.080 (-0.107, -0.053)
	
	Q5
	-0.081 (-0.108, -0.054)
	


a Regression models were adjusted for age (years), sex (male/female), highest education level attained (Degree; A level or equivalent; O level or equivalent; CSE or equivalent; NVQ/HND/HNC; other professional qualification; none of the above), annual household income (<£18,000; £18,000-£30,999; £31,000-£51,999; £52,000-£100,000; >£100,000), employment status (paid work, retired, unable to work, unemployed, other), area deprivation (Townsend score), urbanicity (urban/non-urban), neighbourhood residential density (count of residential features within a one-km street network buffer of home address, log transformed). 
b Also adjusted for availability of PA facilities. 
c Also adjusted for fast-food proximity. 
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Figure 1. Association between neighbourhood variables and BMI in the highest and lowest quintiles of genetic risk, based on 70-SNP Genetic Risk Score
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Figure 2. Association between neighbourhood variables and BMI in the highest and lowest quintiles of genetic risk, based on 90-SNP Genetic Risk Score


Table 3. Association between neighbourhood variables and BMI, testing interaction with number of risk alleles at selected loci 
	
	rs1558902 (FTO)

	
	P-interaction
	Homozygous low risk
(0 risk alleles)
	Heterozygous
(1 risk allele)
	Homozygous high risk
(2 risk alleles)

	Fast-food proximity (km)
	0.067
	-0.099 (-0.198, -0.001)
	-0.148 (-0.238, -0.059)
	-0.197 (-0.305, -0.088)

	PA facilities
	0.933
	-0.077 (-0.104, -0.050)
	-0.077 (-0.103, -0.051)
	-0.076 (-0.104, -0.049)

	
	rs6567160 (MC4R)

	
	P-interaction
	Homozygous low risk
(0 risk alleles)
	Heterozygous
(1 risk allele)
	Homozygous high risk
(2 risk alleles)

	Fast-food proximity
	0.009
	-0.096 (-0.188, -0.003)
	-0.177 (-0.271, -0.083)
	-0.258 (-0.386, -0.130)

	PA facilities
	0.606
	-0.078 (-0.104, -0.051)
	-0.075 (-0.102, -0.049)
	-0.073 (-0.103, -0.043)

	
	[bookmark: _Hlk527732282]rs13021737  (TMEM18)

	
	P-interaction
	Homozygous low risk
(0 risk alleles)
	Heterozygous
(1 risk allele)
	Homozygous high risk
(2 risk alleles)

	Fast-food proximity
	0.993
	-0.135 (-0.226, -0.043)
	-0.135 (-0.234, -0.036)
	-0.135 (-0.279, 0.008)

	PA facilities
	0.076
	-0.080 (-0.106, -0.053)
	-0.071 (-0.098, -0.043)
	-0.061 (-0.093, -0.030)

	
	rs13078960 (CADM2)

	
	P-interaction
	Homozygous low risk
(0 risk alleles)
	Heterozygous
(1 risk allele)
	Homozygous high risk
(2 risk alleles)

	Fast-food proximity
	0.114
	-0.159 (-0.252, -0.066)
	-0.108 (-0.205, -0.010)
	-0.056 (-0.192, 0.081)

	PA facilities
	0.419
	-0.076 (-0.102, -0.049)
	-0.079 (-0.106, -0.053)
	-0.083 (-0.114, -0.053)

	
	rs10938397 (GNPDA2)

	
	P-interaction
	Homozygous low risk
(0 risk alleles)
	Heterozygous
(1 risk allele)
	Homozygous high risk
(2 risk alleles)

	Fast-food proximity
	0.328
	-0.115 (-0.215, -0.015)
	-0.141 (-0.230, -0.052)
	-0.167 (-0.274, -0.061)

	PA facilities
	0.694
	-0.076 (-0.102, -0.049)
	-0.077 (-0.103, -0.051)
	-0.079 (-0.106, -0.051)

	
	rs7141420 (NRXN3)

	
	P-interaction
	Homozygous low risk
(0 risk alleles)
	Heterozygous
(1 risk allele)
	Homozygous high risk
(2 risk alleles)

	Fast-food proximity
	0.520
	-0.152 (-0.257, -0.048)
	-0.135 (-0.227, -0.043)
	-0.118 (-0.224, -0.012)

	PA facilities
	0.125
	-0.071 (-0.097, -0.044)
	-0.077 (-0.102, -0.051)
	-0.083 (-0.110, -0.056)
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Figure 3. Association between neighbourhood variables and BMI according to number of risk alleles at individual SNPs where P-for-interaction<0.10 (rs1558902 & rs6567160 for fast-food proximity; rs13021737 for availability of PA facilities)

Table 4. Results of sensitivity analyses using an expanded sample including observations from UK Biobank participants of non-White ethnicities

	 
	90-SNP weighted imputed GRS (N=373,691)

	
	Quintile of genetic risk
	Mean BMI difference for unit increase in neighbourhood exposure
	P-interaction

	Fast-food proximity
	Q1
	-0.089 (-0.211, 0.033)
	0.041

	(log (base 10) of distance (m) to nearest fast-food outlet)
	Q2
	-0.120 (-0.234, -0.007)
	

	
	Q3
	-0.139 (-0.251, -0.027)
	

	
	Q4
	-0.159 (-0.272, -0.045)
	

	 
	Q5
	-0.191 (-0.312, -0.069)
	

	Availability of PA facilities 
	Q1
	-0.068 (-0.095, -0.041)
	0.220

	(number of formal PA facilities within 1km of home address)
	Q2
	-0.071 (-0.097, -0.045)
	

	
	Q3
	-0.073 (-0.099, -0.047)
	

	
	Q4
	-0.074 (-0.100, -0.048)
	

	 
	Q5
	-0.077 (-0.104, -0.050)
	





Supplementary Table 1. SNPs included in each polygenic risk score
	SNP
	Chr
	Position
	Gene
	BMI-increasing allele
	Effect size 
(β coefficient per effect allele, SD units of BMI)
	Included in 70-SNP risk score
	Included in 90-SNP risk score
	Reason for exclusion30,31

	rs1558902
	16
	52,361,075
	FTO
	A
	0.0818
	Yes
	Yes
	

	rs17024393
	1
	109,956,211
	GNAT2
	C
	0.0658
	Yes
	Yes
	

	rs13021737
	2
	622,348
	TMEM18
	G
	0.0601
	Yes
	Yes
	

	rs6567160
	18
	55,980,115
	MC4R
	C
	0.0556
	Yes
	Yes
	

	rs11847697
	14
	29,584,863
	PRKD1
	T
	0.0492
	Yes
	Yes
	

	rs16851483
	3
	142,758,126
	RASA2
	T
	0.0483
	Yes
	Yes
	

	rs543874
	1
	176,156,103
	SEC16B
	G
	0.0482
	Yes
	Yes
	

	rs13107325
	4
	103,407,732
	SLC39A8
	T
	0.0477
	No
	No
	Possible pleiotropy

	rs1516725
	3
	187,306,698
	ETV5
	C
	0.0451
	Yes
	Yes
	

	rs2207139
	6
	50,953,449
	TFAP2B
	G
	0.0447
	Yes
	Yes
	

	rs11030104
	11
	27,641,093
	BDNF
	A
	0.0414
	No
	No
	Possible pleiotropy

	rs12446632
	16
	19,842,890
	GPRC5B
	G
	0.0403
	Yes
	Yes
	

	rs10938397
	4
	44,877,284
	GNPDA2
	G
	0.0402
	Yes
	Yes
	

	rs7899106
	10
	87,400,884
	GRID1
	G
	0.0395
	Yes
	Yes
	

	rs2287019
	19
	50,894,012
	QPCTL
	C
	0.0360
	Yes
	Yes
	

	rs11727676
	4
	145,878,514
	HHIP
	T
	0.0358
	Yes
	Yes
	

	rs16907751
	8
	81,538,012
	ZBTB10
	C
	0.0350
	No
	Yes
	Identified in secondary meta-analyses only

	rs3101336
	1
	72,523,773
	NEGR1
	C
	0.0334
	Yes
	Yes
	

	rs12429545
	13
	53,000,207
	OLFM4
	A
	0.0334
	Yes
	Yes
	

	rs2245368
	7
	76,446,079
	DTX2P1
	C
	0.0317
	Yes
	Yes
	

	rs7138803
	12
	48,533,735
	BCDIN3D
	A
	0.0315
	Yes
	Yes
	

	rs16951275
	15
	65,864,222
	MAP2K5
	T
	0.0311
	Yes
	Yes
	

	rs3888190
	16
	28,796,987
	ATP2A1
	A
	0.0309
	No
	No
	Possible pleiotropy

	rs11191560
	10
	104,859,028
	NT5C2
	C
	0.0308
	Yes
	Yes
	

	rs10182181
	2
	25,003,800
	ADCY3
	G
	0.0307
	Yes
	Yes
	

	rs11057405
	12
	121,347,850
	CLIP1
	G
	0.0307
	Yes
	Yes
	

	rs17001654
	4
	77,348,592
	SCARB2
	G
	0.0306
	No
	No
	Linkage disequilibrium

	rs12016871
	13
	26,915,782
	MTIF3
	T
	0.0298
	No
	No
	Unavailable in UK Biobank

	rs13078960
	3
	85,890,280
	CADM2
	G
	0.0297
	Yes
	Yes
	

	rs3810291
	19
	52,260,843
	ZC3H4
	A
	0.0283
	Yes
	Yes
	

	rs13191362
	6
	162,953,340
	PARK2
	A
	0.0277
	Yes
	Yes
	

	rs3817334
	11
	47,607,569
	MTCH2
	T
	0.0262
	Yes
	Yes
	

	rs2112347
	5
	75,050,998
	POC5
	T
	0.0261
	Yes
	Yes
	

	rs2075650
	19
	50,087,459
	TOMM40
	A
	0.0258
	No
	No
	Linkage disequilibrium

	rs17094222
	10
	102,385,430
	HIF1AN
	C
	0.0249
	Yes
	Yes
	

	rs10968576
	9
	28,404,339
	LINGO2
	G
	0.0249
	Yes
	Yes
	

	rs2121279
	2
	142,759,755
	LRP1B
	T
	0.0245
	Yes
	Yes
	

	rs12566985
	1
	74,774,781
	FPGT
	G
	0.0242
	Yes
	Yes
	

	rs7141420
	14
	78,969,207
	NRXN3
	T
	0.0235
	Yes
	Yes
	

	rs7903146
	10
	114,748,339
	TCF7L2
	C
	0.0234
	Yes
	Yes
	

	rs13201877
	6
	137,717,234
	IFNGR1
	G
	0.0233
	No
	Yes
	Identified in secondary meta-analyses only

	rs10132280
	14
	24,998,019
	STXBP6
	C
	0.0230
	Yes
	Yes
	

	rs1016287
	2
	59,159,129
	LINC01122
	T
	0.0229
	Yes
	Yes
	

	rs657452
	1
	49,362,434
	AGBL4
	A
	0.0227
	Yes
	Yes
	

	rs758747
	16
	3,567,359
	NLRC3
	T
	0.0225
	Yes
	Yes
	

	rs17405819
	8
	76,969,139
	HNF4G
	T
	0.0224
	Yes
	Yes
	

	rs205262
	6
	34,671,142
	C6orf106
	G
	0.0221
	Yes
	Yes
	

	rs7599312
	2
	213,121,476
	ERBB4
	G
	0.0220
	Yes
	Yes
	

	rs11165643
	1
	96,696,685
	PTBP2
	T
	0.0218
	Yes
	Yes
	

	rs12286929
	11
	114,527,614
	CADM1
	G
	0.0217
	Yes
	Yes
	

	rs7243357
	18
	55,034,299
	GRP
	T
	0.0217
	Yes
	Yes
	

	rs12401738
	1
	78,219,349
	FUBP1
	A
	0.0211
	Yes
	Yes
	

	rs17203016
	2
	207,963,763
	CREB1
	G
	0.0210
	No
	Yes
	Identified in secondary meta-analyses only

	rs4256980
	11
	8,630,515
	TRIM66
	G
	0.0209
	Yes
	Yes
	

	rs11126666
	2
	26,782,315
	KCNK3
	A
	0.0207
	Yes
	Yes
	

	rs12885454
	14
	28,806,589
	PRKD1
	C
	0.0207
	Yes
	Yes
	

	rs2650492
	16
	28,240,912
	SBK1
	A
	0.0207
	Yes
	Yes
	

	rs1167827
	7
	75,001,105
	HIP1
	G
	0.0202
	Yes
	Yes
	

	rs9914578
	17
	1,951,886
	SMG6
	G
	0.0201
	No
	Yes
	Identified in secondary meta-analyses only

	rs2365389
	3
	61,211,502
	FHIT
	C
	0.0200
	Yes
	Yes
	

	rs2176598
	11
	43,820,854
	HSD17B12
	T
	0.0198
	Yes
	Yes
	

	rs1460676
	2
	164,275,935
	FIGN
	C
	0.0197
	No
	Yes
	Identified in secondary meta-analyses only

	rs2820292
	1
	200,050,910
	NAV1
	C
	0.0195
	Yes
	Yes
	

	rs17724992
	19
	18,315,825
	PGPEP1
	A
	0.0194
	Yes
	Yes
	

	rs9925964
	16
	31,037,396
	KAT8
	A
	0.0192
	No
	No
	Linkage disequilibrium

	rs1000940
	17
	5,223,976
	RABEP1
	G
	0.0192
	Yes
	Yes
	

	rs2033732
	8
	85,242,264
	RALYL
	C
	0.0192
	Yes
	Yes
	

	rs9641123
	7
	93,035,668
	CALCR
	C
	0.0191
	No
	Yes
	Identified in secondary meta-analyses only

	rs2033529
	6
	40,456,631
	TDRG1
	G
	0.0190
	Yes
	Yes
	

	rs9400239
	6
	109,084,356
	FOXO3
	C
	0.0188
	Yes
	Yes
	

	rs3849570
	3
	81,874,802
	GBE1
	A
	0.0188
	Yes
	Yes
	

	rs1928295
	9
	119,418,304
	TLR4
	T
	0.0188
	Yes
	Yes
	

	rs6091540
	20
	50,521,269
	ZFP64
	C
	0.0188
	No
	Yes
	Identified in secondary meta-analyses only

	rs9374842
	6
	120,227,364
	LOC285762
	T
	0.0187
	No
	Yes
	Identified in secondary meta-analyses only

	rs6804842
	3
	25,081,441
	RARB
	G
	0.0185
	Yes
	Yes
	

	rs29941
	19
	39,001,372
	KCTD15
	G
	0.0182
	Yes
	Yes
	

	rs12940622
	17
	76,230,166
	RPTOR
	G
	0.0182
	Yes
	Yes
	

	rs7164727
	15
	70,881,044
	LOC100287559
	T
	0.0180
	No
	Yes
	Identified in secondary meta-analyses only

	rs4740619
	9
	15,624,326
	C9orf93
	T
	0.0179
	Yes
	Yes
	

	rs1528435
	2
	181,259,207
	UBE2E3
	T
	0.0178
	Yes
	Yes
	

	rs11583200
	1
	50,332,407
	ELAVL4
	C
	0.0177
	Yes
	Yes
	

	rs3736485
	15
	49,535,902
	DMXL2
	A
	0.0176
	Yes
	Yes
	

	rs1441264
	13
	78,478,920
	MIR548A2
	A
	0.0175
	No
	Yes
	Identified in secondary meta-analyses only

	rs6477694
	9
	110,972,163
	EPB41L4B
	C
	0.0174
	Yes
	Yes
	

	rs10733682
	9
	128,500,735
	LMX1B
	A
	0.0174
	Yes
	Yes
	

	rs11688816
	2
	62,906,552
	EHBP1
	G
	0.0172
	Yes
	Yes
	

	rs9540493
	13
	65,103,705
	MIR548X2
	A
	0.0172
	No
	Yes
	Identified in secondary meta-analyses only

	rs2080454
	16
	47,620,091
	CBLN1
	C
	0.0168
	No
	Yes
	Identified in secondary meta-analyses only

	rs1808579
	18
	19,358,886
	C18orf8
	C
	0.0167
	Yes
	Yes
	

	rs977747
	1
	47,457,264
	TAL1
	T
	0.0167
	No
	Yes
	Identified in secondary meta-analyses only

	rs6465468
	7
	95,007,450
	ASB4
	T
	0.0166
	No
	Yes
	Identified in secondary meta-analyses only

	rs2836754
	21
	39,213,610
	ETS2
	C
	0.0164
	No
	Yes
	Identified in secondary meta-analyses only

	rs7239883
	18
	38,401,669
	LOC284260
	G
	0.0164
	No
	Yes
	Identified in secondary meta-analyses only

	rs7715256
	5
	153,518,086
	GALNT10
	G
	0.0163
	No
	Yes
	Identified in secondary meta-analyses only

	rs4787491
	16
	29,922,838
	INO80E
	G
	0.0159
	No
	Yes
	Identified in secondary meta-analyses only

	rs492400
	2
	219,057,996
	USP37
	C
	0.0158
	No
	Yes
	Identified in secondary meta-analyses only

	rs2176040
	2
	226,801,046
	LOC646736
	A
	0.0141
	No
	Yes
	Identified in secondary meta-analyses only


Note: This table is derived from Locke et al (2015), with additional information from Tyrrell et al (2017).



Supplementary Table 2. Results of sensitivity analyses using unweighted genetic risk scores
	 
	70-SNP unweighted imputed GRS (n=332,174)
	90-SNP unweighted imputed GRS (n=326,698)

	 
	Quintile of genetic risk
	Mean BMI difference for unit increase in neighbourhood exposure
	P-interaction
	Quintile of genetic risk
	Mean BMI difference for unit increase in neighbourhood exposure
	P-interaction

	Fast-food proximity
	Q1
	-0.099 (-0.234, 0.036)
	0.091
	Q1
	-0.107 (-0.240, 0.026)
	0.151

	
	Q2
	-0.127 (-0.254, 0.000)
	
	Q2
	-0.130 (-0.255, -0.006)
	

	
	Q3
	-0.142 (-0.268, -0.016)
	
	Q3
	-0.144 (-0.267, -0.021)
	

	
	Q4
	-0.157 (-0.285, -0.030)
	
	Q4
	-0.159 (-0.283, -0.035)
	

	 
	Q5
	-0.185 (-0.321, -0.049)
	
	Q5
	-0.183 (-0.316, -0.049)
	

	PA facilities 
	Q1
	-0.070 (-0.096, -0.043)
	0.126
	Q1
	-0.070 (-0.097, -0.043)
	0.117

	
	Q2
	-0.073 (-0.099, -0.047)
	
	Q2
	-0.073 (-0.100, -0.047)
	

	
	Q3
	-0.075 (-0.101, -0.050)
	
	Q3
	-0.076 (-0.102, -0.050)
	

	
	Q4
	-0.077 (-0.103, -0.051)
	
	Q4
	-0.078 (-0.104, -0.052)
	

	 
	Q5
	-0.081 (-0.108, -0.054)
	
	Q5
	-0.082 (-0.109, -0.055)
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