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Typhoid fever is a potentially-life threatening systemic disease caused by Salmonella Typhi, a human-
restricted bacterium, spread through the faecal-oral route. Following a sustained rise in observed 
incidence in Fiji from 2004, in 2013, I undertook a nationally-representative cross-sectional serological 
survey of 1,531 participants to determine infection by age, assess putative risk factors, and quantify 
social contact patterns.  These data were utilised in the development of a transmission dynamic model.   

The literature indicated that typhoid transmission models are relatively under-utilised, particularly in 
economic evaluation, with little to guide use of vaccination in place of or alongside water, sanitation 
and hygiene (WASH). The serosurvey found that iTaukei and non-iTaukei Fijians have similar risk of 
raised IgG antibodies to the Vi antigen expressed by S. Typhi. Seroprevalence increased with age, 
suggestive of endemic transmission or declining incidence. Unimproved sanitation may increase risk of 
seropositivity. Geospatial analysis suggested rainfall, proximity to major rivers and creeks, or flood-
prone areas were risk factors for acquisition of anti-Vi IgG antibodies. Social mixing was assortative by 
ethnicity and age when assessed by mealtime contacts and highest in school-age children. Increasing 
number of age-adjusted contacts increases the odds ratio for being seropositive, though substantial 
uncertainties remain around the specificity and sensitivity of serological thresholds as indicators of 
past typhoid infection.  

An age- and ethnicity-structured transmission dynamic model fitted the serology and case surveillance 
data well when including a substantially reduced force of infection for high-dose infection being passed 
to non-iTaukei Fijians, and high generation of asymptomatic non-infectious cases per new infectious 
case. Surveillance reporting of infectious cases was estimated as one in five infectious adult cases and 
one in twelve infectious child cases. The fit to the data suggested endemic rather than declining 
transmission, and there was better fit with age-ethnic assortative mixing than with ethnically-
assortative or homogeneous mixing. 

Vaccine scenarios suggested that of single dose routine programmes, school entry could be more 
effective than school leaver vaccination, reflecting age-contact transmission probabilities in the model. 
Modest reduction (10%) in per-case infectious transmission through effective WASH programmes 
offered substantial incidence reductions of around 25%, comparable to two-dose (school entry and 
exit) ViPS vaccination programmes. Potential benefits of conjugate vaccines were projected to be 
similar to more effective WASH programmes, with administration alongside other vaccines in the 
second year of life projected to offer approximately 50% incidence reduction, the most benefit of any 
single dose regimen; with the impact being greater if typhoid carrier daily infectious risk is lower than 
the daily infectiousness of acute typhoid fever cases. 

Seroepidemiological investigations of Salmonella enterica serovar Typhi infection  
and the potential role of vaccination in the control of typhoid fever in Fiji 



4 
 

  

Table of Contents 

List of Figures .............................................................................................................................. 9 

List of Tables ............................................................................................................................. 12 

Abbreviations ............................................................................................................................ 15 

iTaukei pronunciation ............................................................................................................... 16 

Acknowledgements................................................................................................................... 17 

1. Introduction .......................................................................................................................... 19 

1.1 Background ..................................................................................................................... 19 

1.1.1 Typhoid fever ........................................................................................................... 19 

1.1.1.2 Epidemiology and modes of transmission of Typhoid (fever) .......................... 20 

1.1.1.2 Immunobiology of Salmonella Typhi ................................................................ 28 

1.1.2 Setting ...................................................................................................................... 33 

1.1.2.1 Ethnicity in Fiji ................................................................................................... 34 

1.1.2.2 Population structure ......................................................................................... 35 

1.1.2.3 WASH in Fiji ....................................................................................................... 36 

1.1.3 Typhoid in Fiji ........................................................................................................... 37 

1.1.4 International typhoid vaccination and control context ........................................... 39 

1.2 Research project and thesis ............................................................................................ 40 

1.2.1 Aims ......................................................................................................................... 40 

1.2.1.1 Serological study ............................................................................................... 41 

1.2.1.2 Social mixing study ............................................................................................ 42 

1.2.1.3 Transmission dynamic model ........................................................................... 42 

1.2.2 Thesis structure ........................................................................................................ 44 

1.2.3 Appendices and additional related research ........................................................... 45 

1.2.3.1 Additional research on typhoid ........................................................................ 45 

1.2.3.2 Additional Fiji-Pacific Research ......................................................................... 46 

1.2.3.3 Concurrent Unrelated Research ....................................................................... 48 

1.3 References ...................................................................................................................... 52 

Chapter 2. A review of typhoid fever transmission dynamic models and economic 

evaluations of vaccination. Watson CH, Edmunds WJ. Vaccine. 2015. 

doi:10.1016/j.vaccine.2015.04.013. ......................................................................................... 60 

2.1 Bridging section............................................................................................................... 60 

2.1.1 References ............................................................................................................... 61 

2.2 Introduction .................................................................................................................... 67 

2.3 Methods .......................................................................................................................... 68 

2.4 Results ............................................................................................................................. 70 



5 
 

2.4.1 Transmission dynamic models ................................................................................. 84 

2.4.2 Economic evaluation ................................................................................................ 86 

2.5 Discussion........................................................................................................................ 87 

2.6 Conclusion ....................................................................................................................... 91 

2.7 References ...................................................................................................................... 92 

Chapter 3. A cross-sectional seroepidemiological survey of typhoid in Fiji. Watson CH, Baker 

S, Lau CL, et al. PLoS Negl Trop Dis. 2017;11(7):e0005786. doi:10.1371/journal.pntd.0005786.

 .................................................................................................................................................. 96 

3.1 Serosurvey bridging section ............................................................................................ 96 

3.1.1 Introduction ............................................................................................................. 96 

3.1.2 Preliminary planning ................................................................................................ 96 

3.1.3 Design ....................................................................................................................... 97 

3.1.4 Serological testing plan ............................................................................................ 98 

3.1.5 Geographical coverage ............................................................................................ 99 

3.1.6 Funding and financial management ........................................................................ 99 

3.1.7 Field team recruitment .......................................................................................... 100 

3.1.8 Fieldwork plan ........................................................................................................ 101 

3.1.9 Ethical approval ...................................................................................................... 102 

3.1.10 Equipment procurement ..................................................................................... 102 

3.1.11 Training, questionnaire development and survey piloting .................................. 102 

3.1.12 Risk management................................................................................................. 103 

3.1.13 Permissions and consent ..................................................................................... 104 

3.1.14 Field implementation ........................................................................................... 106 

3.1.15 Patient cohort ...................................................................................................... 107 

3.1.16 Serum management............................................................................................. 107 

3.1.17 Serum analysis ..................................................................................................... 108 

3.1.18 Data management ............................................................................................... 108 

3.1.19 Data analysis ........................................................................................................ 109 

3.1.20 Dissemination ...................................................................................................... 109 

3.1.21 References ........................................................................................................... 110 

3.2 Introduction .................................................................................................................. 118 

3.3 Methods ........................................................................................................................ 121 

3.3.1 Ethics ...................................................................................................................... 121 

3.3.2 Study design ........................................................................................................... 121 

3.3.3 Sample size ............................................................................................................. 122 

3.3.4 Laboratory methods .............................................................................................. 123 

3.3.5 Data analysis .......................................................................................................... 123 



6 
 

3.4 Results ........................................................................................................................... 125 

3.5 Discussion...................................................................................................................... 132 

3.6 References .................................................................................................................... 136 

3.7 Supporting Information .................................................................................................... 143 

Chapter 4. Environmental factors drive the spatial distribution of Salmonella Typhi in Fiji: a 

Vi-antigen seroprevalence study. de Alwis R, Watson CH, Nikolay B, et al. Emerging Infectious 

Diseases. Under Rev. 2017. ..................................................................................................... 148 

4.1 Bridging section............................................................................................................. 148 

4.2 Introduction .................................................................................................................. 152 

4.3 Methods ........................................................................................................................ 153 

4.3.1 Study design ........................................................................................................... 153 

4.3.2 Survey data ............................................................................................................ 154 

4.3.3 Vi-specific serology ................................................................................................ 154 

4.3.4 Geospatial mapping and clustering ....................................................................... 155 

4.3.5 Environmental variables ........................................................................................ 155 

4.3.6 Multilevel mixed-effect logistic regression ............................................................ 156 

4.3.7 Boosted regression trees (BRT) modeling .............................................................. 158 

4.4 Results ........................................................................................................................... 158 

4.4.1 Detection of typhoid hotspot communities in Fiji ................................................. 158 

4.4.2 Multilevel univariable and multivariable analysis ................................................. 160 

4.4.3 Boosted Regression Tree modelling ...................................................................... 161 

4.5 Discussion...................................................................................................................... 162 

4.6 References .................................................................................................................... 165 

4.7 Technical Appendix ....................................................................................................... 167 

4.7.1 Technical appendix text ......................................................................................... 175 

Chapter 5. Social mixing in Fiji: who-eats-with-whom contact patterns and the implications 

of age and ethnic heterogeneity for disease dynamics in the Pacific Islands. Watson CH, 

Coriakula J, Dung TTN, et al .................................................................................................... 179 

5.1 Bridging section............................................................................................................. 179 

5.1.1 References ............................................................................................................. 181 

Author contributions .......................................................................................................... 183 

5.2 Introduction .................................................................................................................. 186 

5.3 Methods ........................................................................................................................ 188 

5.3.1 Ethics approval ....................................................................................................... 188 

5.3.2 Setting .................................................................................................................... 188 

5.3.3 Survey methods ..................................................................................................... 189 

5.3.4 Data analysis .............................................................................................................. 191 

5.4 Results ........................................................................................................................... 192 



7 
 

5.4.1 Study population .................................................................................................... 192 

5.4.2 Contact patterns .................................................................................................... 193 

5.4.3 Travel and internal migration patterns .................................................................. 198 

5.4.4 Animal ownership and contact .............................................................................. 199 

5.5 Discussion...................................................................................................................... 200 

5.6 References .................................................................................................................... 204 

5.7 Supplementary material ............................................................................................... 209 

5.7.1 Supplementary text. .............................................................................................. 213 

Chapter 6. Transmission dynamics of typhoid fever in Fiji: a model of vaccination and 

WASH. CH Watson, AJ Kucharski, WJ Edmunds ..................................................................... 219 

6.1 Bridging section............................................................................................................. 219 

6.2 Introduction .................................................................................................................. 222 

6.2.1 Aims ....................................................................................................................... 224 

6.3 Methods ........................................................................................................................ 224 

6.3.1 Ethics approval ....................................................................................................... 224 

6.3.2 Data sources ........................................................................................................... 224 

6.3.3 Model structure ..................................................................................................... 225 

6.3.4 Software ................................................................................................................. 229 

6.3.5 Demographics ........................................................................................................ 229 

6.3.6 Social contact ......................................................................................................... 230 

6.3.7 Model fitting .......................................................................................................... 231 

6.3.8 Surveillance reporting ............................................................................................ 232 

6.3.9 Carriage .................................................................................................................. 232 

6.3.9.1 Carriage sensitivity analysis ............................................................................ 233 

6.3.10 Natural immunity ................................................................................................. 233 

6.3.11 Control scenarios ................................................................................................. 233 

6.4 Results ........................................................................................................................... 235 

6.4.1 Model fit ................................................................................................................. 235 

6.4.1.1 Sensitivity analysis of model structure ........................................................... 239 

6.4.1.2 Sensitivity analysis of declining force of infection .......................................... 240 

6.4.1.2 Sensitivity analysis of carriage ........................................................................ 240 

6.4.2 Interventions .......................................................................................................... 241 

6.5 Discussion...................................................................................................................... 255 

6.6 References .................................................................................................................... 258 

6.7 Supplementary material ............................................................................................... 262 

Chapter 7. Discussion ............................................................................................................. 263 

7.1 References ................................................................................................................ 271 



8 
 

Appendix A1. Informed consent and questionnaire ............................................................. 275 

Appendix A2. Evaluating Typhoid Vaccine Effectiveness in Travelers' Vaccination. CH 

Watson. J Travel Med. 2015;22:76-77 .................................................................................... 288 

A2.1 Editorial ....................................................................................................................... 289 

A2.1.1 References ........................................................................................................... 292 

Appendix A3. Human Leptospirosis Infection in Fiji: An Eco-epidemiological Approach to 

Identifying Risk Factors and Environmental Drivers for Transmission. Lau CL, Watson CH, 

Lowry JH, et al.   PLoS Negl Trop Dis. 2016;10(1):e0004405. ................................................. 294 

A3.1 Introduction ................................................................................................................ 299 

A3.2 Methods ...................................................................................................................... 300 

A3.2.1 Study location and population ............................................................................ 300 

A3.2.2. Seroprevalence study and sampling design ....................................................... 301 

A3.2.3 Informed consent and ethics approvals .............................................................. 303 

A3.2.4 Data collection during field study ........................................................................ 304 

A3.2.5 Environmental, census, socio-demographic and livestock data .......................... 304 

A3.2.6 Stratification of independent variables ............................................................... 307 

A3.2.7 Maps .................................................................................................................... 307 

A3.2.8 Serological analysis .............................................................................................. 308 

A3.2.9 Statistical analysis ................................................................................................ 309 

A3.3 Results......................................................................................................................... 310 

A3.3.1 Study population ................................................................................................. 310 

3.3.2 Seroprevalence and serovars ................................................................................. 312 

A3.3.3 Risk factor analysis and multivariable models ..................................................... 315 

A3.3.4 Seroprevalence estimation chart using Model A ................................................ 319 

A3.4 Discussion ................................................................................................................... 320 

A3.5 References .................................................................................................................. 326 

A3.6 Supporting Information .............................................................................................. 328 

 

  



9 
 

List of Figures 
Figure 1.1. F-diagram ................................................................................................................ 22 

Figure 1.2. Fiji administrative map............................................................................................ 33 

Figure 1.3. Population pyramid of iTaukei Fijian and Indo-Fijians by age group. ..................... 35 

Figure 1.4 Typhoid fever notified case incidence 1995 to 2014 ............................................... 37 

Figure 1.5 Age- and ethnicity-specific incidence rates of laboratory confirmed typhoid in Fiji 

2008-11 ..................................................................................................................................... 38 

Figure 3.1 Field team outside a village hall ............................................................................. 101 

Figure 3.2 Questionnaire development .................................................................................. 103 

Figure 3.3. Public engagement through the Fiji Times ........................................................... 104 

Figure 3.4. Preparation of kava from ground yaqona ............................................................ 105 

Fig 3.5. Assistance from MOH zonal nursing staff .................................................................. 105 

Figure 3.6. Travel by 4-wheeled drive vehicle. ....................................................................... 106 

Figure 3.7. Travel by horse and raft to remote field sites ...................................................... 107 

Figure 3.7. Administrative Divisions and Cluster sites on mainland Fiji (Viti Levu and Vanua 

Levu) and Taveuni islands ....................................................................................................... 118 

Figure 3.8. Distributions of log10 anti-Vi IgG antibody titres in three Fijian groups. ............. 129 

Figure 3.9. Seroprevalence of anti-Vi IgG by age and ethnicity .............................................. 130 

Supplementary Figure S3.1. Serial anti-Vi IgG titres from convalescent confirmed typhoid 

cases ........................................................................................................................................ 143 

Figure 4.1. Geographical distribution of anti-Typhoid Vi seroprevalence in 2013 in Fiji. ...... 154 

Figure 2. Local clustering of typhoid seroprevalence within divisions in Fiji. ......................... 159 

Figure 4.3. Partial dependence plots for the four most influential variables in the BRT model 

for typhoid seropositivity. ....................................................................................................... 162 

Technical Appendix Figure TA4.1. Development of a flood-risk model.................................. 167 

Technical Appendix Figure TA4.2. Validation of the fitted multilevel mixed-effect logistic 

regression model. ................................................................................................................... 168 

Technical Appendix Figure TA4.3. Confirmed typhoid fever case incidence per 100,000 

inhabitants reported for each subdivision during 2008-2013 and 2014. ............................... 169 

Figure 5.1. Distribution of daily contacts ................................................................................ 193 

Figure 5.2. Age and ethnicity structured mixing matrices of reciprocity-weighted unique 

mealtime contacts per day. .................................................................................................... 196 

Figure 5.3. Travel outside of the community in the past week .............................................. 198 

Supplementary Fig S5.1. Age distribution (count) of iTaukei and non-iTaukei in Fiji in A) 2007 

census and B) 2013 social contact survey. .............................................................................. 209 

Supplementary Fig S5.2. Lifetime prevalence of having moved community and moved in the 

last five years .......................................................................................................................... 210 

ST5.1 Fig 1. Number of contacts per iTaukei and non-iTaukei participant, by proportion of 

contacts that were iTaukei...................................................................................................... 213 



10 
 

Figure 6.1.  Clinical iceberg conceptual schematic for acute typhoid fever. .......................... 223 

Figure 2. Model structure ....................................................................................................... 225 

Figure 6.3. Model demographic structure and census population (2007) by age and ethnicity 

and after 100-year equilibration. ............................................................................................ 230 

Table 6.1. Fixed parameter values .......................................................................................... 231 

Figure 6.4. MLE-fitted age- and ethnicity-specific model equilibrium outputs with anti-Vi 

serological and confirmed case data. ..................................................................................... 236 

Figure 6.5. Projected total (A) and notified (B) typhoid fever cases over 50 years by ViPS 

vaccination scenario. .............................................................................................................. 241 

Figure 6.6. Projected total (A) and notified (B) typhoid fever cases over 50 years by ViPS 

vaccination scenario with 10% transmission reduction through WASH. ............................... 242 

Figure 6.7. Projected total (A) and notified (B) typhoid fever cases over 50 years by ViPS 

vaccination scenario with 25% transmission reduction through WASH. ............................... 244 

Figure 6.8. Projected total (A) and notified (B) typhoid fever cases over 50 years by ViPS 

vaccination scenario with 50% transmission reduction through WASH. ............................... 245 

Figure 6.9. Projected total (A) and notified (B) typhoid fever cases over 50 years by TCV 

vaccination scenario. .............................................................................................................. 247 

Figure 6.10. Projected total (A) and notified (B) typhoid fever cases over 50 years by TCV 

vaccination scenario with 10% transmission reduction through WASH. ............................... 247 

Figure 6.11. Projected total (A) and notified (B) typhoid fever cases over 50 years by TCV 

vaccination scenario with 25% transmission reduction through WASH. ............................... 248 

Figure 6.12. Projected total (A) and notified (B) typhoid fever cases over 50 years by TCV 

vaccination scenario with 50% transmission reduction through WASH. ............................... 248 

Figure 6.13. Impact of vaccine efficacy and duration of vaccine immunity. .......................... 249 

Figure 6.14. Projected total (A) and notified (B) typhoid fever cases over 50 years in scenarios 

with carrier beta at 10% of acute case beta. .......................................................................... 250 

Figure 6.15. Projected total (A) and notified (B) typhoid fever cases over 50 years in scenarios 

reducing low-dose force of infection only. ............................................................................. 252 

Figure 6.16. Projected total (A) and notified (B) typhoid fever cases under different reporting 

scenarios. ................................................................................................................................ 253 

Figure 6.17. Projected total (A) and notified (B) typhoid fever cases under different increases 

to β transmission parameter. ................................................................................................. 254 

Supplementary Figure S6.1. Time-dependent scaling parameter for declining-incidence 

sensitivity analysis ................................................................................................................... 262 

Figure A3.1. Overview of sampling strategy used in 2015 field study .................................... 302 

Figure A3.3. Fiji geography, and examples of environmental and census data ..................... 305 

Figure A3.4. Seroprevalence by age group and gender. ......................................................... 310 

Figure A3.5. Distribution of MAT titres for serovar Pohnpei (blue) and other serovars (red); 

using the final panel of 6 serovars. ......................................................................................... 312 

Figure A3.6. Community-level seroprevalence at the 82 communities included in the study313 



11 
 

Figure A3.7. Percentage of positive MAT reactions associated with each of the 6 serovars 

included in the final panel by: a) age groups, and b) regions. ................................................ 314 

Figure A3.8. Seroprevalence estimation chart based on Model A, a multivariable logistic 

regression model of individual-level variables for a) females and b) males. ......................... 319 

  



12 
 

List of Tables 
Table 1.1. Ingested dose of S. Typhi, attack rates and incubation periods .............................. 28 

Table 2.1. Summary of typhoid transmission model types ...................................................... 70 

Table 2.2a. components and main findings of typhoid transmission models .......................... 71 

Table 2.2b. Disease states in typhoid models ........................................................................... 77 

Table 2.3. Summary of typhoid vaccine economic evaluation types ....................................... 78 

Table 2.4 Components and main findings of typhoid vaccine economic evaluations .............. 79 

Table 2.5 Components and main findings of cost of illness studies and willingness to pay 

studies used in typhoid vaccine economic evaluations ............................................................ 82 

Table 3.1. Group 1. Demographics of mainland Viti Levu and Vanua Levu (unvaccinated areas) 

survey participants .................................................................................................................. 126 

Table 3.2.  Group 2. Demographics of Taveuni island (Vi-polysaccharide vaccinated area) 

survey participants .................................................................................................................. 127 

Table 3. Group 3. Demographics of convalescent confirmed typhoid fever cases ................ 128 

Table 3.4. Risk factors by adjusted odds ratios for anti-Vi IgG seropositivity ........................ 131 

Supplementary Table S3.1. AIC by maximum likelihood for anti-Vi IgG antibody waning fixed 

effect model thresholds in culture-confirmed typhoid cases ................................................. 143 

Supplementary Table S3.2. Design effects and ICC by 5-year age band, mainland Viti Levu and 

Vanua Levu .............................................................................................................................. 144 

S3 Table. Seroprevalence for anti-Vi IgG at different ELISA unit thresholds .......................... 145 

Supplementary Table S3.4. Univariable risk factors for seropositivity ................................... 146 

Table 4.1. Association between environmental factors and typhoid seropositivity using 

univariable multilevel mixed-effects logistic analysis ............................................................. 157 

Table 4.2. Association between social and environmental factors with Typhoid sero-immune 

status using a multivariable multilevel model ........................................................................ 160 

Table 4.3. Relative contributions (%) of predictor variables from an ensemble of 50 boosted 

regression tree models for typhoid seropositivity developed with cross-validation on data 

from 1,305 samples and 11 variables ..................................................................................... 161 

Technical Appendix Table TA4.1. Characteristics of samples collected by the survey and those 

included in the statistical analysis .......................................................................................... 170 

Technical Appendix Table TA4.2. Univariable analysis of non-environmental risk factors of S. 

Typhi Vi-seropositivity used in the present study .................................................................. 171 

Technical Appendix Table TA4.3. Characteristics of the topographical and environmental data 

variables used ......................................................................................................................... 172 

Technical Appendix Table TA4.4. The range of each category for the continuous variables that 

were broken into quintiles ...................................................................................................... 173 

Table 5.1. Participant demographics ...................................................................................... 192 

Table 5.2. Unweighted mean number of daily contacts by age and ethnicity and 95% 

bootstrap confidence interval ................................................................................................ 194 

Table 5.3. Unweighted mean number of non-household lunch contact by age and ethnicity 

(bootstrap 95% confidence intervals) ..................................................................................... 195 



13 
 

Table 5.4. Logistic regression model of association between contact rates and seropositivity

 ................................................................................................................................................ 197 

Supplement Table S1. Animal contact by ethnicity and geography ....................................... 211 

ST5.1 Table 1. 100 EU Vi IgG threshold, participants from unvaccinated areas, all ethnicities.

 ................................................................................................................................................ 214 

ST5.1 Table 2.  64 EU Vi IgG threshold, participants from unvaccinated areas, all ethnicities.

 ................................................................................................................................................ 214 

ST5.1 Table 3. 100 EU Vi IgG threshold, participants of iTaukei ethnicity from unvaccinated 

areas. ....................................................................................................................................... 215 

ST5.1 Table 4. 64 EU Vi IgG threshold, participants of iTaukei ethnicity from unvaccinated 

areas. ....................................................................................................................................... 215 

ST5.1 Table 5. 100 EU Vi IgG threshold, participants of non-iTaukei ethnicity from 

unvaccinated areas. ................................................................................................................ 216 

ST5.1 Table 6. 64 EU Vi IgG threshold, participants of non-iTaukei ethnicity from unvaccinated 

areas. ....................................................................................................................................... 216 

ST5.1 Table 7. 100 EU Vi IgG threshold multivariable regression models, unvaccinated areas, 

participants of all ethnicities ................................................................................................... 216 

ST5.1 Table 8. 64 EU Vi IgG threshold multivariable regression models, unvaccinated areas, 

participants of all ethnicities ................................................................................................... 218 

Table 6.2. Fitted parameter values ......................................................................................... 237 

Table 6.3. Sensitivity analysis of duration of natural immunity ............................................. 238 

Table 6.4. Model fit under different epidemiological assumptions ....................................... 239 

Table 6.5 Model fit under declining force of infection ........................................................... 240 

Table 6.6 Model fit under reduced carriage beta ................................................................... 240 

Table 6.7. Projected impacts of transmission reduction through WASH ............................... 242 

Table 6.8. Projected impacts of ViPS vaccination programmes with transmission reduction 

through WASH ........................................................................................................................ 243 

Table 6.9. Projected impacts of TCV vaccination programmes with transmission reduction 

through WASH ........................................................................................................................ 246 

Table 6.10 projected reduction in annual notified cases of typhoid fever over 50 years in 

scenarios with carrier beta at 10% of acute case beta. .......................................................... 251 

Table 6.11. Projected impact of reduction in low dose force of infection ............................. 252 

Table A3.1. Summary of environmental, census, socio-demograhpic and livestock data used

 ................................................................................................................................................ 306 

Table A3.2. Leptospira seroprevalence by age, gender, ethnicity, community types, and region

 ................................................................................................................................................ 311 

Table A3.3. Variables significantly associated with positive MAT for Leptospira on univariable 

and multivariable analysis – Model A^ (individual-level variables) ........................................ 316 

Table A3.4. Variables significantly associated with positive MAT for Leptospira on univariable 

and multivariable analyses – Model B^ (environmental and census variables) ..................... 317 



14 
 

Table A3.5. Associations between positive MAT for Leptospira and animal exposure at home 

and in the community ............................................................................................................. 318 

 

 

  



15 
 

Abbreviations 
AIC Akaike’s Information Criterion 

AusAID Australian Agency for International Development. Since 2014, part of the 

Australian Government’s Department of Foreign Affairs and Trade 

CCDM Control of Communicable Disease Manual (ed. Heymann),  2015 

CDC Centers for Disease Control and Prevention 

CFR “Case-fatality rate”: the proportion of cases that are fatal (with a specified 

time period) 

ELISA Enzyme-linked immunosorbent assay 

FCCDC Fiji Centre for Communicable Disease Control, Mataika House 

FHSSP Fiji Health Sector Support Programme 

FNRERC Fiji National Research Ethics Review Committee  

GNI Gross national income 

H / Hd Salmonella flagellar antigen (type d expressed by S. Typhi) 

HWWS Handwashing with soap 

ICC intra-cluster correlation coefficients 

LMIC Low/middle income country 

LSHTM The London School of Hygiene & Tropical Medicine 

MDR Multi-drug resistant 

MLE Maximum likelihood estimation 

MOH Fiji Ministry of Health. Renamed in 2014 MOHMS 

MOHMS Fiji Ministry of Health and Medical Services 

O / O9 / O12 Salmonella somatic antigen (type 9 and 12 expressed  by S. Typhi) 

OUCRU Oxford University Clinical Research Unit 

S. Typhi Salmonella enterica subspecies enterica serovar Typhi 

SBA Serum bactericidal activity 

SIR Susceptible Infectious Removed model structure  

SIRCAV Susceptible Infectious Removed Carrier Asymptomatic model structure 

with Vaccination 

STRATAA The Strategic Typhoid Alliance across Asia and Africa  

TCV Typhoid conjugate vaccine 

UN United Nations 

Vi “Virulence” capsular polysaccharide antigen, as expressed by Salmonella 

Typhi 

ViPS Vi polysaccharide (vaccine) 



16 
 

WASH Water, Sanitation and Hygiene 

WHO World Health Organization 

XDR Extensively drug resistant 

 

 

iTaukei pronunciation 
b “mb” The town “Labasa” is pronounced “Lam-ba-sa” 

c “th”  “Moce” (goodbye)  is pronounced “Mow-they”  

d “nd” The airport “Nadi” is pronounced “Nan-dee” 

i “ee” The language and people “iTaukei” is pronounced “ee-tau-kee”  

q “nga” The rugby ground “Siqatoka” is “Singa-toe-kah”  
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1. Introduction 

 

1.1 Background 

This doctoral thesis describes my seroepidemiological investigations into typhoid in the 

Republic of Fiji, outlined in a series of linked scientific papers. This research follows an 

invitation from the Fiji Ministry of Health (MOH) to academic and public health partners to 

examine an apparent upturn in typhoid fever cases and to determine appropriate control 

strategies. It was conducted as a secondment from UK National Health Service specialty 

training in public health as a Medical Research Council doctoral scholarship in vaccine 

science. 

My investigations primarily comprised of a national serological survey with collection of 

demographic data, social contact data and putative epidemiological and environmental risk 

factors. These data have been utilised in the development of a transmission dynamic model.  

This seroepidemiological approach seeks to address some of the information gaps on typhoid 

infection that cannot be attained through routine clinical and laboratory surveillance.  

The overall aims of this research are (i) to strengthen epidemiological understanding of the 

transmission of Salmonella enterica Typhi, and (ii) to suggest potential evidence-based 

approaches to effective, sustained typhoid fever public health interventions in the Fijian 

archipelago. 

 

1.1.1 Typhoid fever  

Typhoid fever is caused by the gram-negative bacterium Salmonella enterica subspecies 

enterica serovar Typhi (S. Typhi). It is a faecal-orally transmitted systemic disease which is 

considered exclusive to humans and may present with prolonged fever, influenza-like-illness, 

headache, malaise, anorexia and abdominal symptoms.1 Complications are associated with 

delayed administration of effective antibiotics1 and can include encephalopathy, meningitis, 

myocarditis and intestinal perforation, with an estimated “case-fatality rate” (CFR, more 

strictly: proportion of clinical cases which are fatal) of 1% amongst the risk-adjusted 

estimated 12 million cases (95% confidence interval 10 to 15 million) arising annually in low 

and middle income countries.2,3  While treatable with antibiotics, increasing antimicrobial 

resistance is a worrying trend internationally.4 Notably, in November 2016, an extensively 
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drug resistant (XDR) strain emerged in an outbreak in Sindh, Pakistan with resistance to 

chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, quinolones and third-

generation cephalosporins, including plasmid-mediated resistance.5 The potential for typhoid 

fever to return to CFRs of the pre-antibiotic era of approximately 15% is a significant 

concern.6 Vaccination against typhoid has often been given a secondary role to sanitary 

interventions, which many suggest is a missed opportunity for disease prevention. 4,7–9 

The use and nomenclature of both Salmonella Typhi and typhoid fever are subject to debate 

and evolution. The taxonomic history of the organism previously known as Salmonella 

typhosa10 and Salmonella typhi11 is not pertinent to this thesis; the use of “typhoid” and its 

derivatives is. Some authoritative typhoid papers use “typhoid fever” to refer to any systemic 

infection with Salmonella Typhi: 1,4 by definition this includes subclinical and asymptomatic 

infection as well as the disease. Others use a stricter definition of typhoid fever to refer to the 

clinical disease only.12 This thesis uses “typhoid fever” to refer to the clinical disease and the 

public health problem caused by Salmonella Typhi and “typhoid” to refer to any infection by 

Salmonella Typhi. 

 

1.1.1.2 Epidemiology and modes of transmission of Typhoid (fever) 

 

Disease Burden 

Typhoid incidence is considered high if >100 per 100,000 population, medium if 10 to 100 per 

100,000 and low if <10.13 In Western Europe and North America, typhoid fever has been 

largely eliminated or controlled, with water quality improvements and other public health 

reforms variously attributed to the disease’s decline.14–16  In these settings, most 

contemporary cases are travel-associated.17–19   

Recent typhoid fever research has predominantly been sited in South Asia, where the disease 

burden is considered the highest globally,2,4,13 with multiple epidemiological studies and 

vaccine trials in urban slums as the highest incidence settings.20–23  The incidence of typhoid 

fever in Africa, where enteric fever surveillance is sparse, is gradually being unmasked.24,25  In 

the Pacific islands, typhoid has been recognised as a long-standing health concern in Fiji, 

Samoa and Papua New Guinea, with a Pacific clade of S. Typhi identified through 

phylogenetic analysis of sequenced genomes.26–32 Recent global meta-regression estimates 

assign Oceanian states the highest typhoid incidence rates though it is unclear if predictor 

indices such as flood risk may over-estimate typhoid incidence in small-island populations.33  
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Modes of transmission 

A consideration in communicable disease control in any setting are the predominant modes 

of transmission. For interventions to be effective in interrupting transmission, they should 

typically be well matched to these. These can be serendipitous: addressing malodorous 

sewage as a source of miasmic airborne illness in London was erroneous in theoretical 

construct but the resultant sewage system effective in cutting faecal-oral diseases such as 

cholera.34 For typhoid control, whilst vaccination works by reducing susceptibility to infection, 

with additional indirect protection through reduction in case numbers, individual 

components of WASH (water quality, water supply, sanitation and hygiene; and specific 

elements within each) must align appropriately to transmission modes between portals of 

exit and entry.  

The F-diagram model of diarrhoeal disease transmission paths may be informative to typhoid 

transmission modes (figure 1.1, adapted).35 Public health engineers note that water quality 

interventions may have a lesser role than sanitation and hygiene for many faecal-oral 

diseases: better to prevent water contamination through effective sanitation (with avoidance 

of other contaminations) than to clean polluted water (personal communication: Val Curtis 

and Sandy Cairncross). Water access and water supply as facilitators of hygiene may take 

precedence over water quality as a policy intent.36  
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Figure 1.1. F-diagram 

Black arrows indicate potential transmission mechanisms; vertical grey bars denote potential 

transmission-blocking factors. 

 

Typhoid fever following consumption of food or water that has been contaminated by the 

faeces of a case or carrier may dominate contemporary discourse.37 However, as outlined in 

this subsection, a critical read of the historical and other more recent literature indicates a 

diversity of mechanisms of transmission, more consistent with the breadth of modes in the F-

diagram. This suggests epidemiological investigations should not be focused on these to the 

exclusion of all other modes. The predominant modes of transmission are also thought to 

vary with incidence, as will also be discussed in this subsection. 

Furthermore, an important concern for public health practitioners is to identify those at high 

risk of becoming cases and/or transmitting disease to others, if resources are insufficient for 

universal coverage of interventions, or if interventions are better deployed in a targeted 

manner. Whilst peak incidence is often cited as being under five years or in school-aged 

children,38,39 a transmission dynamic perspective notes that average age of infection falls as 

incidence and force of infection rise: such that typhoid is a disease of young childhood in high 

incidence settings, and with first infection most likely arise in older groups in settings with 

less intense transmission.13  
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Typhoid fever is further described as being transmitted through “short cycle” and “long cycle” 

routes.40 The most recent background paper by the World Health Organization characterises 

these as “contamination of food and water in the immediate environment through 

inadequate hygiene and sanitation measures, either by shedding from temporary or chronic 

carriers” and “contamination of the broader environment, such as pollution of water supplies 

by sewage, inadequate treatment of piped water or use of raw human feces as a crop 

fertiliser.”39  Mathematical modellers of typhoid have used these groupings to reflect direct 

person-to-person and indirect transmission.40,41 

Under the wide-used Bradley classification of water-associated disease, typhoid fever is  the 

archetypal classical waterborne disease.42  Though influential over the last 40 years, this 

classification draws attention to a single mode of typhoid transmission only, omitting food 

and other typhoid transmission routes. Bradley himself reiterates the intent of this work as a 

functional classification to inform disease control in East Africa, and to shift debate, from 

industrial-nation focus on quality of piped water when considering interventions, toward 

other aspects of WASH.43 Colleagues of Bradley found an absence of impact on typhoid fever 

for piped-water interventions in Lesotho, southern Africa, suggesting ingestion of remotely-

contaminated water was not the principle route of transmission.44  

The historical literature on typhoid indicates a diversity of modes of communication for 

typhoid and their relative contributions in settings with different incident rates. The seminal 

1873 work on typhoid by William Budd, an English medical epidemiologist, sought to 

demonstrate typhoid fever as a communicable disease from intestinal discharges, when 

medical contemporaries did not consider it so.45 Budd noted that his country practice enable 

elucidation of such aetiologies, which were obscured to city practitioners, detailing in turn a 

range of incidents which demonstrated typhoid’s contagious properties and modes of 

transmission. A chain of transmission of typhoid fever spread through the villages served by 

Budd, from one case to the next, only associated with household contacts of cases, while no 

cases arose in what might be deemed control households without cases but with otherwise 

identical circumstances, including exposure to noxious aromas from pit latrines and other 

putative causes of the disease. This indicated that typhoid fever was transmitted person-to-

person, often affecting those who tended to the sick. Whether this is direct transmission or 

by fomites is not elucidated. Such transmission can be avoided by appropriate faecal and 

hand hygiene and infection control measures.46,47 

Budd also observes a latent period between infection and disease onset, and that an attack 

appeared to confer lifelong immunity. Alongside “propagation by contagion” Budd also notes 
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typhoid’s “quasi-miasmic” ability to “infect the ground… which has misled so many observers 

as to their true mode of spreading”. Budd documented an outbreak in Bristol associated with 

a contaminated well serving “houses of a good class” whose neighbours remained free of 

fever. An outbreak at a ball in Cowbridge in Wales was traced to a well with adjacent cesspit 

which had received “the bulk of the diarrhoeal discharges” of a typhoid fever patient where 

“percolation from one to the other was almost inevitable”. Amongst modes of 

communication, Budd notes contaminated hands and linen to transmit typhoid, describing a 

local case in a washerwoman contracting from bed clothes of two typhoid fever patients, and 

noting observations from the Fever Hospital in London that the washing profession was 

struggle to recruit due to the inevitability of succumbing to the disease. This is tempered by a 

reflection that the public increasingly appreciated the need to sterilise soiled products before 

sending for washing. Pawnbroker transmission through linen of the deceased is also 

reported, as is transmission from contact with the clothing of those nursing cases. 

In the United States of America (USA) the most well-known case of typhoid infection is that of 

Mary Mallon, a New York chef. Her fiery disbelief that she could have asymptomatic chronic 

faecal carriage of S. Typhi thereby causing a series of cases and deaths in households saw her 

continue to work against official advice and resulted in her incarceration for public 

protection. The investigation report by George Soper details associations in persons, time and 

place, demonstrating epidemiologically Mallon to be the source and foodborne transmission 

the mode of communication when householders and others suspected sanitation defects and 

contaminated water supplies.48 

Other studies from the USA demonstrate the important role for waterborne typhoid to 

contribute to the typhoid fever burden, where sewage systems have not protected the 

drinking water supply. Arguably, substantial contamination of piped drinking water is the 

most effective means for high incidence of typhoid fever to be attained, bringing large doses 

and so water borne transmission is typically associated with the highest incidences of typhoid 

fever. Sears found sewage leakage from a factory intro piped water to be responsible for a 

highly-localised outbreak.49 Sedgwick and McNutt’s paper on typhoid fever incidence in 

Massachusetts state and Hamberg, Germany, is informative.50 Sedgwick had intervened to 

introduce sewage filtration to the Merrimac river in an effort to cut typhoid fever mortality 

rates in Lowell and Lawrence, with rates dropping from 112 per 100,000 in each to 24 and 25 

per 100,000 respectively.51 Interestingly the temporal association of water filtration and the 

decline in illness is not always strong: the figures published in the paper suggest decline 

preceded the introduction of filtration but does not preclude public awareness of the hazards 

of piped water reducing the illness rates. Stronger evidence of the impact of water filtration 
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on US waterborne typhoid is provided by Johnson’s 1916 review, noting this to be greater in 

the north than the south, where other routes were considered to have a proportionally 

greater contribution.52 

Sedgwick also, with Winslow,51 coined the phrase “prosodemic transmission” to refer to 

faecal-oral typhoid transmission from person-to-person by direct or indirect means 

(regardless of the specific elements of the transmission chain), citing Budd’s study of the 

same in England. It is taken from the Greek, “pros” meaning “from” and “to” and “demos”, 

well known to epidemiologists as “the people”. Sedgwick and Winslow reserve “epidemic” as 

"that special case in which circumstances permit the transfer of infection to a large number 

of persons through the same medium, and at approximately the same time" equivalent to 

“point-source” epidemics in current usage. 

Importantly, Sedgwick and Winslow note that prosodemic mortality rates of typhoid in 

Massachusetts cities is of a range 13 to 25 per 100,000. Allowing a six to ten fold increase for 

clinical cases (Budd allows 9.5 recoveries per fatality45, Levine 6.676) gives an incidence rate in 

the range 78 to 250 per 100,000. This indicates that incidence rates classified today as very 

high can be attained without transmission through municipal piped water.  Furthermore, this 

suggests that towns in Massachusetts, USA had incidence 125 years ago that would be 

considered very high by current standards. 

The contribution of flies (e.g. housefly Musca domestica (Diptera: Muscidae)) to typhoid 

transmission is disputed. Typhoid infection requires relatively high inoculating doses of 

Salmonella Typhi (see table below) when compared to diseases such as shigellosis requiring 

just tens of Shigella spp. organisms.53 Experimental work has shown S. Typhi to persist for up 

to ten days on the surface or gut of houseflies;54 nevertheless, diseases with lower infecting 

doses that typhoid may be more amenable to transmission by the small feet and alimentary 

systems of flies travelling from exposed faeces to prepared food. Many have historically 

ascribed typhoid fever to fly-borne contamination of food, including Budd, and Walter Reed 

and colleagues assessing sanitary failings in US military bases55, with Rosenau et al attributing 

15% of cases in military bases to flies.56 

Typhoid may be contracted through eating contaminated crops. Wastewater is an acceptable 

fertiliser for human-consumed vegetables, within guidelines, with contamination by 

pathogens such as Escherichia Coli more likely at markets than in fields.57,58 Experimental 

assessment has found S. Typhi persistence in soil for months, and detection of viable 

organism in root and leaf vegetables one month after harvesting from growth in 

contaminated soil.54 In a major outbreak in Santiago, Chile in the late 1970s and early 1980s, 
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70% of cases were attributed to locally-grown vegetables, with important corroborating 

evidence from S. Typhi detection by Moore swabs in sewers that flowed to crop fields.59–61 

Interventions to improve wastewater quality alongside educational programmes and other 

interventions to reduce consumption of raw vegetables have been given credit for driving 

down incidence.59 

Data from Tokyo in the first half of the 20th century further demonstrated the importance of 

safe disposal of faecal matter, with an economically-driven interrupted time series natural 

experiment reported by Nagashima in 2004.62 Collection of night-soil had previously been 

undertaken for free due to the commercial value of human faeces as a fertilizer. When 

chemical fertilizers became popular, night soil collection declined, and typhoid became 

established in affluent areas of Tokyo until government intervention to provide a night-soil 

collection service.62 

More recent decades have seen a number of case-control studies and other epidemiological 

investigations into the transmission of typhoid. It should be noted that outbreak transmission 

and endemic or prosodemic transmission may not follow the same modes, with endemic 

transmission less likely to be investigated than if there is a perceived excess of cases, 

potentially biasing the literature towards transmission modes associated with epidemic 

disease. Similarly, transmission in high incidence settings may be more likely to be 

investigated than in lower incidence settings. These recent studies reveal a diversity of 

transmission mechanisms. 

Mermin and colleagues reported in 1999 on a multi-drug resistant typhoid outbreak in 

Tajikistan associated with drinking unboiled water following equipment failure at a water 

plant, with back-siphonage causing faecal contamination.63  In 2001, Olsen and colleagues 

reported on a restaurant outbreak on Nauru that was attributed to two food handlers with 

faecal carriage of S. Typhi. In a 2001 study in southern Vietnam, Luxemburger and colleagues 

found recent contact with a typhoid fever patient and low socioeconomic status were 

associated with disease in an adjusted logistic regression analysis with community controls.64 

Vollaard and colleagues examined typhoid fever in Jakarta in 2001-3 using case-control 

methods.65 Against community controls, they found adjusted risk factors to be “mostly 

related to the household” including recent cases in the household, absence of soap for 

handwashing, sharing food from the same plate and absence of toilet in the household. With 

control selection matched by geography but not age, the study also found typhoid fever cases 

to be younger than controls. Studying Kamalapur slum in Dhaka, Bangladesh, Ram et al’s 

2006 case control study identified on multivariable analysis drinking unboiled water at home 
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and consumption of foul-smelling water to be independently associated with illness, as was 

consumption of papaya, whilst latrine use was protective.21 Srikantiah’s 2007 study in 

Samarkand, Uzbekistan, found on adjusted logistic regression that risk factors were 

consumption of unboiled water outside the home, consumption of antimicrobials in the two 

weeks prior to disease onset and being a student. Routinely washing vegetables and drinking 

in tea houses were protective. Most houses in Samarkand draw household water from deep 

underground sources unlikely to harbour significant S. Typhi concentrations, in contrast to 

sources outside the home which are more likely to draw surface water and risk 

contamination. In Kathmandu, Nepal, low income and use of a household rather than 

community toilet were associated with typhoid fever in a 2013 adjusted case-control analysis 

by Karkey and colleagues.66 Molecular methods applied in Kathmandu have identified 

household transmission and detected S. Typhi in municipal water spouts used as a supply of 

drinking water.67 However, no bacterial culture and isolation was successfully done from any 

water sample: as polymerase chain reaction (PCR) can detect killed/dead bacteria as well as 

live organism, such findings do not conclusively support transmission through this mode. 

A WHO expert-elicitation exercise on foodborne transmission global burdens estimated that 

in Oceania, foodborne transmission accounted for median 49% (95% “uncertainly” 10 to 84%) 

of typhoid fever incidence, person-to-person transmission (not defined) 13% (0 to 51%) and 

water 33% (1% to 66%).68 Sustained transmission of typhoid in another Pacific island, Samoa, 

led to this being the setting for a ground-breaking transmission dynamic computational 

model developed by WHO in the 1970s, discussed further in the literature review 

chapter.30,69,70 

Asymptomatic gallbladder carriage is established in a small percentage of cases, more 

commonly in women, older patient and those with gallstones, leading to prolonged faecal 

shedding (less commonly urinary shedding, typically if tract damage exists, such as through 

schistosomiasis) over months or years.1 Gunn and colleagues divide carriage in three 

categories:  

 Convalescent: three weeks to three months post-infection (presumably “post-

ingestion” or “following the moment of infection” as carriage is a form of infection)  

 Temporary: three to twelve months 

 Chronic: more than one year.71 

Experimental work has shown that pathogenesis is dose-dependent: the probability of 

developing clinical disease increases and the time to onset decreases with higher ingested 

doses.72,73 This is consistent with the above epidemiological findings suggestive of 
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symptomatic infection from heavily sewage-contaminated water or crops, household 

transmission from acute cases, transmission from defective sanitation and contamination of 

fruit. The WHO notes that water consumption is more likely to deliver low inocula while 

foodborne inocula are usually high dose.74 

Ingested dose of S. 

Typhi 

Proportion of 

volunteers developing 

clinical disease  

Days to onset of 

clinical disease, 

geometric mean with 

95% CI 

109 0.95 

4.7  (4.1 to 5.4) 

108 0.89 

107 0.5 7.4 (4.9 to 11.2) 

105 0.28 9.3 (8.4 to 10.4) 

103 0 N/A 

Table 1.1. Ingested dose of S. Typhi, attack rates and incubation periods 

Source: Hornick et al 1970, Glynn et al 1995 72,73 

 

 

Diagnostics 

Current typhoid diagnostic tools are considered inadequate.75 The current gold standard test 

is blood culture, which has high specificity for typhoid but limited sensitivity, though this may 

be increased by larger blood draws with modern media and monitoring.76 Bone marrow 

culture is more sensitive but invasive and not commonly practiced.76 The outdated Widal test 

and modern rapid antibody test kits (often utilising Widal-based technology) are of limited 

clinical utility in differentiating typhoid from other febrile illnesses.77  The weakness of these 

diagnostic tools impairs surveillance efforts as well as tilting clinical management towards 

empirical treatment.75  

 

1.1.1.2 Immunobiology of Salmonella Typhi 

The pathogenic process from S. Typhi ingestion to clinical disease is complex.78–80 Bacteria 

passing through the low pH environment of the stomach into the small intestine arrive at the 
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lamina propria through M cells in Peyer’s patches or through trans-enterocyte passage in 

endocytic vacuoles. In the lamina propria of the susceptible host, macrophages engulf S. 

Typhi largely without killing them; these either remain in localised lymph tissue or drain into 

the mesenteric lymphatic system, from where S. Typhi can multiplying and enter the 

circulation.  This results in a primary bacteraemia, from where the bacteria can reach 

reticuloendothelial system organs and continue multiplication. A sustained second 

bacteraemia is associated with clinical disease, typically 8 – 14 days after ingestion.  

Salmonellas are classified based on the O (somatic) and H (flagellar) antigen under the 

Kauffman White scale: S. Typhi express d-flagellin (Hd), O9 and O12. Widal tests for typhoid 

using O and H antibody are strongly cross-reactive with other species and consequently of 

insufficient specificity for acute diagnosis or serological surveillance.81 Most Salmonella Typhi 

obtained from clinical samples also expresses the Vi capsular polysaccharide antigen, an 

abbreviation of “virulence”. Vi-expressing strains are more pathogenic than those which do 

not express it, such that disease caused by an S. Typhi strain lacking Vi is rare.72 Of bacterial 

species and serovars expressing Vi, only S. Typhi is recognised as a common pathogen in 

immunocompetent humans, in contrast to Citrobacter freundii and Salmonella enterica 

serovar Dublin.82 Urinalysis of Vi antigen by ELISA has been examined as a potential rapid 

diagnostic test for typhoid fever in a 2004 Egyptian-American study,83 however, equivalent 

sensitivity in examination of urine from other febrile patients suggests issues with the assay 

and limited validity.  

The utility of Vi antibody in diagnosis has been found to be limited in endemic settings due to 

slow onset in acute disease and high background prevalence.75,84 In a study in Vietnam, illness 

for two weeks or more was associated with a raised anti-Vi IgG response.85 Vi antibody 

detection has greater utility in population level studies in determining these background 

prevalences, where subclinical infection is likely to go untreated - one study in Kathmandu, 

Nepal, found higher prevalences in adults than children, suggestive of endemic transmission, 

or high historical rates of childhood infection and later decline.86 Another study using 

Kathmandu residual clinical samples from non-typhoid fever case patients found peak titres 

in young children and young adults and ELISA unit inter-quartile ranges in the region of 10 to 

100 EU across all ages, suggesting hospital attendees to have sustained high prior risk of S. 

Typhi exposure.66  

Very high anti-Vi titres have also been utilised in serological identification of chronic typhoid 

carriers such as in Chile, with a 75% sensitivity  (27 of 36 carriers; 95% CI: 57 to 87%) at 

threshold 1:160 and 92% specificity amongst 388 stool-culture negative women.87 Studies in 
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the USA, a low incidence setting, found Vi serology specific for carriage but insensitive (29 of 

38 total carriers; 76%, 95% CI: 59 to 88%) relative to stool culture.  

A 1986 expert meeting proposed wider use of serosurveillance to inform lifetime prevalence 

of symptomatic and asymptomatic infection using long-lived IgG Hd antibodies.88 At the time 

most Vi antigen preparations were insufficiently pure to offer adequate sensitivity or 

specificity, though more sensitive and specific Vi antibody tests were in development, in 

parallel with efforts to develop  a Vi-based vaccine.88 Serosurveillance for Hd IgG antibodies in 

Santiago, Chile, in 1978, had found 25% of 76 15-19 year olds to be seropositive at 1:40 titre, 

higher than the same age groups in other regions not affected by epidemic typhoid fever.89 

Age-based analysis in Santiago found less than 10% of 163 children under 15 years to have Hd 

seropositivity, rising to over 50% of 23 sampled 25-29 year olds. Older ages has 

seroprevalence around 40% from 36 samples. Interpretation of this may include endemic 

transmission with waning antibody in older age-groups, or recent outbreak with differential 

risk by age. 

Natural infection elicits both humoral and cell mediated immunity (CMI). Whilst cell-

mediated immunity is considered likely to be the major defence mechanism against typhoid, 

the fact that Vi is an effective vaccine indicates that anti-Vi has a role in protection during 

natural infection.90  

Correlates of immune protection are not clearly defined following infection or vaccination.91–

93 In highly endemic South African settings, a study by Klugman and colleagues 94 found that a 

Vi antibody titre correlating with protection was likely to lie within a range of 0.6 micrograms 

to 1.2 micrograms per millilitre.  From this they considered 1 microgram an arbitrary and 

conservative estimate of the level necessary for protection. More recently 1.4 to 2 

micrograms/ml has been suggested as a correlate.95 Standardisation of assays internationally 

is unfortunately incomplete.91  

Anti-Vi serology was reviewed by Robbins and Robbins in 1984, motivated by consideration of 

Vi as a vaccine candidate.96 They challenge some prior research (focused on carrier 

identification) that suggested no relationship between Vi antibodies, susceptibility or 

recovery, which held that the most typhoid fever patients do not produce antibodies within 

weeks of illness. Robbins and Robbins note instead that higher titres and higher proportions 

positive are observed later in the course of illness97 and suggesting impurity in Vi preparation 

used for assays rendered them invalid as unable to distinguish from background noise. 

Studies such as those by Landy and Lamb using purified Vi and passive haemagglutination in a 

highly endemic setting found seropositivity in current and recent cases but no response in 
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non-cases.98 A further issue identified with historical studies is the identification of protective 

effects driven by anti-Vi incomplete antibody – that which binds antigen but does not 

agglutinate.99 This could result in individuals who have been naturally infected being 

protected and yet have a serum antibody titre that cannot be identified on agglutination 

assays; such antibodies could be detectable by other means. 

There remains limited data on Vi antibody kinetics following natural infection. House et al 

found elevated Vi antibody response by ELISA optical density in Vietnamese patients who had 

been ill for at least two weeks.85 Lanata and colleagues found in Santiago raised titres in 

approximately half of acute cases,87 whilst women aged ≥25years with confirmed typhoid 

fever one to four years previously had GMT and titre distributions more comparable to the 

general population from whom they were drawn (the high community Hd seroprevalence by 

late adolescence in the same setting should be noted).89 Brodie’s study of antibodies 

following a typhoid outbreak in Aberdeen, UK, found a bimodal distribution of Vi antibody by 

agglutination assay in acute cases with only 20% seronegative. At 3 months, 70% had become 

seronegative, and at 6 months 40% were seronegative.100 Such findings may be consistent 

with an early IgM response and slower IgG response. 

 

Vi vaccinees’ antibody kinetics have been studied but are not readily interpretable in 

informing serological surveillance of natural infection. A small study by radioimmunoassay 

(RIA) in US volunteer vaccinees showed substantially raised titres three weeks after Vi-PS 

vaccination, with persistence at lower levels (but still above baseline) after three years.101 

Medium and long-term kinetic data is available from pilot participants in a vaccination trial in 

a typhoid-endemic area of South Africa Klugman and colleagues used ELISA optical density 

and RIA to examine serum pre- and post- vaccination, with these Vi assays considered more 

sensitive than the haemagluttination assays used previously for carrier detection.9,102 Both 

those in groups with and without pre-vaccination antibodies saw rise in titre at one month 

and wane at six and twelve months. At twelve months, titres had returned to comparable 

levels in those with baseline titres. For those without baseline titres, sustained response was 

observed by RIA and, for those receiving higher vaccine doses, by ELISA, though these were 

less than baseline titre in those with pre-vaccination antibodies. At three year follow-up, 

geometric mean titres were higher than those of controls.94 The 10 year follow-up of the 

South African vaccinees and controls appears to show that antibody had waned in 40 

vaccinees to 1.23 (range 0.21 to 2.30) microgram/ml geometric mean titre by RIA whilst 43 

control participants’ serology had reached GMT of 1.30 0.15 to 3.91) microgram/ml.102 Keddy 
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et al also report observing raised Vi in recent typhoid fever cases, including two control 

participant. Most notable for Vi seroepidemiology from the South African trial is that 40% of 

control participants at the age of nine had titres predicted to be protective, suggestive of 

natural infection. 

Work is ongoing for novel biomarkers of typhoid infection.103,104 Notably the recent 

characterisation of the typhoid toxin opens the future possibility of diagnostic methods, 

surveillance tools, therapeutics and vaccines based on the toxin and immune response to 

it.105  
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1.1.2 Setting 

Fiji is a populous Pacific island state and classified by the World Bank as an upper-middle 

income country.106  It is located approximately 2000km north of New Zealand in the Pacific 

Ocean. 

At the last census (2007) the total population of Fiji was 837,271, of whom 57% are iTaukei 

(see below), 37% Indo-Fijian, and 6% other ethnicities. Most of the population reside in the 

two main islands, Viti Levu, where the port capital Suva is found, and Vanua Levu in the 

north. The administrative divisions of the islands are shown in figure 1.1. 

 

Figure 1.2. Fiji administrative map.  

Source: Fiji Bureau of Statistics 107 
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1.1.2.1 Ethnicity in Fiji 

Ethnicity is an important consideration in the epidemiology of typhoid in Fiji, and the recent 

political and demographic history of Fiji are relevant in this regard. The language and 

terminology of ethnicity in Fiji is contested. In efforts to promote a singular national identity, 

on 30 June 2010 the government enacted a new law requiring all government agencies to 

replace “the word ‘Fijian’ or ‘indigenous’ or ‘indigenous Fijian’ with the word ‘iTaukei’ in all 

written laws, and all official documentation when referring to the original and native settlers 

of Fiji.”108  “Fijian” now denotes any citizen of the islands. This thesis uses the iTaukei word 

“iTaukei” to denote indigenous Melanesian Fijians (57% of the population), and “Indo-Fijian” 

to denote Fijians of Indian descent (38%). The term “Indo-Fijian” is widely used and 

understood by Fijians of all ethnicities including by influential Indo-Fijians such as the exiled 

academic Brij Lal.109 

Fiji’s multi-ethnic society is a product of its time as a British colony between 1874 and 1970. 

The period 1879 to 1916 saw the immigration of approximately 60,000 indentured labourers 

from India to work on sugar plantations.110 Many remained after their five-year contracts 

expired, with the Indian population also increasing due to the arrival to urban Fiji of smaller 

numbers of Gujarati free immigrants from 1900 as retailers or skilled professionals.111  The 

British Governor sought to protect indigenous traditions and rights, including barring the sale 

of Fijian land to non-iTaukei, leaving Indo-Fijians to lease land for property development and 

farming.112 Thus indigenous iTaukei Fijians spent much of the 20th century maintaining 

traditions and in subsistence farming, whilst Indo-Fijians sought to gain security and position 

through wealth creation.111  

By the 1980s Indo-Fijians had become the majority population and were making ever 

stronger calls for land and political rights. A coup in 1987 was led by an iTaukei military officer 

calling for iTaukei dominance of parliament and resulted in a period of racial unrest. Land 

leases were not renewed and Indo-Fijians were displaced from homes and farmland. 

Emigration of (skilled) Indo-Fijians has been a secular trend since this time.113 A period of 

political instability came to a head in 2000 when iTaukei businessman George Speight took 

hostages in parliament including Fiji’s first Indo-Fijian leader, Mahendra Chaudhry. A counter-

coup led by Commodore Josaia Voreqe (Frank) Bainimarama saw the installation of an 

interim military government. A coup was led by Bainimarama in 2006 to strengthen Indo-
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Fijian rights.114 In elections in September 2014 Bainimarama’s FijiFirst party became the 

largest party with Commodore Frank elected prime minister.115 

 

1.1.2.2 Population structure 

 

Regardless of political circumstance, iTaukei and Indo-Fijians live largely separate daily 

existences111 and experience different demographic forces, with birth and death rates higher 

in iTaukei than in Indo-Fijians, and rural residency more common amongst iTaukei Fijians.113 

Urban and rural population split is close to 50:50, with iTaukei Fijians comprising 64% of the 

rural population.113 Markers of material wealth are higher in Indo-Fijians.113 

Figure 1.2 shows the age structure of the iTaukei and Indo-Fijian populations. It is notable 

from a health, demographic and modelling perspective that the iTaukei Fijian population 

appears to have an "exponential" population curve indicative of a constant mortality rate, 

while the Indo-Fijian age structure is more "rectangular" and consistent with epidemiological 

transition.116  

 

Figure 1.3. Population pyramid of iTaukei Fijian and Indo -Fijians by age group.  

Data source: Census 2007. 
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1.1.2.3 WASH in Fiji 

WASH infrastructure and behaviours are important determinants of typhoid risk in Fiji. A 

1914 epidemiological report on dysentery (shigellosis) considered the reticulated water 

system in Suva to be “beyond reproach”.117 The most recent census (2008) indicated that 

both ethnic groups have similar access to safe water supply (metered, communal and roof-

tank) covering approximately 90% of households, up from 84% in 1996.113 

The Fiji Water Authority is responsible for the reticulated water system, with the 2007 SOPAC 

report noting surface water to be the primary source for most towns in Fiji, with groundwater 

use on smaller islands only. 

The United Nations note that due to an absence of primary legislation, “there is no clear 

ownership within any single government department when it comes to … regulating, 

managing, and delivering water resources and services.”118 

A recent systematic review of WASH in Pacific islands noted the importance of the cultural 

context in interventions, such as acceptability of household-level water harvesting schemes in 

iTaukei villages where community and communality are prized.119  

Census reported ownership of “modern” toilets (private or shared flush toilets, regardless of 

sewage connection) is higher amongst Indo-Fijians (83% vs 63% of iTaukei in 2007, up from 

54% and 35% respectively in 1996). In 2007, water seal toilets were used by 21% of iTaukei 

households and 3% of Indo-Fijian households, with pit latrines used by 14% and 14% of 

households respectively. 

Sewerage systems were described in a 2002 report, which found that even in highly densely 

populated Suva-Nausori, only one third of the population were connected to the mains 

sewage system, with 270,000 utilising septic tanks. 120 Overflow from undersized sewers, 

blockages and poorly maintained plants were considered to contribute significantly to faecal 

contamination of water.  

Socio-cultural aspects of hand hygiene have been examined in iTaukei Fijians by interview 

and focus group research.121 Confusion was found in some participants between diseases 

such as typhoid and lymphatic filariasis, with media focusing on diseases rather than common 

risk factors. Handwashing was viewed with ambivalence regarding health benefits, and more 

likely to occur in the context of bathing and washing rather than associated with meal 
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preparation or post-toileting. Intermittent water access and general water-scarcity in a peri-

urban settlement led to water being conserved for uses other than handwashing.  

 

1.1.3 Typhoid in Fiji 

Fiji has seen a sharp upturn in notified, blood-culture confirmed typhoid cases since 2004 

(figure 1.3), rising from low tens of cases to approximately 360 per annum (approximate 

crude annual incidence 43 per 100,000 population) with some provinces considered high 

incidence by international standards at over 100 case per 100,000.122–124  The Fijian enteric 

fever burden is almost exclusively due to typhoid, rather than paratyphoid fever, a clinical 

indistinguishable disease which has become more prevalent in Asia, where S. Paratyphi A is 

the most common causal organism.125,126  

 

Figure 1.4 Typhoid fever notified case incidence 1995 to 2014  

Data sources: Kumar et al (MOH data);122 Cleaned confirmed-case national surveillance 

database, Fiji Centre for Communicable Disease Control, Ministry of Health and Medical 

Services 

 

An Australian AID sponsored vaccination campaign was implemented in areas deemed at 

highest risk for typhoid following Cyclone Tomas in 2010, covering approximately 7% of the 

population, primarily Taveuni island and the southern coast of Vanua Levu, with smaller 

campaigns elsewhere. Achieving close to 100% coverage across all ages in some of these 

areas, the campaign was successful in reducing localised incidence, but appeared to have 

negligible effect on the overall typhoid epidemic.127 

Year 
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The overwhelming majority of reported cases are in iTaukei Fijians (94%), with a male excess 

(57%), a median age of 25 and an inter-quartile range of 15-36 years.128 See figure 1.4. 

Antimicrobial governance is considered relatively strong in Fiji, though stock shortages and 

empirical treatment are common, and antimicrobially-resistant typhoid fever is rare at 

present.123,129 A convenience sample survey of Fijian festival attenders found 41% reported 

antibiotic use in the previous month, including for colds, flu and other viral diseases which do 

not respond to antibiotics. Government health facilities were the main source of antibiotics, 

though almost 2% reported obtaining these from pharmacies without prescription.130 The 

understanding of a number of survey terms and validity of prevalences require further 

assessment through in-depth qualitative research.   

That the average age of infection appears to be in young adulthood suggests a lower annual 

force of infection compared with settings in the Indian subcontinent where disease is seen at 

high incidence rates earlier in childhood 38,86,131. Statistical and causal inference is limited, not 

least by surveillance biases, such as the potential for differential reporting in different age 

groups. Under-ascertainment in children is a distinct possibility, where empirical treatment 

may be more common than invasive diagnostic testing and the sensitivity of blood culture 

further reduced by reduced blood-volume draw.33,76 

 

Figure 1.5 Age- and ethnicity-specific incidence rates of laboratory confirmed 

typhoid in Fiji 2008-11  

(per 100,000 person years; 2007 census population; MOH data) 

 

Kumar and colleagues122 suggest possible causal mechanism for typhoid transmission in Fiji, 

noting association with the higher incidence of disease, including outbreaks, in the Northern 

Division and Suva peri-urban area. The proposed risk factors are poor sanitation, water 

supply and personal hygiene; slum settlements where sharing of toilets and water supply is 
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common; and the use of infected water in preparation of the herbal drink kava, which is 

consumed in groups with a communal bowl and cups. The sharing of farm tools is also 

asserted as increasing the rate of disease transmission, though no evidence is provided to 

implicate these particular fomites; public health officials have suggested poor sanitation 

facilities for seasonal sugar cane croppers was a driver of increased incidence in the Northern 

Division.132 Handwashing campaigns have been implemented but not resulted in any 

appreciable decline in disease.133 

 

1.1.4 International typhoid vaccination and control context 

Whilst this thesis is oriented toward the typhoid public health problem in Fiji, it is not 

independent of the international research and policy context. Multiple iterations of World 

Health Organization (WHO) typhoid position papers support consideration of typhoid 

vaccination in high risk population groups and for outbreak control.37,134,135  In practice, the 

cost of vaccines, limited duration of protection and inadequate immunogenicity in children 

under 2 have limited uptake by national authorities.23,136 At the time this thesis was 

submitted, international recommendations for programmatic typhoid vaccination, 

particularly with typhoid conjugate vaccines,  were being reviewed through the WHO 

Strategic Advisory Group of Experts on Immunization (SAGE),39 and through the GAVI 

Alliance, an international finance coordination body for vaccination programmes in countries 

with GNI up to USD 1,580 per capita (Fiji is not GAVI-eligible).137,138  

There are two internationally marketed typhoid vaccines: an injectable Vi-polysaccharide 

vaccine suitable from age 2 years and an oral three or four dose live Ty21a vaccine suitable 

from age five or six. Efficacy of each is modest, at around 50% over three years.139   Even with 

low efficacy vaccines, school-based programmes have shown success in controlling 

typhoid.140  

Much of the current typhoid control research effort is directed towards the development of 

Vi-conjugate vaccines which appear to offer greater efficacy, immunogenicity in the under-

twos and longer duration of protection. These use Vi antigen conjugated to an immunogenic 

protein such as recombinant exoprotein A of Pseudomonas aeruginosa (rEPA), the mutant 

diphtheria protein CRM197, tetanus toxoid (TT) or diphtheria toxoid (DT).141 Of these, Bharat 

Biotech’s single-dose typhoid-tetanus toxoid conjugate vaccine has gained licensure in 

India142 as has Bio-Med’s two-dose PedaTyph,143 and following submission of this thesis, 

Bharat’s product attained the WHO-prequalification status that will enable more widespread 

utilisation in low and middle income countries such as Fiji, consistent with the 2018 update to 
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the WHO position on typhoid vaccines.135 Oral typhoid vaccines that may offer greater 

efficacy or shorter regimens than Ty21a are also in development.141 

Policy-oriented research efforts including development of surveillance programmes for 

disease burden estimates,144,145 including serosurveillance;146 and vaccine trials undertaken or 

in-planning for typhoid Vi-conjugate vaccines.147  A notable recent development has been the 

revival in Oxford of the human challenge study model for vaccine efficacy testing. Originally 

undertaken in Maryland, USA, in volunteer prisoners, these controlled human challenge 

studies have also provided rich biological data as well as vaccine efficacy assessments.72,73,148–

152 

 

1.2 Research project and thesis 

To address typhoid in Fiji, an international expert meeting was convened by the MOH and 

Australian Aid in August 2012, approximately a month before the start of this doctoral 

project. The meeting’s aims were to make disease control recommendations and to identify 

the knowledge gaps that would merit addressing in order to assist control efforts.123  

This doctoral project took forward a meeting recommendation of a serological survey to 

inform age-specific incidence rates and to guide vaccination policy. Vaccination accordingly 

receives a specific focus alongside consideration of public health case management of cases 

and interventions to improve adequate access to sufficiently clean water, effective sanitation 

and handwashing with soap.  Findings from individual paper-format chapters have been 

shared with the Fijian Ministry of Health and Medical Services (MOHMS) during the 

development of each paper. The summarised thesis findings will have been presented to 

MOHMS in October 2017, alongside findings for other research groups undertaking case-

control and environmental analyses in accordance with the 2012 meeting.153,154 

 

1.2.1 Aims 

The overall aims of this research are (i) to strengthen epidemiological understanding of the 

transmission of typhoid fever, and (ii) to suggest potential evidence-based approaches to 

effective, sustained public health interventions in the Fijian archipelago. These overall aims 

were broken down into four sets of sub-aims, each corresponding with the appropriate 

chapter. 
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1.2.1.1 Serological study 

Aim: 

To determine the age-specific incidence and cumulative incidence of typhoid in Fiji in order to 

inform transmission modelling, testing the hypothesis that surveillance data under-ascertains 

childhood infection. 

Serological study hypotheses: 

a) That individuals with recent exposure to Salmonella Typhi, or vaccination 

with Vi polysaccharide vaccine, are likely to have higher Vi-antibody titres 

than uninfected controls (obtained from a non-typhoidal setting).  

b) That these titres will fall over time, and can be measured by re-testing 

individuals with previously high titres.  

 

With knowledge of the Vi-antibody titre kinetics, a number of further hypotheses can be 

investigated: 

c) That antibody responses suggest a higher proportion of children have had 

exposure to Salmonella Typhi than is suggested by surveillance data 

d) That antibody responses vary between age groups, indicating different 

historical and recent exposure to S. Typhi. 

e) That high antibody titres are associated with drinking water outside the 

home, the absence of improved sanitation, male sex, iTaukei ethnicity and 

rural residency, and that there will be interaction between two or more of 

these factors.   

 

 

Serology Study Objectives: 

1. Design appropriate sampling frames to identify a representative sample of Fijians 

resident in the two main islands, Viti Levu and Vanua Levu. 

2. Prospectively collect 1600 blood samples from this population sample for serological 

analysis. 

3. Gather risk factor data from the 1600 study participants. 

4. Validate a Vi antibody ELISA serology test against a passive haemagluttination test to 

the long-acting d-epitope of S. Typhi flagellin, using negative control blood from 

Europe and positive control blood from Fijian typhoid cases. 
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5. Statistically analyse the results of the serological survey to assess past exposure to 

typhoid in different age groups. 

6. Statistically assess different risk factors for typhoid serological titre differences, 

including between iTaukei Fijians and Indo-Fijians. 

7. Determine wane of typhoid vaccine antibody protection in a Fijian island (Taveuni) 

where mass vaccination was done in 2010 and antibody testing done in 2011, by 

testing serum sample from 300 volunteers in a repeat cross-sectional analysis.  

 

1.2.1.2 Social mixing study 

Aim: 

To determine social contact patterns in different age groups, and settings, as relevant to 

enteric infections and other person-to-person communicable diseases in Fiji, and as may be 

applicable in other Pacific island settings. 

Hypothesis 

a) That in urban and rural settings in Fiji, reported social contact will follow age-

based mixing patterns consistent with social mixing studies in Europe. 

Objectives: 

1. Develop and pilot a social mixing survey tool for enteric infection research, based on 

those used for POLYMOD and SMILI studies.155,156 

2. Complete social mixing surveys with serology study participants. 

3. Analyse social mixing data to developing context-specific contact matrices (e.g. 

participants in urban and rural settings or by iTaukei Fijian and Indo-Fijian ethnicity) 

suitable for modelling disease transmission. 

 

1.2.1.3 Transmission dynamic model 

Aim:  

To develop and validate an age-structured transmission dynamic model, using this to inform 

typhoid control by modelling likely impacts of vaccination programmes and interventions on 

sanitation, hygiene or water quality in Fiji. 

Hypotheses: 
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a) That spread of infection in children contributes substantially to disease in people 

aged 15 to 29. 

b) That vaccination of children of primary school age with annual vaccination of a 

school-year cohort would be predicted to reduce but not eliminate disease incidence 

in the whole population, and that this reduction would be greater if preceded with a 

multi-cohort campaign 

c) That improving sanitation would be predicted to control typhoid. 

 

 

Objectives: 

1. Collect routine surveillance data and other data sources for model data fitting. 

2. Using surveillance data, serological data, and social mixing data, develop and validate 

a transmission dynamic model in the R statistical environment. 

3. Model the likely impact of interventions with polysaccharide vaccines, Ty21a vaccines 

or Vi-conjugate vaccines on typhoid transmission and incidence, including 

programmes and campaigns administered to child cohorts. 

4. Model the likely impact of other interventions that may interrupt typhoid 

transmission, including sanitation improvements, hygiene campaigns and water 

quality improvements, alone and in combination with vaccination options. 
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1.2.2 Thesis structure 

This thesis is in the “by publication” format, comprising paper-format chapters in their 

published or peer-reviewed formats and a chapter detailing the ongoing development of a 

typhoid transmission dynamic model for Fiji. Each paper-format chapter is preceded by a 

short bridging section giving the rationale for the chapter, the role of the contributors, its 

place in the narrative of steps towards typhoid control in Fiji and details of other 

considerations that lie outside the scope of the published piece.  The nature of the thesis by 

publication necessitates some repetition in chapter introductory and methods sections, but 

these largely bring different angles to the problem, specific to the aims of each paper.  

 

The thesis chapters are as follow: 

1. Introduction. Describing the problem of typhoid in Fiji, and the context of the 

research. 

2. A review of typhoid fever transmission dynamic models and economic evaluations 

of vaccination. This literature review was published in 2015 in a Vaccine journal 

special edition coinciding with the 9th International Conference on Typhoid and 

Invasive Non-Typhoidal Salmonelloses.  

3. A cross-sectional seroepidemiological survey of typhoid fever in Fiji. This is the main 

paper of the thesis and is an analysis of my seroepidemiological fieldwork conducted 

in Fiji in 2013 and 2014, published in PLOS Neglected Tropical Diseases in 2017. This 

cross sectional study focuses on age-based patterns in unvaccinated areas of the 

Fijian mainland, but also includes findings from a Vi-polysaccharide vaccinated island 

and uses a cohort of convalescing cases to provide positive control data and insight 

into post-infection antibody waning.  

There is an extended bridging section prior to this paper which contains further 

details of the design, preparation and implementation of the serosurvey. 

4. Environmental factors drive the spatial distribution of Salmonella Typhi in Fiji: a Vi-

antigen seroprevalence study.   This is a geospatial analysis of environmental factors 

associated with seropositivity for typhoid Vi antibody. Analysis and writing were led 

by MSc student Rukie de Alwis, and the paper is under second round review at 

Emerging Infectious Diseases journal.  
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5. Social mixing in Fiji: who-eats-with-whom contact patterns and the implications of 

age and ethnic heterogeneity for disease dynamics in the Pacific Islands. A paper on 

social mixing in Fiji, which was under second round of review at PLOS ONE at the time 

of writing this introduction (September 2017). The seroepidemiological survey 

included questions on whom the participant ate with the previous day, by age and 

ethnicity, in order to determine mixing patterns of potential relevance to the 

transmission of typhoid and parameterisation of transmission models.  

6. Transmission dynamics of typhoid fever in Fiji: a modelling framework. A paper, in 

preparation for submission to Vaccine journal, of a deterministic transmission 

dynamic model of typhoid approximating the situation in Fiji, utilising national 

surveillance data, the serological findings and the social mixing data.  

7. Discussion. The thesis concludes with discussion of the findings and the merits and 

limitations of the approaches used in this thesis in investigating typhoid in Fiji. 

Alongside synthesising the country-specific consideration, it addresses the 

applications of these to wider understanding and control of typhoid fever and 

potential further research directions.  

 

 

1.2.3 Appendices and additional related research 

The appendices of the thesis comprise of both supplemental information and additional 

research papers related to the Fiji typhoid investigations.  

In this final section of the introduction I outline the main papers of the appendices and 

outline concurrent or ongoing research that is not included in the bound thesis, including 

those pieces of work directly linked to the doctoral work and other concurrent research that 

is noteworthy in the narrative of the doctorate but not directly contributing to it. 

 

Appendix paper A1: 

Informed consent form and survey  questionnaire. 

 

1.2.3.1 Additional research on typhoid 

I have peer-reviewed seven papers concerning typhoid or typhoid vaccination during the 

conduct of the thesis. One resulted in publication of an editorial.  
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Appendix paper A2: 

Evaluating Typhoid Vaccine Effectiveness in Travelers’ Vaccination. J Travel Med. 

2015;22:76-77. doi:10.1111/jtm.12185. An editorial arising from peer-reviewing a Broome-

method analysis of typhoid vaccine efficacy in returning travellers. 

 

I am included as a co-author in a series of poly-authored papers by Dr Vanessa Wong (Sanger 

Institute & University of Cambridge) and colleagues by dint of contributing to sharing of 

Salmonella Typhi DNA from Fiji and through the reference laboratories of the UK national 

communicable disease surveillance centre, for an international phylogenetic mapping 

collaboration.  

Non-enclosed papers: 

 Wong VK, Baker S, Pickard DJ, Parkhill J, et al. Phylogeographical analysis of the dominant 

multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental 

transmission events. Nat Genet. May 2015. doi:10.1038/ng.3281. 

Wong VK, Baker S, Connor TR, Pickard D, et al. An extended genotyping framework for 

Salmonella enterica serovar Typhi, the cause of human typhoid. Nat Commun. 

2016;7:12827. 

International Typhoid Consortium, Wong VK, Holt KE, Okoro C, et al. Molecular Surveillance 

Identifies Multiple Transmissions of Typhoid in West Africa. PLoS Negl Trop Dis. 

2016;10(9):e0004781. 

 

1.2.3.2 Additional Fiji-Pacific Research 

I have been engaged in collaborative projects stemming from the serological survey and 

other research activities, in part reflecting my ongoing role as a public health registrar.  

 

Leptospirosis  

The doctoral project also addressed leptospirosis, a waterborne bacterial disease transmitted 

through mammalian urine. I extended the serosurvey to run as a joint investigation into 

leptospirosis, strengthening the survey’s cost-utility. Typhoid, leptospirosis and dengue are 

described by local physicians as the “three plagues of Fiji”: flooding in 2012 led to 

leptospirosis outbreaks with 40 deaths amongst 576 reported cases (an observed case-

fatality risk of 7%).157 An expert-panel approach to leptospirosis was initiated by MOH and the 
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WHO shortly after the typhoid expert meeting, with synergies identified in serological 

information needs. Epidemiological risk factor collection was extended to include putative 

risk factors for leptospirosis, and additional survey clusters selected from high-risk areas. This 

has been led by Dr Colleen Lau of the Australian National University, and includes a fieldwork 

paper and the development of analytical methods at the interface of epidemiology and 

ecology. 

Appendix paper A2:  

Lau CL, Watson CH, Lowry JH, David MC et al. Human Leptospirosis Infection in Fiji: An Eco-

epidemiological Approach to Identifying Risk Factors and Environmental Drivers for 

Transmission. PLoS Negl Trop Dis. 2016;10(1):e0004405. 

 

Non-enclosed papers: 

Lau C, Mayfield H, Lowry JH, Watson CH et al. Unravelling Infectious Disease Eco-

epidemiology using Bayesian Networks and Scenario Analysis: A Case Study of Leptospirosis 

in Fiji. Environ Model Softw. 2017; 97: 271-286 

Lau C, Mayfield H, Lowry JH, Watson CH, Kama M and Nilles EJ. Using geographically-

weighted regression to understand spatial variation in the influence of environmental 

drivers of infectious disease transmission: A case study of human leptospirosis in Fiji. Under 

review at The Lancet Planetary Health 

 

Dengue 

The second additional disease investigated by this research programme came as a result of 

establishing the survey as a serum bank for other public health research for concerns such as 

dengue fever and other arthropod-borne viral diseases. The field survey concluded in the 

same month as an epidemic of dengue serotype 3 began in Central Division Fiji, and so a 

repeat visit to survey participants in 2015 enabled paired serology to be done pre- and post- 

epidemic to support understanding of epidemic dynamics and participant antibody dynamics 

against a backdrop of intermittent dengue outbreaks. This work is led by Dr Adam Kucharski 

of the London School of Hygiene & Tropical Medicine.  

Non-enclosed paper: 

Kucharski AJ, Watson CH, Kama M, Hue S, et al Dynamics of dengue transmission and control 

during a large outbreak in Fiji. In preparation. 
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Other Arboviral diseases 

Arboviral disease research has been twice-further extended using these serosurvey samples. 

Investigations into Ross River virus are being conducted by Dr Mike Kama, Fiji national advisor 

for communicable disease control, at the laboratories of Prof John Aaskov at the Queensland 

University of Technology, Australia and with Dr Van-Mai Cao-Lormeau of Institut Louis 

Malardé, French Polynesia.158 A third and likely final round of serum collection from the 

original survey participants in Central Division was completed in June 2017 by Alasdair 

Henderson, a doctoral candidate at the London School of Hygiene & Tropical Medicine. These 

investigations extended the Fiji dengue research programme and began Fijian serological 

investigation into an emergent infection in the Pacific islands, Zika.159,160 This was previously 

considered to have little public health importance beyond uncommon occurrence of Guillain-

Barré Syndrome but has now been associated with a major epidemic of microcephaly in 

South America, which saw the temporary declaration of a public health emergency of 

international concern.161–163  

 

Trachoma 

Field research on trachoma was being conducted by Colin Macleod at the time of my field 

investigations. Through advising on field operations and social science research methods, I 

was invited to be a co-author on a paper investigating the Fijian custom of eyelash-plucking, a 

major confounder in the surveillance of trichiasis and ocular Chlamydia trachomatis. 

Non-enclosed paper: 

Macleod C, Yalen C, Butcher R, et al. Eyelash Epilation in the Absence of Trichiasis: Results of 

a Population-Based Prevalence Survey in the Western Division of Fiji. PLoS Negl Trop Dis. 

2017;11(1):e0005277. doi:10.1371/journal.pntd.0005277. 

 

1.2.3.3 Concurrent Unrelated Research 

Ebola  

A further set of investigations in infectious disease epidemiology and vaccine science 

unrelated to typhoid but conducted during the timeline of the thesis warrants particular 

mention.  

The devastating and tragic outbreak of Ebola virus disease in West Africa from 2013 to 2016 

first closed off typhoid investigation using flagellin Hd immunoassays (intended to be run on a 
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10% survey serum subset for assay comparison), as the University of Maryland Center for 

Vaccine Development, the only institution running the assay, diverted all available resources 

to Ebola vaccine development at declaration of an international public health emergency in 

August 2014. Soon after this, I was seconded from the London School of Hygiene & Tropical 

Medicine to the WHO Ebola vaccine response based in Geneva.  

The principle output of my Geneva collaboration was the design and implementation of a 

novel cluster randomised trial (a ring vaccination trial entitled “Ebola: Ça Suffit!”). The trial 

had a fighting chance at demonstrating vaccine efficacy by utilising an appreciation of 

infectious disease dynamics and the epidemic operating environment to create a trial with 

could be feasibly implemented under demanding field conditions. Interim and final analysis 

demonstrated high efficacy for the VSV-ZEBOV vaccine (Merck) in Guinea.  

The second major piece of Ebola response research was to design and implement for the 

WHO (October 2015 to summer 2016) a VSV-ZEBOV vaccination cohort study in Guinean 

communities in which survivors resided. These communities were thought to be at risk of late 

transmission due to Ebolavirus persistence in semen and other body fluids. This study, “les 

proches des survivants” (those close to survivors), examines vaccine safety and 

immunogenicity in community members with baseline Ebola antibodies, asymptomatically 

acquired, relative to those without. Alongside leading the design and protocol writing of the 

vaccine cohort investigations, a substantial component of my work for “les proches des 

survivants” was to design, pilot and implement with field partners a comprehensive 

electronic data collection system compliant with Good Clinical Practice (GCP) trials standards.  

This used Android tablet computers running google.org’s OpenDataKit software and a system 

I designed of QR barcodes for recording participants, field staff and samples – this offers 

substantial potential for improving field deployment times for vaccine trials in future 

epidemics.  

An ongoing extension of the ring vaccination trial research has been to examine the dynamics 

of transmission in and around the trial, including reconstruction of epidemiological chains of 

transmission and comparison to putative molecular phylogenetic trees. This examines the 

epidemiological assumptions of the original trial and their applicability for future epidemic 

trial design. My Ebola research portfolio also includes contributions to modelled projections 

of epidemic scenarios for response planning and trial planning, appraisal of the risks of 

semen-mediated late transmission of Ebola virus, and contribution to vaccine deployment 

under GCP conditions to contain post-epidemic flare-ups. These papers and projects are 

listed below. 
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Non-enclosed papers: 

1. Ebola ça suffit ring vaccination trial consortium. The ring vaccination trial: a novel cluster 

randomised controlled trial design to evaluate vaccine efficacy and effectiveness during 

outbreaks, with special reference to Ebola. BMJ. 2015;351:H3740. doi:10.1136/bmj.h3740. 

2. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, et al. Efficacy and effectiveness of an 

rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the 

Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386(9996):857-866. 

doi:10.1016/S0140-6736(15)61117-5. 

3. Kieny MP, Longini IM, Henao-Restrepo AM, Watson CH, Egger M, Edmunds WJ. Changes in 

the primary outcome in Ebola vaccine trial: Authors’ reply. Lancet. 2016;387(10027):1509-

1510. doi:10.1016/S0140-6736(16)00686-3. 

4. Henao-Restrepo AM, Camacho A, Longini IM, Watson CH et al. Efficacy and effectiveness 

of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea 

ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. January 

2017. doi:10.1016/S0140-6736(16)32621-6. 

5. Eggo RM, Watson CH, Kucharski AJ, Camacho A, Funk S, Edmunds WJ. Duration of Ebola 

virus RNA persistence in semen of survivors: population-level estimates and projections. 

Eurosurveillance. 2015;20(48):pii=30083. doi:10.2807/1560-7917.ES.2015.20.48.30083. 

6. Kucharski AJ, Eggo RM, Watson CH, Camacho A, Funk S, Edmunds WJ. Effectiveness of Ring 

Vaccination as Control Strategy for Ebola Virus Disease. Emerg Infect Dis J. 2016;22(1). 

doi:10.3201/eid2201.151410. 

7. Camacho A, Eggo RM, Goeyvaerts N, et al. Real-time dynamic modelling for the design of 

a cluster-randomized phase 3 Ebola vaccine trial in Sierra Leone. Vaccine. 2016. 

doi:10.1016/j.vaccine.2016.12.019. 

8. Camacho A, Eggo RM, Funk S, Watson CH, Kucharski AJ, Edmunds WJ. Estimating the 

probability of demonstrating vaccine efficacy in the declining Ebola epidemic: a Bayesian 

modelling approach. BMJ Open. 2015;5(12). doi:10.1136/bmjopen-2015-009346. 
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Research in progress 

Gsell PS*, Camacho A*, Kucharski A*, Watson CH* et al Ring vaccination of adults and 

children with rVSV-ZEBOV under Expanded Access in response to an outbreak of Ebola virus 

disease in Guinea, 2016: an operational and vaccine safety report.  In press, Lancet 

Infectious Disease.             *contributed equally 

Eggo R*, Roberts A*, Watson C, Hue S, et al. Chains of Ebola transmission in Guinea and the 

ring vaccination trial: findings from epidemiology and phylodynamics. *contributed equally. 

In preparation. 

Watson CH, Camacho A, Gsell PS, Carroll M et al.  Vaccination des proches des survivants. An 

immunogenicity and safety cohort study in people connected to survivors of Ebola Virus 

Disease comparing those with and without baseline non-zero Ebola antibody titres. In 

preparation. 

Watson CH, Marks M, Abdourahamane D, Roberts C, Gsell PS et al. Design of a GCP-

compliant electronic data collection system for vaccine and clinical trials using Android 

tablets and OpenDataKit (ODK). In preparation. 
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Chapter 2. A review of typhoid fever transmission dynamic models and 

economic evaluations of vaccination. Watson CH, Edmunds WJ. Vaccine. 

2015. doi:10.1016/j.vaccine.2015.04.013. 

 

2.1 Bridging section 

This non-systematic review, completed in 2015, considers the role of published models in 

informing typhoid fever epidemiology and decisions around typhoid vaccine utilisation, 

including the economic appraisal of vaccination programmes. From the literature, data gaps 

that could support model estimates were identified. The Fiji fieldwork programme reflects 

efforts to close these gaps.  

As noted in the thesis introduction, my proposed overall aims included a sub-aim on 

economic evaluation aspect to the transmission dynamic modelling of Fiji, consistent with the 

approaches used in national immunisation technical advisory groups such as the UK’s Joint 

Committee on Vaccination and Immunisation. Cost-effectiveness analysis of possible Fiji 

typhoid vaccination programmes was curtailed on the grounds of feasibility within the 

timeframe of a PhD and with an eye to utility for in-country partners. This chapter offered a 

mechanism through which to engage with the health economic literature on typhoid 

vaccination. In terms of informing the formation of a model appropriate to the situation in 

Fiji, this literature review was a starting point for identifying relevant parameters and prior 

approaches to typhoid modelling. 

Whilst structured frameworks exist for reviews, systematic reviews and meta-analyses in a 

number of areas of health and medical research, including PRISMA and its extensions,1 the 

literature is thinner on methods specific to reviews of modelling. This chapter was informed 

by a review by Esther van Kleef on healthcare associated infection models,2 and by seminar 

notes by Richard White.3  

The review identified comparatively few transmission dynamic models of typhoid relative to 

similar burden infectious diseases, none using Bayesian methods, and found no economic 

analyses based on dynamic models, such as would meet current recommendations in 

accounting for indirect protection.4,5  

There have been developments in typhoid models and economic evaluation since the review 

was published. Of reviewed typhoid models, those by the Pitzer group at Yale are foremost in 

informing current typhoid vaccination and control policy discussions.6,7 The Pitzer group have 
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more recently published work on drivers of dynamics in Malawi8 and Nepal9 and on the cost-

effectiveness of typhoid conjugate vaccines.10 The latter, undertaken by Marina Antillón and 

colleagues ahead of updates to the WHO and GAVI position papers, used Bayesian parameter 

estimation (Hamiltonian Monte Carlo methods11) in a transmission dynamic model to 

produce typhoid vaccination economic evaluations in line with current recommended 

approaches to vaccine cost effectiveness analysis. This found 28%-43% of benefits were from 

indirect protection, which would not be captured in a static economic model.10 Vaccination 

versus improvements to WASH components remains an unanswered question in the 

economic evaluation of in typhoid control. 
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 There are relatively few dynamic models or economic analyses of typhoid 

vaccination. 

 The relative contribution of carriage to transmission is a key uncertainty. 

 Published economic analyses use static models that omit indirect protection of 

vaccines. 

 Nevertheless, vaccines appear highly cost-effective against WHO criteria in high-

incidence settings. 

 No economic model was found to compare vaccine and sanitation.   
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Abstract 

Despite a recommendation by the World Health Organization (WHO) that typhoid vaccines be 

considered for the control of endemic disease and outbreaks, programmatic use remains 

limited. Transmission models and economic evaluation may be informative in decision 

making about vaccine programme introductions and their role alongside other control 

measures. A literature search found few typhoid transmission models or economic 

evaluations relative to analyses of other infectious diseases of similar or lower health burden.   

Modelling suggests vaccines alone are unlikely to eliminate endemic disease in the short to 

medium term without measures to reduce transmission from asymptomatic carriage. The 

single identified data-fitted transmission model of typhoid vaccination suggests vaccines can 

reduce disease burden substantially when introduced programmatically but that indirect 

protection depends on the relative contribution of carriage to transmission in a given setting. 

This is an important source of epidemiological uncertainty, alongside the extent and nature of 

natural immunity. 

Economic evaluations suggest that typhoid vaccination can be cost-saving to health services if 

incidence is extremely high and cost-effective in other high-incidence situations, when 

compared to WHO norms. Targeting vaccination to the highest incidence age-groups is likely 

to improve cost-effectiveness substantially. Economic perspective and vaccine costs 

substantially affect estimates, with disease incidence, case-fatality rates, and vaccine efficacy 

over time also important determinants of cost-effectiveness and sources of uncertainty. 

Static economic models may under-estimate benefits of typhoid vaccination by omitting 

indirect protection. 

Typhoid fever transmission models currently require per-setting epidemiological 

parameterisation to inform their use in economic evaluation, which may limit their 

generalizability. We found no economic evaluation based on transmission dynamic modelling, 

and no economic evaluation of typhoid vaccination against interventions such as 

improvements in sanitation or hygiene.  
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2.2 Introduction 

Typhoid fever is an exclusively human enterically-transmitted systemic disease caused by 

infection with the bacterium Salmonella enterica enterica serovar Typhi. Although largely 

controlled in Europe and North America, typhoid remains endemic in many parts of the 

world, notably Asia, where it is an important cause of febrile illness in crowded, low-income 

settings.[1] A notable feature of typhoid is the carrier state – asymptomatically infected 

individuals who continue to shed S. Typhi in their stool or urine for many years, thereby 

sustaining transmission.[2] 

Despite a recommendation by the World Health Organization in 2008 that typhoid 

vaccination be considered for the control of endemic disease and outbreaks, programmatic 

use remains limited.[3]  

In the early twentieth-century, public health officials were debating the best methods of 

evaluating typhoid vaccine effectiveness, and whether vaccination was a distraction from 

improvements in sanitation and hygiene.[4] These remain contemporary policy issues for 

ministries of health and other health partners who may be considering programmatic anti-

typhoid vaccination as a counterpart to other anti-typhoid measures such as improvements 

to income distributions, sanitation, water supplies and hand washing with soap (post-

defecation and before the preparation of food in the home or sold in the street) as well as 

identification and management of carriage.[5–8] Transmission dynamic modelling and 

economic evaluation are two informative tools to support such decisions.[9,10] 

Where health budgets are limited, allocation of resources to activities which generate the 

best value for money maximises the population’s health (not withstanding other health 

programme criteria such as equity). To compare between and across health states, cost utility 

analysis (CUA) can be employed using a common metric of health, such as disability-adjusted 

life-year (DALY). The World Health Organization’s Choosing Interventions that are Cost–

Effective project (WHO-CHOICE) describes interventions as “cost-effective” if they add a DALY 

at a cost of less than three times Gross Domestic Product (GDP) per capita,  and “highly cost-

effective” if each DALY costs less than GDP per capita. These are arbitrary thresholds and 

meeting them does not necessarily lead to the intervention being adopted, as health 

decision-makers are often required to make choices between multiple interventions that fall 

below these thresholds. Furthermore, even highly cost-effective activities may be too 

expensive overall for a health service to provide within budget: a hypothetical drug adding a 

year of life and costing GDP per capita for each person treated would require the entire 

national economy to be spent giving the drug to every member of the population.[11]  
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By building on the germ theory of disease, and mass-action principles from the physical 

sciences,[12] mechanistic mathematical modelling enables extrapolation beyond observed 

data, and can be used to project the expected trends of disease in a population or the 

potential impact of control strategies such as vaccination. Through capturing indirect effects 

of immunization – the reduced incidence of disease in members of a population not 

themselves immunized, commonly described as “herd immunity” – these transmission 

dynamic models capture the impact of such interventions more completely than static 

economic models measuring only the direct effects in vaccinees.[13]  

In this review, typhoid transmission dynamic models and typhoid vaccine economic 

evaluations are examined for their potential contributions to informing disease control, 

identification of gaps in knowledge and indication of directions for further research. 

 

 

2.3 Methods 

PubMed was searched on 23 October 2014 without date restriction using the following 

terms: ("Typhoid Fever"[Mesh]) AND ("Nonlinear Dynamics"[Mesh] OR "Models, 

Theoretical"[Mesh] OR "Models, Statistical"[Mesh] OR "Computer Simulation"[Mesh] OR 

"Models, Economic"[Mesh] OR "Least-Squares Analysis"[Mesh] OR "Likelihood 

Functions"[Mesh] OR "Resource Allocation"[Mesh] OR "Cost-Benefit Analysis"[Mesh] ) AND 

(Humans[Mesh])  NOT "Mice"[Mesh]. 

Personal libraries were reviewed and reference lists in papers searched for modelling and 

economic studies that may not have been identified by the above search strategy. Results 

were restricted to those available in English. We obtained information about unpublished 

studies through the Coalition against Typhoid and International Vaccine Institute.  

Studies were included if they modelled typhoid transmission and/or analysed the cost-

effectiveness of vaccination in endemic settings. Endemic settings were identified using 

recent high-quality reviews.[14,15] We included cost of illness (COI) studies if they were 

linked to an analytical study, and willingness-to pay (WTP) studies if they included an 

economic evaluation or were linked to an analytical study. Studies were excluded if they used 

geographical or statistical modelling, including time-series analysis, without transmission 

dynamics, or if they addressed transmission or cost-effectiveness in non-endemic 

populations, such as international travellers. 
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Transmission models were assessed for their model structure, data sources, parameter 

estimates, use of fitting methods, sensitivity analysis and the contribution of their approach 

to epidemiological understanding of typhoid. Economic studies were evaluated by data 

sources, economic evaluation approach, perspective, comparator programmes, use of 

sensitivity analysis and capture of indirect effects of vaccination.  
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2.4 Results 

Seventy-nine titles were retrieved. Ten modelling papers were selected for review based on 

title or abstract.  One was discarded as a non-mechanistic time series study[16], one as it 

modelled outbreaks in a non-endemic setting[17], while two papers were of the same model 

and considered together.[18,19] These are summarised in tables 2.1 and 2.2.  

Table 2.1. Summary of typhoid transmission model types  

Characteristic Number of 

models (n=7) 

Reference 

 

Type of model 

 Compartmental  

o Deterministic 

o Stochastic 

 individual-based stochastic  

 

 

6  

0 

1  

 

 

[18–24] 

 

[25] 

Scope of model 

 Analytical/mathematical, 

o Without data 

o Uses data without fitting 

 Exploratory/epidemiological,  

o uses data without fitting 

o fitted to data 

  Policy-oriented/public health, 

o uses data without fitting 

o fitted to data 

 

 

1  

1 

 

1 

1 

 

2 

1 

 

 

[22] 

[23] 

 

[21] 

[25] 

 

[18–20] 

[24] 

Parameter-fitting method 

 Maximum likelihood estimation 

 Bayesian 

 

2 of 2 

0 

 

[24,25] 

 

Investigates vaccination 

 Compares with improved sanitation, 

hygiene or water supply 

 Include economic evaluation of vaccination 

4 

4 of 4 

 

2 of 4 

[18–21,24] 

[18–21,24] 

 

[18–20] 
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Table 2.2a. components and main findings of typhoid transmission models  
 First author 

and year 

Ref Model type Disease 

states 

Data source(s) Fitting process Interventions 

modelled 

Time horizon Sensitivity 

analysis 

Findings Comments 

 

1 Cvjetanović 

1971, 1978 

[18] 

[19] 

Compartmental 

deterministic 

with births = 

deaths, without 

age-structure 

N S Es Ea Is Ia Ct 

Cl Rt Rl 

Parameters 

estimated using 

literature and 

expert opinion. 

Considers an 

eidemiological 

scenario 

approximating 

Western Samoa. 

None Vaccination with 

whole-cell 

inactivated vaccines, 

VE 60%, 75% or 

90%, coverage 60, 

80 or 100%. 

  

As one-off or 5 

yearly campaigns. 

 

Sanitation 

60 years Epidemiological/ 

clinical 

parameters 

fixed. Effective 

contact rate 

(per capita per 

day) varied. 

For both low and high VE, single 

vaccination campaigns achieve 

temporary reduction in incidence 

rates before return to a rate 

determined by the force of 

infection, where force of infection 

is above an elimination threshold. 

Sustained reduction in force of 

infection reduces incidence. 

Multiple vaccination campaigns 

reduce incidence will campaigns 

are sustained. 

Multiple 

parameters are 

included 

without fitting. 

Outputs should 

be considered 

illustrative.  

2 Briscoe 1980 [22] Deterministic 

analytical SIS 

S I N/A N/A. Reviews 

Cvjetanović 

models. 

Analysis of role 

of force of 

infection and 

recovery on 

equilibrium 

prevalence. 

N/A N/A N/A Force of infection determines 

prevalence, and vice versa.  

Stochasticity may prevent disease 

eradication.  

Intended as an 

analytical 

model rather 

than 

epidemiological 

simulation. 
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 First author 

and year 

Ref Model type Disease 

states 

Data source(s) Fitting process Interventions 

modelled 

Time horizon Sensitivity 

analysis 

Findings Comments 

 

3 Bailey 1982 [23] Compartmental 

deterministic 

with births = 

deaths, without 

age-structure 

S E I C R [18] Rule-based 

simplification 

of Cvjetanović 

1971 

model[18] 

with direct 

mathematical 

solution of 

steady-state 

equations. 

N/A N/A N/A, suggests an 

approach to 

sensitivity 

analysis [26] 

For a steady-state model, structural 

simplification results in 

compartment population estimates 

consistent with the unsimplified 

model for a given effective contact 

rate. 

Reducing the 

number of 

compartments 

makes a model 

more suitable 

for validation 

with data. 
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 First author 

and year 

Ref Model type Disease 

states 

Data source(s) Fitting process Interventions 

modelled 

Time horizon Sensitivity 

analysis 

Findings Comments 

 

4 Cvjetanović 

1986 

[20] Age-structured 

compartmental 

deterministic 

SIRS. 

Birth and death 

rates from Chile 

N S I Ct Cl Rt Rl Demographic 

and typhoid 

surveillance data 

for Santiago and  

rest of Chile  

Effective 

contact rate 

per capita per 

unit day (age-

specific for 

acquisition) 

from linear 

interpolation 

of age-specific 

incidence. 

 

Visual 

goodness-of-

fit.  

Strong 

assumption 

that 20% of all 

cases are 

clinical. 

Vaccination with 

Ty21a, 95% VE at 

75% or 95% 

coverage of under 

25s with 5yrly 

revaccination. Food 

sanitation in schools 

reducing force of 

infection by 1/3 in 

ages 6 to 16y. 

Sanitation with 

annual 2% or 5% 

improvement in 

force of infection 

over 10 years. 

Interventions 

analysed 

over 25y 

after run-in 

to 

equilibrium. 

None Vaccination campaigns would 

reduce age-specific incidence and 

increase the age of peak incidence  

 

Vaccination would not eliminate 

disease over 25y but would result 

in year on year reduction in 

incidence if sustained. 

 

10y sanitation campaigns likely to 

reduce prevalence and continue to 

reduce prevalence after cessation.  

 

 

Somewhat 

simplified 

model 

structure, 

though now 

age structured. 

The model is 

not validated 

sufficiently 

against data, 

nor are outputs 

sufficiently 

clear to make 

strong policy 

conclusions. 

Age-based 

changes in 

incidence with 

vaccination are 

consistent with 

epidemic 

theory. 
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 First author 

and year 

Ref Model type Disease 

states 

Data source(s) Fitting process Interventions 

modelled 

Time horizon Sensitivity 

analysis 

Findings Comments 

 

5 González-

Guzmán 1989 

[21] Compartmental 

deterministic 

SIS structure 

with births and 

deaths 

S I V with 

environmental 

transmission 

Parameter 

estimates for 

Chile 

None, 

analytical 

model 

Reductions in 

combinations of:  

 carrier 

prevalence 

 indirect contact 

rate 

 direct contact 

rate 

 environmental 

life of the 

bacterium 

 bacterial count in 

the environment. 

Vaccination with 

Ty21a, coverage 

scaled for 

equivalence to VE 

74% or 95%. 

 

10y N/A Decline in incidence is not rapid, 

even with highly effective 

combined control measures.  

Reduction in chronic carriage most 

effective control procedure. 

Vaccination as a permanent 

programme would require a high 

proportion of the population to 

become immune to control typhoid 

within a meaningful timeframe.  

Author 

cautions 

against using 

the model to 

estimate the 

effect of a 

vaccination 

programme but 

that it indicates 

areas for 

further 

epidemiological 

parameter 

determination. 
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 First author 

and year 

Ref Model type Disease 

states 

Data source(s) Fitting process Interventions 

modelled 

Time horizon Sensitivity 

analysis 

Findings Comments 

 

6 Saul 2013 [25] Individual-

based 

stochastic, 

random-mixing. 

S E Is Ia Ct Cl Rt 

Rl, Rc, ;Rs; Vc Vs 

Surveillance 

data from 

Dhaka, 

Bangladesh, and 

Kolkata India. 

 

Migration, birth 

and death rates 

from Matlab, 

Bangladesh. 

Other 

parameter from 

literature and 

expert opinion. 

Maximum 

likelihood and 

visual 

inspection 

None 40y to 

equilibrium 

and 40y 

follow-up. 

20y for 

effects of 

carriage. 

Sensitivity 

analysis on 

refractory 

period from 

birth. 

Distinguishes between sterile 

immunity and clinical Immunity (in 

which individuals can be infected 

but not develop disease). Multiple 

infections needed to develop 

sterile immunity. 

Natural immunity is likely to be 

long-lasting but needs further field 

investigation. 

Carriage stabilizes dynamics, and is 

particularly important in lower 

incidence settings. 

 

Complex agent 

based model, 

limited 

availability of 

epidemiological 

data results in 

issues of 

parameter 

identifiability.  

Plausible 

combinations 

of parameters 

identified.  
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 First author 

and year 

Ref Model type Disease 

states 

Data source(s) Fitting process Interventions 

modelled 

Time horizon Sensitivity 

analysis 

Findings Comments 

 

7 Pitzer 2014 [24] Compartmental, 

age-structured 

deterministic 

S1 S2 I1 I2 R C W Surveillance 

case series, 

Vellore, Tamil 

Nadu, India 

Two-stage 

fitting with 

Latin 

hypercube 

sampling of 

starting 

parameters. 

Maximum 

likelihood 

estimation, 

simplex 

method.  

 

Vaccination with: 

Ty21a, (VE 48%, 

duration =natural 

immunity), 

Vi polysaccharide 

(VE 80%, 3y),  

Vi conjugate (VE 

95.6%, 19.2y). 

 

Vaccination of 

school age children 

as a campaign, 

routine vaccination 

of 6 year olds, or 

both together. 

 

Improvements in 

water and sanitation 

over 30y 

50y to quasi-

steady state 

and 25 y 

follow-up 

Multi-parameter 

sensitivity 

analysis in 

model fitting. 

Basic reproduction number is 

around 3 in Vellore and 7 in Dhaka. 

Natural immunity is likely to be 

long-lasting. 

Vaccination campaigns would not 

eliminate disease in Vellore but 

instead see disease rebound in 5 to 

10 y. 

A campaign plus routine 

immunization could result in a new 

lower incidence disease state. 

High baseline carriage rates reduce 

the indirect protection of vaccines 

– understanding carriage 

prevalence should be a disease 

control priority.  

In most circumstances modelled, 

improvements in hygiene & 

sanitation have more impact than 

vaccination. 

Best fitting 

parameter sets 

were highly 

sensitive to 

initial 

parameter 

selection. 

Identifies 

carrier 

transmissibility 

and relative 

contributions 

of short- and 

long- cycle as 

import 

epidemiological 

sources of 

uncertainty. 

VE = vaccine efficacy. Effective contact rate is the rate at which two individuals come into contact per unit time, with the nature of the contact being such that if 

one was infectious and the other susceptible, infection would be transmitted. 
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Table 2.2b. Disease states in typhoid models 
Abbeviation Disease state Comment 

N Newborn Susceptible in Cvjetanović’s model, refractory in Saul’s 

S 

S1 S2 

Susceptible; 

Fully and partially susceptible 

 

E;  

Es; Ea 

‘Exposed’;  

Symptomatic or  asymptomatic 

Infected but not (yet) infectious 

 

I; 

Is Ia 

I1 I2 

Infectious; 

Symptomatic or asymptomatic 

Primary or subclinical infection  

 

 

 

Primary infection of a fully susceptible individual or 

asymptomatic/ subclinical infection of a previously partially 

susceptible individual 

 

C;  

Ct; Cl 

Carrier;  

temporary; long-term 

 

R;  

Rt; Rl;  

Rc, ;Rs 

Removed/resistant/refractory/recovered;  

Temporary immunity; long-term immunity;  

Natural immunity to clinical disease; natural 

sterile immunity) 

Not able to be infected, immune. 

Clinical immunity is against disease but allows infection 

and onward transmission. 

Sterile immunity is against any infection. 

V 

Vc, ; Vs 

Vaccinated 

Vaccine-induced immunity to clinical 

disease; Vaccine-induced sterile immunity 

 

 

W ‘Water’ Long-cycle transmission from water or environmental 

contamination, contributed to by all infectious or carrier 

classes. 

 

 

A further, as yet unpublished, transmission model has been developed by the International 

Vaccine Institute (personal communication, Jin Kyung Park) and is not reviewed here.  
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Seven titles were identified as economic evaluation and obtained for full-text review (tables 

2.3 and 2.4) alongside two underpinning COI studies and one underpinning WTP study (table 

2.5).  

Table 2.3. Summary of typhoid vaccine economic evaluation types 

 

 

 

Characteristic Number of studies 

(n=7) 

 

Reference 

 

Based on field studies 5 [27–31] 

Perspective:   

 Public sector only 2 [27,32] 

 Private only 1 [29] 

 Societal (public and private)   

o Include intangible costs of 

pain, suffering and disability 

4 

3 

[28–31,33] 

[28,30] 

Analytical approach: 

(a study can include more than one 

approach) 

 Cost-benefit analysis component 

 Cost-effectiveness analysis component 

 Cost-utility analysis component 

 Willingness-to-pay component 

 Price-optimisation model 

 

 

4 

2 

2 

4 

1 

 

 

[29–32] 

[27,32] 

[30,33] 

[27–29] 

[27] 

Include indirect protection of vaccines 

 Include transmission dynamics 

1 

0 

[27] 

Evaluates improve sanitation, hygiene or 

water supply as an alternative to or adjunct 

to vaccination 

 

0  
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Table 2.4 Components and main findings of typhoid vaccine economic evaluations 
 First 

author, 

year, 

reference 

Analytical 

approach 

Economic 

perspec-

tive 

Setting Burden of 

disease 

Costs Vaccine 

intervent-

ion 

modelled 

Vaccine 

effective-

ness 

Time 

horizon 

Discount-

ing 

Disease 

dynamics 

Sensitivity 

analysis 

Data source(s) Findings 

1 Musgrove 

1992 

[32] 

CBA 

CEA 

 

 

Public 

sector 

 

 

PAHO 

SIREVA 

countries 

 

150 cases per 

year per 100k 

population. 

CFR1% 

Does not cost 

pain, suffering 

or death. 

Vaccine 

programs and 

clinical/ field 

trials or pilots. 

Mass 

vaccination;  

reducing 

number of 

doses over 

time. 

Estimated 

90% 

14 and 24 

years 

10%pa,  No Program 

administration 

costs, vaccine 

costs, delay 

between 

accrual of 

costs and 

benefits 

Expert opinion Describes incidence, 

treatment costs and 

vaccination costs at 

which a program 

would be cost-

neutral  

2 Shepard 

1995 

[33] 

CUA, cost 

per QALY. 

 

Public 

sector 

costs; 

societal 

benefit 

captured as 

QALYs  

Countries 

with 

middle, 

high or 

very high 

U5MR 

1.5 cases per 

person per 

lifetime. 

CFR 1.8% 

Morbidity is 

excluded from 

QALY 

estimates 

Marginal costs 

of additional 

vaccination 

within a 

childhood 

programme 

By birth 

cohort, two 

doses  

Anticipated 

80% over 

10y 

10 years 3%, costs 

and 

benefits 

No. Steady 

states pre-

and post- 

vaccine 

program 

start. 

Assumes 

disease most 

common in 

late 

childhood or 

early 

adulthood.  

1. Dose cost at 

USD50/ QALY. 

2. Vaccine 

development 

costs. 

 

Expert 

opinion; 

extrapolation 

of high 

incidence 

epidemiologic

al studies [34] 

Preliminary 

estimate of highly 

CE (<USD50 per 

QALY, 1992 price) if 

data assumptions 

are valid. 

Critical parameters 

are incidence, CFR, 

VE, vaccine costs 

3 Poulos 

2004 

[31] 

CBA Multi-

dimensional 

public 

sector and 

societal 

Kalkaji 

slum, New 

Delhi, 

India 

As per [35]. 

 Does not cost 

pain, suffering 

or death. 

As above. 

Public funded 

vaccine 

programme. 

Campaign 

with 80% 

coverage of:  

age 2-5, age 

6-19, or all-

age. 

70% for 3 

years 

3 years 10% No Incidence; 

Vaccine cost; 

Ratio of total 

economic 

benefit to 

measured COI 

Bahl 2004 [35] Immunization of 2-

5year olds is cost 

saving to the public 

sector in a high 

incidence setting. 

Sensitivity analysis 

and inclusion of 

private costs 

suggest vaccination 

of other ages may 

also be highly CE. 
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 First 

author, 

year, 

reference 

Analytical 

approach 

Economic 

perspec-

tive 

Setting Burden of 

disease 

Costs Vaccine 

intervent-

ion 

modelled 

Vaccine 

effective-

ness 

Time 

horizon 

Discount-

ing 

Disease 

dynamics 

Sensitivity 

analysis 

Data source(s) Findings 

4 Canh 2006 

[29] 

WTP, 

contingent 

valuation, 

CBA. 

Private Hue, 

Vietnam 

Raised 

incidence 

1995-9; 

associated 

with outbreak 

in 1996  

Benefits 

measured by 

WTP. 

Proposed USD 

0.67 

1.70 

3.30 

6.70 

13.30 

N/A Proposed: 

70%, 3y; 

70%, 20y; 

99%, 3y; 

99%, 20y 

N/A Inherent Typhoid 

perceived to 

be in decline 

by 67% of 

participants 

N/A Cross sectional 

survey in 2002 

of households 

with children  

Survey participants 

are more sensitive 

to price than to 

expected vaccine 

efficacy or duration 

of protection. 

Modest user fees 

could support a 

vaccination 

programme. 

5 Cook 2008 

[30] 

CUA Public 

sector and 

societal 

Kolkata, 

India; 

Karachi, 

Pakistan; 

North 

Jakarta, 

Indonesia; 

Hue, 

Vietnam 

Highest in the 

sites within 

Karachi and 

Kolkata, 

lowest in Hue. 

Reported 

incidence 

double to 

account for 

false negative 

blood 

cultures. 

DALY weight 

0.27, illness 

duration 7d 

CFR 1%. 

 

Private direct 

and indirect 

cost of illness 

obtained in 

interviews 

with 

confirmed 

cases, public 

costs obtained 

from health 

facilities. 

Public and 

private 

vaccination 

costs from 

literature and 

estimation. 

Campaigns: 

1. School 

children 5 

to 14y 

2. Children 

aged 2 to 

15y 

3. All 2y+ 

65%, 3y Over 

duration of 

vaccine 

3% No Single 

parameters 

and Monte 

Carlo across all 

parameters, 

triangular 

distribution. 

VE 55% to 

75%, duration 

2to4y,vaccine 

cost USD 0.40 

to 0.80 (2007 

prices), 

delivery cost 

variable. 

CFR 0.5% to 

3%, illness 

duration 4d to 

3w, DALY 

weight 0.08 to 

0.47. 

 

DOMI No programmes 

would be cost 

saving but (school-) 

child immunization 

would be very CE to 

health services or 

society in all but 

Hue, including 

under sensitivity 

analysis. 

Adult vaccination in 

Kolkata and 

N.Jakarta is less CE 

but still meet 

thresholds. 

Surveillance likely 

reduced illness costs 

through early 

diagnosis. 
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 First 

author, 

year, 

reference 

Analytical 

approach 

Economic 

perspec-

tive 

Setting Burden of 

disease 

Costs Vaccine 

intervent-

ion 

modelled 

Vaccine 

effective-

ness 

Time 

horizon 

Discount-

ing 

Disease 

dynamics 

Sensitivity 

analysis 

Data source(s) Findings 

6 Cook 2009 

[28] 

CBA total 

economic 

benefits vs 

costs 

 

1. Societal 

COI 

2. above + 

Value of 

statistical 

life (VSL) 

saved 

3. WTP 

(contingen

t 

valuation) 

+ public 

costs 

Societal 

 

Tiljala and 

Narkeldan

ga slums, 

Kolkata, 

India 

3.4 case per 

1000 2 to 4 y 

4.9 per 1000 

5to15y 

1.2 per 1000 

16y+ 

 

DALY weight 

0.27 

CFR 1%,  

Total marginal 

vaccine cost 

USD (2007) 

$1.11 

WTP as per 

[36]  

VSL from 

literature. 

Campaigns: 

1. School 

children 5 

to 14y 

2. Children 

aged 2 to 

15y 

3. All 2y+ 

65%, 3y 1 year cost, 

3 year 

benefits 

3% No As per  [30]. 

VSL varied by 

50%. 

Kolkata [37]  Economic 

perspective 1 is not 

cost neutral, but 

perspectives 2 and 3 

indicate benefits 

greater than cost 

across all campaign 

strategies. 

Sensitivity analyses 

suggest WTP and 

VSL models show 

net benefit for all 

campaign strategies 

across most 

parameter sets. 

  

7 Lauria 

2009 

[27] 

Optimizati

on model: 

different 

adult & 

child 

pricing, 

implicit 

CEA 

Public 

sector 

Hypothetic

al 

population 

3.5 annual 

cases per 

1000 children 

and 1per1000 

adults 

As per [38] Price-

dependent 

uptake 

70%, 3y 3y 8% Possible herd 

protection 

described in 

a sensitivity 

analysis, with 

variable adult 

and child 

transmissibili

ty. 

Monte Carlo 

simulation, 

allowing most 

parameters to 

vary. 

Five Asian 

countries[37] 

There is minimal 

advantage to 

different vaccination 

charges for children 

and adults under 

the static model. 

Herd protection 

greatly influences 

case numbers and 

value. 

CBA = cost-benefit analysis; CE = cost-effective(ness); CEA = cost-effectiveness analysis; CFR = case-fatality rate (proportion of cases that result in 

death); CUA = cost-utility analysis; COI = cost of illness; DALY = Disability adjusted life-year; DALY weight = a scale from 0 (perfect health) to 1 

(death). DOMI =Diseases of the most impoverished programme [39]; PAHO = Pan-American Health Organization; SIREVA = Sistema Regional de 

Vacunas (Regional Vaccine System); U5MR = under-five mortality rate; USD = United States Dollars; VE = vaccine effectiveness; WTP = willingness to 

pay 
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Table 2.5 Components and main findings of cost of illness studies and willingness to pay studies used in typhoid vaccine economic evaluations 
 First 

author, 

year, 

reference 

Analytical 

approach 

Economic 

perspec-

tive 

Setting Burden of 

disease 

Costs Vaccine 

interventio

n modelled 

Vaccine 

effective-

ness 

Time 

horizon 

Discount-

ing 

Disease 

dynamics 

Sensitivity 

analysis 

Data source(s) Findings 

1 Bahl 2004 

[35] 

Cost of 

Illness 

Multidimen

sional 

public 

sector and 

societal 

costs 

Kalkaji 

slum, New 

Delhi, 

India 

Culture 

confirmed 

incidence per 

year: 17 per 

1000 under 

5s; 

12 per 1000 5-

18y; 

1 per 1000 

>19y 

Public sector/ 

institutional 

and private 

costs, 

comprising 

direct 

medical, 

direct non-

medical and 

indirect costs; 

for 

hospitalized 

and non 

hospitalized 

N/A N/A One year 

surveillance 

N/A No.  

Decline in 

incidence 

rate with age 

is informative 

of an 

immunizing 

infection. 

With both 

most 

conservative 

and least 

conservative 

cost 

estimates, and 

with incidence 

both on 

confirmed and 

clinically 

suspected 

disease. 

Cohort study 

1995-6, 

weekly 

interviews and 

passive 

surveillance. 

Costs are high per 

episode regardless 

of age, both private 

and public/ 

institutional. 

Hospitalization and 

non-response to 

antimicrobials 

increase costs  

2 Poulos 

2011 

[38] 

COI Public and 

private 

(direct and 

indirect) 

Hechi, 

China; 

North 

Jakarta, 

Indonesia; 

Kolkata, 

India; 

Karachi, 

Pakistan; 

Hue, 

Vietnam. 

Highest in the 

sites within 

Karachi and 

Kolkata, 

lowest in 

Hechi and 

Hue. 

 

Measured by 

questionnaire, 

with estimates 

for nonmarket 

activities. 

Karachi costs 

from expert 

information. 

N/A N/A N/A 

Interviews 

at 7, 14 and 

90d from 

disease 

onset. 

N/A N/A N/A Interviews 

with cases or 

carers. 

Total episode costs 

range from USD 15 

to132. Private costs 

exceed public costs 

unless reimbursed. 

Hospitalization adds 

to costs 

substantially. 14 to 

49% of households 

borrowed money to 

pay for treatment. 

Costs of drug 

resistant infection 

are higher, but not 

significantly so. 
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 First 

author, 

year, 

reference 

Analytical 

approach 

Economic 

perspec-

tive 

Setting Burden of 

disease 

Costs Vaccine 

interventio

n modelled 

Vaccine 

effective-

ness 

Time 

horizon 

Discount-

ing 

Disease 

dynamics 

Sensitivity 

analysis 

Data source(s) Findings 

3 Whittingto

n 2009 

[36] 

WTP Private Tiljala 

slum and 

Beliaghata 

neighbour

hood, 

Kolkata, 

Inida 

2 case per 

1000 

population 

per year, peak 

incidence in 

older children 

and teenagers  

Proposed USD 

(2007)  

0.22 

0.56 

1.11 

11.11 

And sliding 

scale. 

Price-

dependent 

uptake 

70%, 3y N/A Inherent N/A N/A Cross sectional 

survey of 

households 

with children. 

9% would decline a 

vaccine, with a 

further 7% only 

accepting free 

vaccine. WTP is at 

least USD2. Vaccines 

for children were 

valued higher than 

those for adults. 

Time to think 

reduces willingness 

to purchase vaccine.  
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 A further COI study was identified but excluded as not linked to a published economic 

evaluation.[40]  

 

There was minimal overlap found between transmission modelling and economic evaluation. 

Of the transmission dynamic models, only those by the Cvjetanović group also had cost-

effectiveness components.[18–20] One economic study included quantitative consideration 

of indirect protection.[27]  

 

 

2.4.1 Transmission dynamic models 

The seven typhoid models identified range from two-state analytical tools to complex 

individual-based simulation or multi-state compartmental models (see table 1).  Only two 

models were formally fitted to data.[24,25]  

The structures of models (table 2a and 2b) are based on different assessments or 

representations of the natural history of typhoid fever, particularly in how immunity to S. 

Typhi is considered. González-Guzmán suggests that natural partial immunity is likely to arise 

but simplifies to a model with vaccine immunity only, noting that sufficiently high infectious 

doses can overcome immunity.[21] Pitzer uses population compartments to separately 

represent immunity against typhoid infection (‘sterile immunity’), and immunity against 

typhoid disease (‘clinical immunity’), allowing transition from the latter to either full 

susceptibility or to a subclinical infection that in turn restores full sterile immunity in the 

individual. This corresponds to immunity boosting repeated infection cycles without overt 

disease, particularly in adults after recovery from clinical disease in childhood, and allows 

bacterial shedding during subclinical infection to contribute to sustained transmission.[24] 

Saul similarly models both sterile and clinical immunity, with infection resulting in sterile 

immunity that wanes to clinical immunity (potentially after zero time) and then to 

susceptibility, and explores a range of hypothetical state-transition scenarios based on 

multiple infections, though he does not clearly resolve a most-likely scenario.[25]  Despite 

asymptomatic boosting being a long-standing hypothesis, or perhaps because of it, there is a 

paucity of data from microbiological, immunological or epidemiological studies to 

parameterise models or to validate assumptions.[41] 

While noting leaky immunity in those naturally infected (each individual has a reduced 

probability of further infection), González-Guzmán models Ty21a oral vaccine protection as 



85 
 

all-or-none, giving each vaccinee a probability of developing immunity or not. In this model, 

those who develop immunity following vaccination have 100% protection against typhoid, 

until vaccine wanes and they return to full susceptibility, an approach also applied by 

Cvjetanović.[18–21] Pitzer handles injected Vi vaccination the same, noting results were 

similar in a sensitivity analysis assuming leaky vaccine immunity. Pitzer represents oral Ty21a 

vaccination as akin to natural immunity, transitioning vaccinees to clinical immunity after full 

immunity wanes.[24] 

While vaccination programmes are predicted to reduce typhoid incidence, uncertainty 

around carriage prevalence, duration and contribution to the force of infection substantially 

affects vaccines’ projected impact.[21,24,25] In reviewing Cvjetanović’s 1978 model,[19] 

Anderson and May observe that the implicit assumption that the effective contact rate for 

carriers is equal to that of acute cases, combined with other fixed parameter estimates, gives 

carriers a contribution to transmission ten times that of other cases.[42] While illustrative of 

the potential contribution of carriage in sustaining disease, for policymaking it has been 

recommended that such assumptions should be tested against data.[43,44] An approach 

might be to conduct systematic, detailed investigation of incidence cases to identify potential 

sources, using suitable screening methods to look for carriers as well as acute cases, and 

combine this with population-level carriage surveys and water quality studies. While labour-

intensive, such investigations could be integrated into wider control efforts.[45] 

Chronic S. Typhi carriage can be treated with antibiotics and/or cholecystectomy for 

gallstone-associated infection, but there is no demonstrated role for vaccination in clearance 

of carriage.[46,47] Premised on this, Cvjetanović’s and Pitzer’s models demonstrate that 

where carriage contributes substantially to transmission in an endemic settings, vaccination is 

unlikely to result in elimination in the short-to-medium term.[18,24] Similarly, where carriage 

rates are high the indirect protective effects of vaccination are reduced, as the risk to the 

unvaccinated of acquiring disease from carriers is not diminished.[24,42]  The contribution of 

carriage, however, requires further epidemiological assessment, as does the role of short-

cycle and long-cycle (environmental) transmission.[21,24,25] 

If immunization of the susceptible population does not bring about typhoid elimination, then 

measures to reduce per case or per carrier infectivity, such as improved sanitation or hand 

washing with soap, might be considered instead of or in conjunction with vaccination.[48,49] 

The multi-compartment models suggest such a reduction in effective contact rates could lead 

to important reduction in prevalence.[21,23,24] This is consistent with Briscoe’s analytical 

model.[22] 
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Another feature of transmission dynamic studies is that the average age of infection increases 

as the force of infection decreases, for example, with the introduction of vaccine.[20] This is 

consistent with burden of disease studies which find earlier average age of infection in 

settings with higher disease incidence.[14,35] 

 

2.4.2 Economic evaluation 

Our literature search found seven papers evaluating typhoid vaccine cost effectiveness. The 

earliest two of which were based on values derived from expert opinion and are less 

informative to current policy considerations than the most recent five which were based on 

field studies, as outlined in tables 3 and 4. Two supporting COI studies and one supporting 

WTP study are outlined in table 5. These field-informed analyses share multiple common 

authorships with collaboration through the Diseases of the Most Impoverished (DOMI) 

programme. Of the seven economic evaluations, four included a cost-benefit analysis (CBA), 

two a cost-effectiveness analysis (CEA) and two a cost-utility analysis (CUA).  Four of these 

used a societal perspective [28,30,31,33]. Only one evaluation considers indirect protection 

quantitatively, but uses hypothetical values for herd immunity from different coverage levels 

rather than estimates from dynamical modelling.[27] No studies considered improvements in 

sanitation, hygiene or water supply as an alternative or adjunct to typhoid vaccination. 

In a one-year study of a very-high typhoid incidence area –  Kalkaji slum, Delhi – Bahl found 

average costs per episode of illness were high to both the health sector and families, 

excluding intangible costs such as pain, with hospitalization an important component of 

health service costs.[35] A CBA by Poulos on this data reported that a vaccination programme 

for children under five years of age would be cost-saving to the public sector. Analysis  from a 

societal perspective, incorporating private costs, indicated that vaccination in high incidence 

settings with modestly-priced vaccines could also have net benefits in other age groups.[31] 

Cook and colleagues conducted a CUA based on field data from multiple Asian sites,[30,38] 

and found that while typhoid vaccination using the Vi-polysaccharide across adults and 

children would be unlikely to be cost saving to the public sector, in high incidence settings it 

was likely such a programme would meet the standard for “very cost-effective” health 

interventions of less than per-capita gross domestic product (GDP) per DALY gained.  In these 

settings, targeting vaccination to the highest incidence age-groups improved cost-

effectiveness substantially. Through sensitivity analysis, the main determinants of cost-

effectiveness identified were vaccine cost, case-fatality rates (CFR), vaccine duration of 
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protection, (baseline) incidence and vaccine efficacy.  Cost-effectiveness was insensitive to 

vaccine coverage as no indirect protection was assumed.[30] 

WTP has also been used in economic evaluation of typhoid vaccines as an alternative 

approach to COI in valuing private or societal benefits. Such an approach is considered to 

demonstrate the value individuals place on the total benefit of the vaccine, though is 

confounded by ability to pay, and ability to value public sector activities foregone if vaccines 

are supplied through the state.[50] One study from Hue, Vietnam suggested that typhoid 

vaccination would pass a social cost-benefit test (total costs less than total societal benefit), 

based on demand estimates from a contingent valuation survey addressing hypothetical 

vaccine purchases for householders and their children.[29] Analysis by Cook of a similar WTP 

study done in Kolkata, India, by Whittington and colleagues, suggested that vaccination of 

children or all-ages would not pass a social cost-benefit test using COI , but costing benefits 

using WTP plus public costs would likely find that such programmes pass such a test. [28,36] 

WTP studies are also informative to vaccine uptake, with 9% of respondents in the Kolkata 

survey stating they would not accept a free vaccine, with data suggesting these individuals 

are more likely to be older, have lower income and never boil drinking water.[36] In the Hue 

survey, Canh suggests a number of issues affect validity of economic evaluation using WTP 

estimates, noting that householders were most sensitive to price, with proposed vaccine 

efficacy making no detectable difference to individual or household demand at a given 

price.[29]  

Observing that typhoid vaccines are equivalent to one-sixth of per-capita public sector health 

spending in India, Cook notes the potential for user fees in financing a state-administered 

programme.[28] Whittington’s Kolkata WTP survey suggested vaccine protection for children 

was given greater value than vaccinating adults.[36] Drawing on data from this study, a price 

optimisation model by Lauria of different vaccine prices for children and adults did not find a 

strong case for differential pricing, but in a non-dynamic sensitivity analysis of potential 

indirect protection scenarios found herd immunity to be a significant influence on incidence 

and cost-effectiveness.[27] 

 

2.5 Discussion 

This review found a relatively sparse literature on typhoid modelling and vaccine economic 

evaluations. Of seven transmission models found, only two were published in the last 25 
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years and use contemporary data-fitting methods. All five field-based economic evaluations 

we found shared multiple common authorships around the DOMI collaboration.   

Although the Global Burden of Disease is a much-criticised ranking, it provides some 

comparator infectious diseases, with measles and syphilis ranked close to typhoid and 

paratyphoid fever, and cholera attributed around one-third of the annual number of 

DALYs.[51] Repeating our (non-comprehensive) PubMed typhoid search strategy for these 

returned over six times as many measles papers, three times as many syphilis papers, and 

twice as many cholera papers. Typhoid fever transmission and economic evaluation appears 

relatively under-studied. Typhoid’s low profile-to-burden ratio has variously been attributed 

to ubiquity in developing countries, inadequate diagnostic tools, the absence of champions in 

health agencies, and affecting mostly the poor and the underclasses. [52] Effective antibiotics 

and previous non-availability of a long-acting infant vaccine have also been cited as reasons 

for the absence of internationally-funded typhoid vaccination programmes.[52] For budget-

constrained national health agencies, typhoid vaccination programmes may appear 

unattractive unless public sector cost saving can be demonstrated,  for example, if the 

incidence rate is very high.[31,35] 

Considering only a health services perspective – of treating typhoid and providing vaccine – 

omits private costs associated with the disease and therefore underestimates the societal 

impact of typhoid. Various approaches have been taken to address these costs and more 

completely capture the benefit of vaccination, from cost of illness studies for private 

expenses, estimates of health utility forgone due to illness, or by determining the extent to 

which people value vaccination in willingness-to-pay studies. While user fees and WTP are 

controversial,[10,50] economic evaluations that consider these have been consistent with 

typhoid economic analysis using more widely-accepted cost-utility analysis and private cost of 

illness. These CUAs suggest typhoid vaccine programmes are likely to be highly cost-effective 

(against international norms) where disease is highly endemic, particularly when targeted to 

the age-groups at highest risk of disease. The economic analyses, which do not include 

mechanistic components for transmission, emphasise as key drivers of cost-effectiveness the 

vaccine cost, case fatality rates, baseline incidence, vaccine efficacy and duration of 

protection.  

We did not find any economic evaluation comparing typhoid vaccination programmes against 

other potential means of typhoid control, such as measures to improve sanitation, hygiene or 

water supplies. It is still not possible to answer the century-old question of whether, in a 

given setting and within a limited budget, vaccination should be adopted over improved 
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sanitation and hygiene, or what combinations are optimal for control under what 

circumstances. Such analysis would need to be based on a transmission dynamic model, with 

extensive epidemiological surveillance for detailed burden of illness measurement, and 

comprehensive costing for CUA or CBA approaches that allow other diseases to be included in 

the evaluation. 

The only published data-fitted transmission model of typhoid vaccination suggests that while 

vaccination is effective in reducing disease incidence, if  other measures are not enacted to 

reduce the ongoing force of infection, particularly from asymptomatic carriage, short or 

medium-term vaccination campaigns are unlikely to result in elimination and would see 

disease rebound if vaccination stopped.[24] The authors of recent dynamic models 

emphasise our lack of understanding of certain aspects of the natural history of typhoid 

(particularly around acquisition of immunity, the role of carriers, and the contribution of 

short- and long-transmission cycles). [21,24,25] A model intended to examine what role the 

putative different forms of S. Typhi immunity have in determining typhoid incidence rates 

found an absence of suitable immuno-epidemiological data on which to fit parameters and 

make strong inferences, a challenge further compounded by the absence of age structure in 

the model.[25] 

Transmission dynamic modelling and a non-mechanistic economic analysis have shown that 

the level of indirect protection may have an important impact on vaccine effectiveness and 

cost-effectiveness respectively.[24,27] None of the economic models mechanistically 

consider disease dynamics and so cannot scientifically appraise the indirect effects of 

vaccination in cost-effectiveness calculations. Indeed, while a number of economic analyses 

readily acknowledged indirect effects as an important phenomenon, they specifically 

excluded them, citing the absence of evidence for Vi polysaccharide vaccine herd immunity 

pending the publication of cluster randomised controlled trials.[28,30,53,54] Early work by 

Cvjetanović is the only meeting point we found of mechanistic typhoid transmission 

modelling and economic analysis, but the complexity of this model and absence of fitting 

make it difficult to apply findings to contemporary disease control problems. [18,19] 

Using a static economic model premised only on direct protection in vaccinees may be a 

reasonable approximation in some situations, such as if vaccine-preventable new typhoid 

cases (symptomatic or otherwise) make a relatively small contribution to the force of 

infection compared with carriers and the unimmunised. Even in such circumstances, prior 

assessment with mechanistic modelling of field epidemiological data would be appropriate in 

estimating the relative contributions of each group to transmission. 
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While there seems limited inter-disciplinary dialogue between typhoid modellers and 

economists, a unifying concern is the importance of accurately determining age-based 

incidence rates, which can be highly variable within-country or between otherwise similar 

settings, and are central to estimates of vaccine impact and cost-effectiveness.  

Heterogeneity in disease rates, transmission mechanisms and health service provision may 

limit external validity of both typhoid modelling studies and economic evaluations. 

Accurate assessment of disease burden could be done with large, population-based studies to 

inform incidence, complications and case-fatality rates, using blood culture confirmation of 

cases, or altogether improved diagnostics.[30,55–57] It should be noted that even well-

conducted studies are unlikely to provide unbiased estimates, due to the positive health 

consequences of introducing disease surveillance. Bahl notes that active surveillance with 

early treatment gave rise to disease that is less severe, and less expensive, than disease 

detected through passive surveillance.[35] This is echoed in the DOMI disease burden study, 

which rather than the 1% case-fatality rate widely cited in literature, had a zero percent CFR 

amongst the 475 cases detected (which gives an upper 95% confidence interval of around 

0.63%).[30,37,58] 

Other field epidemiology and laboratory investigations could further inform typhoid 

transmission dynamics:[59] 

 Large, population-based, S. Typhi carriage studies, similar to those done in Chile in 

the early 1980s, [5] to determine prevalence in a range of endemic settings, 

potentially with serological surveys, [60]  alongside investigation of potential sources 

of infection amongst new cases.  

 Serological assay development and population-based serological surveys to 

determine past infection to S. Typhi, natural immunity and waning of this immunity. 

Seroprevalence could be linked to surveillance records to estimate the proportion of 

infections that are clinically apparent and notified to national authorities. 

 Epidemiological time series with consistent, transparent methodology and/or cross-

referencing between methods.[61] 

 Age-based social contact pattern surveys, which may inform short-cycle 

transmission.[62] 

For models to assess vaccination against other enteric fever control measures, findings could 

be incorporated from interventional field studies on the role of improvements to sanitation, 

hygiene and water supply in changing disease incidence and transmission. Ongoing scrutiny 

of vaccine efficacy and duration of vaccine protection may also be informative. Estimates of 
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efficacy of Ty21a vaccines in recent systematic reviews are less than in the data sources for 

early modelling, with the reviews focusing on individual RCTs rather than cluster field 

studies.[20,63–66] Estimates for Vi-polysaccharide effectiveness have also been modified 

downward.[31,64] Analysis of differences between cluster and individual randomised trials 

may be informative on indirect protection.  

This review has a number of limitations. In the absence of licensed human vaccines, the 

review does not cover paratyphoid fever or non-typhoidal salmonelloses. It covers only 

material in the English language, limited searches to a non-systematic enquiry of a single 

database and does not attempt to synthesis qualitatively or quantitatively any of the studies 

reviewed. Comparator studies have not been sought that consider investments in water, 

sanitation and hygiene as alternatives to typhoid vaccination.  

One possible feature observed in the course of this review is a less pessimistic assessment of 

disease burden, perhaps reflecting true decline, as well as a more sceptical perspective on 

vaccine efficacy estimates, with fewer inputs based on expert opinion alone. Any such trend 

towards assessment of vaccine costs and benefit firmly grounded in data is beneficial to 

equitable, scientifically-informed health-policy setting. 

It has been suggested that for a model to have sufficient complexity to enable robust cost-

effectiveness analysis, substantial data collection may be required.[67]  When data is in short 

supply, theoretically-informed modelling may still be a particularly appropriate tool to 

support decision-making.[68,69]  Transmission modelling using existing data explains 

patterns seen in average age of infection, demonstrates the importance of carriage, suggests 

optimal strategies for vaccination, and appraises the potential role of other interventions to 

reduce transmissibility.  

2.6 Conclusion 

Transmission dynamics have not yet been integrated into a comprehensive cost-utility 

analysis of typhoid vaccination and, as such, there is no economic evaluation that would meet 

contemporary gold standards.[9,70] Given the costs and time involved in further field study, 

constructive efforts could be made to integrate existing transmission modelling and cost-

effectiveness analyses, such as utilising the extensive collation of typhoid epidemiological and 

clinical parameters by Saul[25]  with the transparent, reproducible modelling approach of 

Pitzer,[24] and DOMI project economic data.[30,38] While such endeavours would not 

address the fundamental limitations on health service budget in endemic areas, an analysis of 

typhoid vaccination that enables economic comparison across health arenas could help bring 

into the public gaze the full potential of measures to control enteric fever, and improve the 
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prospects of protection from typhoid for people living with daily risks from a disease 

eliminated from most of the affluent world. 
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Chapter 3. A cross-sectional seroepidemiological survey of typhoid in Fiji. 

Watson CH, Baker S, Lau CL, et al. PLoS Negl Trop Dis. 2017;11(7):e0005786. 

doi:10.1371/journal.pntd.0005786. 

 

3.1 Serosurvey bridging section 

3.1.1 Introduction  

This section of the thesis describes the planning and operational background of the Fiji 

serology and social mixing survey which I conducted between September 2013 and January 

2014. The version of the serosurvey paper enclosed in this thesis is the last-but-one draft of 

the version published in PLOS Neglected Tropical Diseases,1 as cuts to methodological detail 

were made in condensing the final manuscript for the journal. Even in long-form, the paper 

omits details that are of relevance to describing the process leading to the implementation of 

the field research, and this bridging section is intended to complete those gaps. 

The subsections in this bridging section are in roughly chronological order. 

 

3.1.2 Preliminary planning 

Following the Fiji typhoid expert panel meeting recommendations in August 2012, the study 

was conceived and designed by me in autumn 2012 and early 2013, with input from 

colleagues and collaborators. Discussion and partnership with the Ministry of Health (MOH) 

and World Health Organization (WHO) Division of Pacific Technical Support was established 

through Australian Aid’s (AusAID) Fiji Health Sector Support Programme (FHSSP).  I visited Fiji 

between November and December 2012 to develop collaboration with local partners in 

drafting a research proposal and establishing the local mechanisms through which to take 

forward the proposals, such as ethical approval. 

The primary aim of the serosurvey was to determine antibody prevalence by age, with the 

study powered towards this. Secondary aims were to identify risk factors for raised antibody 

titres, based on a questionnaire interview. Also embedded in in the serological survey was a 

social contact survey from which to produce a mixing matrix that might weight risks of 

person-to-person transmission events. 
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3.1.3 Design 

I sought to conduct a nationally-representative study, and to include a study population that 

would reduce the selection biases that could limit internal and external validity and policy-

relevance. A national survey is preferable to convenience samples such as only sampling 

Suva, the capital, omitting large geographies; or using residual blood samples from hospitals 

which selects for the sick rather than the general population; or using blood donor residua 

which omit children entirely. 

A simple random survey with a whole-population sampling frame is desirable for simplifying 

statistical inference but logistically unfeasible and so a cluster design was utilised. UN 

handbooks on field sampling methods2,3 and the work of the late Steve Bennett4,5 and 

others6,7 were consulted on practical sampling methods for areas where details for structured 

sampling frames are incomplete, including Pacific islands.8 These supported the use of multi-

stage sampling based on available administrative data as described in the methods section of 

the paper. Analytical handling of clustering is also further described in the paper. As the 

survey was planned as a serum banking study, this further emphasised the importance of 

strong methods to support representativeness of the general population.  

The cluster size was set as 25 participants. This was based on the daily survey capability of a 

field team in prior serological research conducted by the US Centers for Disease Control and 

Prevention (CDC) and WHO on Fiji’s Taveuni island (Heather Scobie, Kashmira Date & Eric 

Nilles, unpublished work) a year after the cyclone Tomas vaccination campaign.9 One random 

participant was selected per household to reduces correlation. Age-stratified sampling was 

initially considered to ensure age-representativeness; however, with the random-selection 

approach, this was considered to on average have had balanced samples. Experience on 

Vanua Levu island (11 clusters) was that imbalanced clusters were readily feasible and so age-

stratified sampling was introduced for Viti Levu island where the majority of the survey was 

to take place. 

Taveuni samples would be collected as vaccinated comparators to the unvaccinated 

population. Mooted examination of waning post-vaccination antibody titres by repeat cross-

sectional analysis of Taveuni samples (2013 plus the 2011 CDC/WHO samples) was not taken 

forward.  

As noted in the introduction, a proposal was made by the WHO, who were funding the 

fieldwork costs, to extend the survey scope to encompass leptospirosis, following an expert 

meeting in Fiji in May 2013 on control of the zoonotic pathogen, and was a welcome 
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opportunity to increase the utility of the sero-survey.10 The leptospirosis serosurvey approach 

was to be risk-analytical rather than population-representative in primary intent. This would 

require additional cluster sites purposefully selected in the Western Division for their known 

leptospirosis outbreak history, as well as those randomly selected for the typhoid survey. 

Multiple residents would be sampled per household unit in these clusters to maximise 

serological comparisons. These additional clusters were done within available time and 

resource. They are not included in the typhoid analysis. 

 

3.1.4 Serological testing plan 

A plan was also developed for serological testing. After field collection, venous blood samples 

would be allowed to clot, centrifuged at the field site, in a local hospital or a local operating 

base, and pipetted into cryovials. These would be transported to the MOH reference 

laboratories at the Fiji Centre for Communicable Disease Control (FCCDC) at Mataika House, 

Suva for freezing at -80˚C. From there they could be shipped on dry ice to international 

partners. Proposed domestic testing for IgG anti-Vi as a carrier detection tool was not 

expected to become available (and did not) in the timeline of the project. Use of anti-Vi IgG 

testing has been proposed since the 1950s as an alternative to faecal testing for 

asymptomatic carriage detection, though successive studies show less than ideal sensitivity 

and specificity, which has limited operational uptake.11 An alternative role for anti-Vi IgG 

serology may be in detection of past infection in seroepidemiological surveillance.  

The use of anti-Vi ELISA was proposed at the AusAID/MOH meeting by Stephen Baker at the 

Oxford University Clinical Research Unit (OUCRU) Enteric Pathogen Laboratory in Ho Chi 

Minh, Vietnam. Previous serosurveillance in Nepal using anti Vi ELISA in 2006 and 2009-11 

using residual serum samples indicated the potential for this to be an informative approach in 

the Fijian context, particularly on age-based serology.12,13  OUCRU would be the principal 

laboratory partners for the investigations. These samples would be examined using 

pharmaceutical grade Vi donated by Novartis, Italy.  

Testing was planned with Myron Levine of the University of Maryland using agglutination 

assays for antibody to d-flagellin (Hd), or an ELISA for anti-Hd that was in development in 

Maryland but not completed in the timeline of this thesis. This assay comparison was 

proposed to be on a 10% subset of samples, due to the cost of the assays.  As mentioned in 

the thesis introduction, this aspect of the study was not taken forward due to Ebola response 

commitments on both sides of the Atlantic. 
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3.1.5 Geographical coverage 

The national survey was conducted in Central, Western and Northern Divisions, with sampling 

frames based on unvaccinated populations. This excluded the southern side of Vanua Levu 

island, and pockets in  

We excluded Eastern Division small island groups for operational feasibility. The Eastern 

population is small at 37,000 and there are few reported typhoid fever cases, though this 

could reflect reporting as readily as reflecting the limited infection-sustaining ability of a small 

island population. A feature of Fiji is the mobility of the population between urban and rural, 

including to the eastern islands, giving adequate opportunity for transmission events.  

The other excluded areas were those that had been vaccinated in the 2010 campaign which 

followed Cyclone Tomas. Lists were obtained from AusAID FHSSP of vaccinated areas and 

their coverage and these areas excluded from sample frames. 

 

3.1.6 Funding and financial management 

It was initially unclear where funding might be obtained from in order to conduct a 

serological survey. There was no further funding available from AusAID to take forward this 

recommendation from the AusAID-MOH expert meeting, nor from within the AusAID funded 

Fiji Health Sector Support Programme. My MRC budget was insufficient.  Funding was 

attained through Eric Nilles, team leader for WHO’s Pacific emerging infection surveillance 

and response team, with whom I worked to develop a detailed budget plan for submission to 

the WHO Western Pacific Regional Office for approval.  

The support of Stephen Baker at OUCRU Vietnam to undertake the anti-Vi serology at no cost 

greatly improved the feasibility of the project. Additional competitive funding from the 

Chadwick Trust for personal research costs was also sought and obtained.  

With the addition of the leptospirosis extension, the budget was distinctly tight; tighter still 

with an additional requirement of a preparatory visit to rural field sites by Kitione Rawalai, 

the MOH-appointed local study coordinator. One cost pressure was addressed when the 

University of Queensland, as host institute of Colleen Lau, lead for the leptospirosis study, 

was able to purchase two portable mains centrifuges for the survey, on provision these were 

returned to the institution to facilitate further Pacific fieldwork, which was done following the 

study. 

Financial management of the GBP 90,000 budget was one of the most challenging and time-

consuming aspects of the study; including large-scale cashflow management for staff and 
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research costs in a country where LSHTM had no research base. In particular, cash withdrawal 

limits and prohibitive international transfer fees would have made it impossible to pay for the 

field team from a foreign based account on the required weekly basis. This necessitated 

arrangement to be made with the School’s Chief Financial Officer for use of a personally-held 

bank account in Fiji as the operational account for staff costs from where cheque payments 

could be made. Attaining a bank account as a kaivalagi, “a person from the land of 

foreigners”, was also an informative exposure to navigating Fijian administrative pathways.  

LSHTM funds were duly transferred to the account and accountability maintained through 

the emailing of photographs of payment receipts and cheques to LSHTM departmental 

administration colleagues along with detailed records and bank statements.  

Field research costs such as vehicle hire, ferry tickets and accommodation continued to put 

through receipted, itemised claims forms, which totalled tens of thousands of pounds. With 

careful management, the study was completed within budget. 

 

3.1.7 Field team recruitment 

As per the costed operational plan and following the appointment of Kitione Rawalai in July 

2013 as local coordinator, we established two independently operational field teams under 

direction of each of us, with rotation of staff between the teams to share best practice and 

good morale. Each team comprised two field workers and a phlebotomist.  

Each team requiring a field worker able to represent the team effectively at iTaukei village 

sevusevu ceremonies, detailed below. Two such field workers were recruited, Ilai Koru, a 

former Navy environmental health officer, and Leone Vunileba, a census officer, who would 

also be able to drive one of the vehicles (to contain staff costs, I drove the other vehicle 

during research in Vanua Levu and Western Division). Ilai and Leone were joined by two very 

capable and experienced graduates of the Bachelors in Public Health programme at Fiji 

National University, Jeremaia Coriakula and Mere Taufa. The teams were completed by the 

recruitment of newly-qualified phlebotomists Sala Ratulevu and Ala Salesi, identified through 

the MOH blood service. Substitutes were found to cover periods of unavailability through 

local MOH facilities. Figure 3.1 is a photograph of the field team in an iTaukei village. 
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Figure 3.1 Field team outside a village hall  

 (L to R) Jeremaia Coriakula, Conall Watson, Sala Ratulevu, Mere Taufa, Kitione Rawalai, 

Leone Vunileba, Ala Salesi and Ilai Koru. 

 

3.1.8 Fieldwork plan 

After completing piloting in the Suva area in August 2013, our planned approach was to do 

the fieldwork as an anti-clockwise lap of Fiji.  We would sail to Taveuni island in the north east 

in September 2013 and completing sampling on the larger neighbouring island Vanua Levu 

before returning to Suva for rest and and re-stocking supplies.  

The second leg would be to completing an anticlockwise loop of Viti Levu, to cover the 

Western Division. The final section would be to complete fieldwork in Central Division by 

December, which could be managed as day trips in or from Suva. This frontloaded the 

demanding elements of fieldwork, with the understanding in the field team that the work 

would get progressively more straightforward, and avoid remote travel during the onset of 

the rainy season in December. 
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3.1.9 Ethical approval 

Ethics approval was sought in Fiji in December 2012 from the National Health Research 

Committee (NHRC) and the Fiji National Research Ethics Review Committee (FNRERC), both 

hosted by the Ministry of Health. Reviews from NHRC were received in April 2013 requesting 

substantially more information than was apparent from the ethic committee application 

forms.  I submitted a 40-page response document and fifteen supporting files in May 2013. 

Verbal approval from the NHRC was received following their meeting in July 2013. The 

committee had approved the scientific and technical aspects of the study and was passing the 

study to the FNRERC for further consideration due to the inclusion of human participants. 

Approval was received on 13 September 2013 from the FNRERC (reference 2013 03). We 

sailed to Taveuni that night.  

Ethics approval from the London School of Hygiene and Tropical Medicine was sought and 

received in 2013 prior to commencement of the study (LSHTM reference 6344).  

 

3.1.10 Equipment procurement 

An inventory of resources and equipment was drawn up based on the anticipated needs for 

the typhoid and leptospirosis components plus contingency. Questionnaires were printed by 

a local company. A manual centrifuge was brought from London for use in remote sites 

without power. Fiji is a regional centre of medicine and commerce in the Pacific islands and 

has a number of medical suppliers from whom phlebotomy equipment could be procured, as 

had been done for previous WHO studies. Other standard medical consumables such as 

gloves, swabs and alcohol gel were sourced through local pharmacies.  

Due to the Pacific geography and market demand, a number of items had to be specially 

ordered from other parts of the wholesale company in Australia and New Zealand with a 

lead-time of several weeks, and only just arrived in time. This include “gold-top” serum 

separator blood tubes that would be used to reduce red-cell contamination in transit and 

safety shielded needles used to reduce the risk of needlestick injuries. Unused equipment 

was donated to the MOH at the end of the study. For subsequent dengue fieldwork, 

equipment was procured in London and flown to Fiji. 

 

3.1.11 Training, questionnaire development and survey piloting  

We spent time in Suva and Central Division training on study processes and developing the 

proposed questionnaire (figure 3.2), including individual-level piloting and community-level 
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piloting. This included strategies for sensitive question areas including toilets, handwashing 

habits, income and social mixing by ethnicity, as necessitated by the socially conservative 

norms in Fiji. This led to modifications of the questionnaire such as dropping physical contact 

as a form of social contact. See thesis appendix A1 for the questionnaire. 

With further refinement, we would have shortened the survey length by removing the 

distinction in the leptospirosis question sets between small-scale farming/animal keeping for 

domestic use and equivalent questions on these being done as a source of income or 

employment. Whilst this was a distinction made in other Pacific island settings examined in 

prior leptospirosis research, many Fijian participants did not differentiate domestic and 

commercial farming.  

Study processes included methods of community level random selection to reduce selection 

bias, using random number selection grids, pen-spin methods adapted from EPI for villages 

and settlements, and equivalent methods for urban and road-side communities. 

 

Figure 3.2 Questionnaire development  

3.1.12 Risk management 

Standard operating procedures were put in place and training given on management of risks 

to patients and study staff, including needlestick injury management, and reporting 

mechanism for study participants to the field team and the MOH of any complaints or 
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adverse events. One member of field staff required an overnight hospital stay for an 

unspecified illness during the course of the research but was discharged without sequelae. 

No needlestick injuries occurred, and no complaints or adverse event reports were received 

from participants.  

 

3.1.13 Permissions and consent 

At the administrative level, we notified divisional medical officers of plans to work in their 

division, and were often able to enlist the assistance of zonal community nurses through 

subdivisional medical officers and the public health nursing system. Media outreach was 

done through divisional MOH to inform people of the survey and support local disease 

control efforts (figure 3.3). 

 

Figure 3.3. Public engagement through the Fiji  Times  

Fijian residential settings can be broadly divided into three: residential housing, informal 

settlements and traditional iTaukei villages. Before household could be approached in an 

iTaukei village, permission was required from a village official, usually through a sevusevu 

ceremony. At these, we explained the purpose of our visit and sought permission from 

headmen (akin to chief executives or mayors) or hereditary chiefs to conduct the study, 

handing over the traditional gift of a large wrapped bundle of dried yaqona roots, which are 

pounded to make the traditional kava drink, a putative sedative anxiolytic and local 

anaesthetic consumed socially and ritually from a wooden tanoa (figure 3.4).14 
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Figure 3.4. Preparation of kava from ground yaqona  

 Once village permission had been established, fieldwork was conducted in the village as it 

would be in other settings, with the community supportive of research endorsed by the 

village leadership enabling rapid progress. Community health workers and zonal nurses 

(figure 3.5) were frequently available in villages to support the study through personal 

connections, local knowledge and detailed, up-to-date village health censuses. 

 

Fig 3.5. Assistance from MOH zonal nursing staff  

 

Individual informed consent was obtained as described in the main paper, including the 

opportunity to decline questions or withdraw from any or all parts of the study. Individual 
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consent was not replaced by village-level permissions. During informed consent, potential 

participants were often surprised to hear that the blood would be sent to Vietnam for the 

typhoid immunity testing. We would explain that there was a lot of typhoid in Vietnam, so 

colleagues there were the international experts on the disease and its tests, which reassured 

participants. Leptospirosis immunity testing in Australia was readily accepted.  

 

3.1.14 Field implementation 

The cross-sectional field survey was implemented as described. Some of the more remote 

mountainous villages selected by the random sampling required 4x4 vehicles (figure 3.6) and 

overnight stays for access.   

 

Figure 3.6. Travel by 4-wheeled drive vehicle.  

The most remote sites required travel on horseback or by raft (figure 3.7).  
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Figure 3.7. Travel by horse and raft to remote field sites  

 

3.1.15 Patient cohort 

The patient cohort was identified as described in the main paper. Serum collection was 

initiated following return from the survey work in the Western Division and completed in 

2014 after the Central Division cross-sectional sampling was completed. Most of these visits 

were done by me with a phlebotomist after dropping off one team at a Central Division 

cluster survey site. We organised the teams so that the local study coordinator, a physician, 

was able to do the phlebotomy for one team, freeing up a phlebotomist for the patient visits.  

Recovering patients were contacted by phone or in person, and informed consent obtained 

as per the main study procedures. Follow-up appointments were arranged and patients 

visited at a location convenient for the patient, including at or near workplaces.  

3.1.16 Serum management 

The field team were initially responsible for serum processing during fieldwork on Taveuni 

and Vanua Levu. Samples were stored refrigerated at Tamavua Hospital, Taveuni, and sent to 

Mataika House with routine clinical samples. Vanua Levu samples were stored refrigerated at 

Labasa Hospital, Vanua Levu, and taken to FCCDC at Mataika House by the team when we 

returned to Viti Levu. With more favourable budget forecast outturn by the time the survey 

reached the Western Division, we were able to arrange the assistance of laboratory 
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colleagues at Lautoka Hospital to complete centrifugation and aliquotting/labelling of 

samples for Western Division. These were held at Lautoka Hospital and driven back to Suva 

on the final day of Western fieldwork. In Central Division, sample processing was done 

entirely at Mataika House. 

Samples were also labelled to match the study participant identified and divided into four 

alphabetically coded aliquots:  

A) Sent to Ho Chi Minh, Vietnam, for typhoid analysis; 

B) Sent to Queensland, Australia, for leptospirosis analysis; 

C) Held for d-flagellin analysis in Maryland, USA; and  

D) Reference serum bank sample held at Mataika House. 

Customs permissions were obtained for sample transport. Air shipping was arranged through 

a local company, with dry ice sufficient for the journey plus delays, and samples packaged in 

accordance with International Air Transport Association requirements for biological samples. 

Samples were received frozen, intact and on schedule in Vietnam and Australia.  

 

3.1.17 Serum analysis 

A first run of ELISAs was completed in June 2014. Examination of the titre results with the 

field data suggested the possibility of an operational issue with the ELISA.  A second run was 

completed in December 2014, as per the methods described in the paper, and are the results 

presented here.  

 

3.1.18 Data management 

Data was checked during fieldwork and feedback given to the teams as necessary. This 

included the modification to use age-stratified sampling on Viti Levu. Completed paper 

questionnaires were stored in opaque folders during fieldwork, and transported to Mataika 

House for data entry. Data entry team members were recruited through collaborating 

partners at FCCDC and WHO and are named in the acknowledgements section of the paper. 

Training was given and entry was done in EpiData with secure handling of patient identifiable 

data. Original paper records were stored securely at Mataika House following completion of 

data entry. Encrypted patient identifiable records are held on a secure server at LSHTM. Data 

analysis is of an anonymised dataset. Data cleaning was undertaken in 2014 and shared with 

Colleen Lau for the leptospirosis analysis.  
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3.1.19 Data analysis 

I analysed the serological data in the R statistical environment in 2015-16.15 For examination 

of possible seropositivity we discussed possible analytical approaches with Niel Hens at the 

University of Hasselt, Belgium pre- and post-fieldwork.16 On Niel’s advice, I examined the 

patient cohort serology data using a mixed model of antibody log titre wane with fixed rate 

towards candidate thresholds, examining best fit to determine the most likely threshold.17  

Additional to the primary age-based, ethnicity-stratified analysis, an epidemiological risk 

factor logistic regression model was developed.18–20 This was a secondary research aim, 

intended to provide supportive evidence of possible risks of previous Salmonella Typhi 

exposure. Examination of the dataset showed minimal clustering once data were stratified by 

age group and a risk factor analysis was undertaken without variance adjustment. After 

examination of a number of methods for cluster analysis in R,6,21–24 I repeated this analysis 

with allowance for clustering, using the RMS package.24 This required writing of a specific R 

function to convert RMS model output into the epidemiologically-framed results reported in 

the paper.  

 

3.1.20 Dissemination 

Preliminary serological findings were reported to MOHMS in January 2015, and results of the 

formal non-clustered analysis in September 2015. Final results were presented to the Pacific 

Islands session of the Tropical Medicine and Malaria Conference in Brisbane, Australia, in 

September 2016 and published in July 2017.  
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Abstract 

Fiji, an upper-middle income state in the Pacific Ocean, has experienced an increase in 

confirmed case notifications of typhoid fever, a bacterial disease caused by Salmonella 

enterica serovar Typhi (S. Typhi). To characterize the epidemiology of S. Typhi exposure in Fiji, 

we conducted a cross-sectional sero-epidemiological survey measuring IgG against the Vi 

antigen of S. Typhi to estimate the effect of age, ethnicity, and other variables on 

seroprevalence. Epidemiologically relevant cut-off titres were established using a mixed 

model analysis of data from recovering culture-confirmed typhoid fever cases. A total of 

1,787 participants were enrolled and their plasma assayed for anti-Vi IgG; 1,531 of these 

were resident in mainland areas that had not been previously vaccinated against S. Typhi 

(seropositivity 32.3% (95%CI 28.2 to 36.3%)), 256 were resident on Taveuni island, which had 

been previously vaccinated (seropositivity 71.5% (95%CI 62.1 to 80.9%)). The seroprevalence 

on the Fijian mainland is one to two orders of magnitude higher than expected from 

confirmed case surveillance incidence, suggesting substantial subclinical or otherwise 

unreported typhoid. We found no significant differences in seropositivity prevalences by 

ethnicity, which is in contrast to disease surveillance data in which the indigenous iTaukei 

Fijian population are disproportionately affected. Using multivariable logistic regression, 

seropositivity was associated with increased age (odds ratio 1.3 (95% CI 1.2 to 1.4) per 10 

years), the presence of a pit latrine (OR 1.6, 95%CI 1.1 to 2.3) as opposed to a septic tank or 

piped sewer, and residence in settlements rather than residential housing or villages (OR 1.6, 

95% CI 1.0 to 2.7). Increasing seropositivity with age is suggestive of low-level endemic 

transmission in Fiji. Improved sanitation where pit latrines are used and addressing potential 

transmission routes in settlements may reduce exposure to S. Typhi. Widespread unreported 

infection suggests there may be a role for typhoid vaccination in Fiji, in addition to public 

health management of cases and outbreaks.  
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Author summary 

Fiji has experienced a decade-long increase in typhoid fever cases, a potentially life-

threatening systemic bacterial disease caused by Salmonella Typhi.  We undertook a 

representative blood-serum community survey to measure antibodies (IgG) against the Vi 

antigen of Salmonella Typhi using a rigorous survey design. We found one in three residents 

of mainland, unvaccinated Fiji had detectable antibody against Vi in comparison to antibody 

levels in recovered typhoid fever cases. This was higher than would be expected from 

confirmed case notifications received by the national surveillance system. Additionally, 

similar antibody responses were detected in Fijians of all ethnicities, which contrast to 

surveillance cases in which indigenous iTaukei Fijians were disproportionately affected. 

Serology on a Fijian island in which a significant proportion of the population has been 

vaccinated found that three-quarters of residents were seropositive three years after 

vaccination with a Vi-antigen typhoid vaccine. Importantly, in mainland participants, 

seroprevalence increased with age, suggesting long-standing, low-level, endemic 

transmission. Pit latrines were associated with seropositivity when compared with septic 

tanks, and settlements compared with residential housing. Very high antibody titres in a small 

percentage of participants may suggest carriage of Salmonella Typhi. The seroprevalence 

findings suggest eliminating typhoid from Fiji by focussing on cases and outbreaks alone will 

be challenging. Our results support typhoid vaccination and further development of water, 

sanitation and hygiene infrastructure in Fiji. 

Keywords: typhoid fever, Salmonella Typhi, Vi antibody, risk factors, vaccine, Fiji, serological 

survey, immunoepidemiology, serum bank 
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3.2 Introduction 
Typhoid fever is a systemic disease resulting from infection by the bacterium Salmonella 

enterica subspecies enterica serovar Typhi (S. Typhi). S. Typhi is restricted to humans and 

transmitted in the faeces of infected individuals, which can contaminate water and food or 

spread by contact and fomites. [1,2] Infection with S. Typhi can present as a range of 

syndromes, from asymptomatic (including carriage) to a disease with life-threatening 

complications, including intestinal perforation, encephalopathy, and haemodynamic shock 

[3,4]. The majority of typhoid fever cases present as non-specific acute febrile illnesses that 

may be difficult to differentiate from other common tropical infectious diseases such as 

dengue and leptospirosis. There were an estimated 11.9 million (9.9 to 14.7) cases of typhoid 

fever in low and middle income countries in 2010, resulting in 129,000 (75,000 to 208,000) 

deaths [5]. 

The Republic of Fiji is an upper middle income country, which had  an estimated population 

of 892,000 in 2015 [6]. Fiji is comprised of approximately 300 islands (100 inhabited) in the 

Pacific Ocean of which the largest and most populous are Viti Levu and Vanua Levu [7].  Viti 

Levu is administratively separated into the Central Division, containing the capital Suva and 

its suburbs, and the Western Division. The Northern Division comprises of Vanua Levu and 

Taveuni island, whilst the Eastern Division comprises of smaller islands including the Lomaiviti 

and Lau groups (figure 3.7).  

 

Figure 3.7. Administrative Divisions and Cluster sites on mainland Fiji (Viti 

Levu and Vanua Levu) and Taveuni islands  



119 
 

Phylogenetic evidence from genome sequencing suggests that S. Typhi has existed as a 

distinct clade in the Fiji Islands for some time, though notified blood-culture confirmed cases 

numbered fewer than 30 per annum for the decade up to 2004 [8,9]. From 2005, Fiji has 

experienced a substantial increase in blood-culture confirmed cases of typhoid fever notified 

through Divisional hospitals to the national surveillance centre [9,10], rising from 4.4 cases 

per 100,000 population in 2004 to 45 cases per 100,000 population per year during 2008-

2011 [11]. Highest incidence was in the Northern Division; 121 cases per 100,000 in 2009 vs 

28 per 100,000 in the Western Division and 19 per 100,000 in the Central Division [11]. A 

proportionate increase in clinically diagnosed typhoid fever was reported over the same 

period  [12]. 

Notably, >90% of blood-culture confirmed cases are amongst indigenous Fijians (iTaukei), 

who make up approximately 57% of the population, with relatively few cases reported in 

Fijians of Indian descent (Indo-Fijians, 38% of the population) or Fijians of Asian or European 

descent[12]. The causes of this disparity are unknown [12]; health seeking behaviours would 

be expected to lead to higher relative ascertainment in Indo-Fijians than iTaukei [13].  

The peak incidence of typhoid fever in Fiji occurs around the wet season (November to April) 

[14], with a  lag of approximately two months (January to June) [15]. Outbreaks of 

waterborne and water-washed diseases also arise following cyclones in Fiji, although the 

causal association between cyclones and typhoid is unclear [12,16,17]. Inadequate access to 

effective sanitation or treated water supplies alongside low uptake of hand washing with 

soap may predispose individuals to S. Typhi infection [12,18].  It was estimated that sewage 

disposal in Fiji in 2005 occurred via reticulated systems for 23% of the population, 40% by 

septic tank, and 37% by pit latrine or other direct disposal [19]. Access to internationally 

defined “improved water sources” is near universal,[20] however, this definition includes 

untreated  piped surface water in rural areas, which may be a conduit for several enteric 

pathogens[11,20,21]. While historically the majority of the population lived a rural 

subsistence lifestyle, based on fishing and small-scale agriculture, more than half the 

population now reside in urban areas, notably the capital Suva and its suburbs; these areas 

include informal settlements close to riverbanks and other flood-prone areas with limited 

access to water and sanitation infrastructure [22].  

The Vi-polysaccharide (Vi-PS) vaccine is considered to offer partial direct protection against 

typhoid fever for two to three years [23]. Typhoid vaccine is not routinely used in Fiji; 

however, in 2010, following cyclone Tomas, a Vi-PS vaccination campaign was conducted in 

the highest incidence areas of Fiji. This campaign was conducted predominantly in the 
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Northern Division, with high coverage on Taveuni island in the Cakaudrove subdivision on 

Vanua Levu. Targeted geographical vaccination was conducted within subdivisions in other 

parts of Fiji, including Ra, Nadrogo and Ba in the Western Division, Suva in the Central 

Division, and Lomaiviti in the Eastern Division [11]. The campaign immunised 64,000 people, 

representing 8% of the total national population. A reduction in disease incidence rates was 

observed in the targeted areas whilst rates increased or were unchanged in other areas[11]. 

Given the ongoing transmission of typhoid in Fiji and the short duration of Vi-PS protection, 

an expert meeting was convened in 2012 by the Fijian Ministry of Health, with support from 

Australian Aid, to “develop, prioritise and implement a comprehensive control and 

prevention strategy” [12]. Analysis of knowledge gaps identified that a serological survey 

across multiple demographic groups could inform vaccination policy [12].  

Seroepidemiological surveys can be used to determine population immunity, pathogen 

exposure and disease susceptibility, as well as determining disease and exposure related risk 

factors [24]. Conducted alongside clinical and/or laboratory surveillance, seroepidemiology 

can help quantify surveillance under- or over-ascertainment, including for enteric diseases 

[25–28]. Setting-specific immunity and carriage are important in determining typhoid 

transmission dynamics [29–31]; however, the seroepidemiological methods to attain this are 

underexploited [25]. This may be in part due to concerns about the sensitivity and specificity 

of serology for typhoid, which historically has not demonstrated sufficient discriminatory 

power for individual-level clinical diagnosis [32], (though recent methods may offer promise 

[33]) as well as concerns about the specificity of assays for carriage detection [34–36] and the 

existence of multiple immunological pathways to immunity against typhoid fever [37]. 

Seroepidemiological surveys utilising assays based on purified, pharmaceutical-grade Vi 

polysaccharide, the “virulence” factor expressed by S. Typhi [35], for detection of anti-Vi IgG 

antibody may offer a more reliable approach by avoiding cross-reactivity that arises when Vi 

antigen preparations contain other bacterial antigens [38,39]. Furthermore, high anti-Vi titres 

may indicate chronic carriage in response to prolonged immune stimulus [38,40–42].  

To characterize and better define the immunoepidemiology of typhoid infection in Fiji, with 

the aim of informing effective and efficient control measures, we surveyed three groups of 

people in Fiji: group 1) a representative, multi-stage, clustered, cross-sectional 

seroepidemiological survey of the Fijian mainland for S. Typhi, including demographic data 

and data on potential risk factors for typhoid [18,43–56]; group 2) residents of Taveuni island, 

where 92% of the population was vaccinated in 2010, surveyed by the same methods [11]; 

and group 3) a cohort of culture-confirmed typhoid fever cases, to enable estimation of a 

threshold for seropositivity.    
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3.3 Methods 

3.3.1 Ethics 
The study was approved by the Fiji National Research Ethics Review Committee (2013-03) 

and the London School of Hygiene & Tropical Medicine observational study research ethics 

committee (6344). 

3.3.2 Study design 
Three groups of participants were recruited for the study: Group 1, Mainland: Sixty-four 

communities were randomly selected by multi-stage sampling on the two most populous 

Fijian islands, Viti Levu and Vanua Levu. These were visited for serological sampling and 

questionnaire interviews from September to December 2013. Vaccinated areas on these two 

islands were excluded to avoid confounding of interpretation of serological responses to 

natural exposure. Eastern Division, with a population of under 40,000 spread across multiple 

small islands [13],  was not visited for logistical reasons. Group 2, Taveuni: A vaccination 

campaign had been conducted on Taveuni Island in 2010; 11 communities from this location 

were randomly selected by multi-stage sampling as vaccinated comparators and surveyed in 

September 2013. Group 3, Convalescent cases: Sequential recently blood-culture confirmed 

typhoid fever cases in the Central Division were identified in October 2013 from national 

surveillance and hospital records and approached to seek informed consent for blood 

sampling. Further blood-culture confirmed cases diagnosed previously were identified during 

visits by the field team to the convalescent cases’ villages or residences and invited to 

participate after validation with national surveillance records. Between November 2013 to 

April 2014 up to three blood samples were collected from cases at a minimum of one-month 

intervals. 

Headmen, health workers and other community leaders were visited in advance to seek 

agreement to participate in the study and make arrangements to visit with the full study 

team. No communities declined participation in the study.  A team of experienced, 

multilingual Fijian field workers was trained and questionnaires piloted prior to the survey.  

Interviews were conducted in iTaukei, English or Hindi at the preference of the interviewee. 

Trained phlebotomists collected venous blood samples. 

For group 1 (mainland) and group 2 (Taveuni), a multi-stage cluster-sample survey was 

conducted [57]. For group 1, cluster numbers per geographical Division (Northern, Central, 

Western) were proportional to the resident typhoid non-immunised population. Within 

subdivisions, nursing zones are contiguous health administrative areas, each serving a 

population of approximately 1,000 to 10,000 people. For the groups 1 and 2, nursing zones 

were selected with probability proportional to population size [57] by random number 
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generation in Microsoft Excel 2007, using Ministry of Health administrative records. 

Communities were randomly selected from within the nursing zones from unweighted lists, in 

the absence of detailed population data.  

Households were randomly selected within each community and a single occupant aged one 

year or older per household was randomly invited to join the study (to reduce correlation 

compared with recruiting multiple residents), with selection using random number tables. 

Registries held by nurses or community health workers were used for household and 

participant sampling where available; when not available, geographical sampling was 

performed.  In rural village-like clusters, Expanded Programme on Immunization-derived 

sampling of houses was conducted in randomly selected directions (by pen-spin) from the 

community’s central point [58]. For clusters on streets, random sides of roads, starting points, 

and directions of progress were selected following a rapid appraisal of house numbers to 

enable selection of all households with equal probabilities.  

Household occupancy was on de facto residency in the household the previous night as per 

Fiji census methods. Information regarding the study was provided to the households, the 

participants and/or the parent/guardian of all child participants (under the age of 18 years 

old). All adult participants provided written informed consent. Parents/guardians provided 

written informed consent on behalf of all child participants (under the age of 18 years old). 

Written assent was also provided by children aged 12 years and above. Exclusion criteria 

were clotting disorders, medical anticoagulation or severe medical disorders that would 

preclude safe participation in the study. 

For group 1 residents in Viti Levu, age- stratified sampling (strata size proportional to national 

population) was used to ensure representation across all age groups after field data review 

identified potential age imbalances arising in some clusters on Vanua Levu and Taveuni. Once 

the required number of participants within an age-band was attained, further members of 

that age-band were ineligible for selection in subsequent households. If the selected 

participant was temporarily absent from a house e.g. for work or school, data collectors 

would revisit later in the day after their expected time of return. If a whole household was 

absent, an alternative house was randomly selected from the health registry, or the next 

nearest non-sampled dwelling in the same geographical sampling frame.  

3.3.3 Sample size 

A study sample size of 1,600 was proposed for the mainland group, as this would allow for 7% 

confidence intervals for seroprevalence for age band groups of 200, if seroprevalence was 

40%, at alpha = 0.05. If non-independence within age bands within clusters gave rise to a 
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design effect of two, then the confidence intervals would be 10%, which was deemed 

sufficient precision. Expected seroprevalence levels were informed by prior work on Taveuni 

(Eric Nilles, data on file). 

3.3.4 Laboratory methods 
Enzyme-linked immunosorbent assays (ELISAs) to detect S. Typhi Vi-polysaccharide antigen-

specific IgG in human serum samples were performed as described previously [59]  (provided 

by Sclavo Behring Vaccines Institute for Global Health, Siena, Italy). Briefly, ELISA plates were 

coated overnight with 1μg/ml of Vi polysaccharide antigen. Coated plates were washed and 

blocked with 5% fat-free milk solution. Following blocking, plates were washed and incubated 

with serum diluted at 1:200 at room temperature (RT) for 2 hours. Plates were washed and 

incubated with secondary antibody, alkaline phosphatase-conjugated anti-human IgG at RT 

for one hour. Finally, p-Nitrophenyl phosphate (SigmaFAST N1891, Sigma-Aldrich, United 

Kingdom) substrate was added for 30 minutes at RT and absorbance was read at dual 

wavelengths (405 nm and 490 nm) using an automated microplate reader (Biorad). Optical 

densities (OD) from blank control wells were subtracted from all sample absorbance values 

prior to estimation of serum titers from a standard curve. We selected 96 random Fijian 

plasma samples and subjected them to the anti-Vi ELISA . Twenty samples of these samples 

(with an OD >2.5) were pooled (standard plasma) and used to generate a standard curve. One 

ELISA Unit (EU) was defined as the reciprocal of the standard dilution (made by 10 2-fold 

dilutions of the standard plasma) that gave an absorbance value equal to 1 in this assay. All 

samples were tested at the Oxford University Clinical Research Unit in Ho Chi Minh City, 

Vietnam.  

 

3.3.5 Data analysis 
A surveillance seropositivity threshold was determined using a mixed-effects model of serial 

titres in the convalescent cases group. A log-normal mixture model approach to the data as 

per del Fava et al [60] had been examined previously but was considered non-informative. 

Mixed-effect models were fitted by maximum likelihood estimation (ML), using a random-

intercept fixed-slope above a putative threshold value and random intercept time-invariant 

model below, signifying antibody returning to a baseline level, with each convalescent case’s 

data assigned to either the fixed slope component or the time invariant component. Data 

from two patients with titres at the upper limit of detection (25,000 EU) were excluded 

leaving 70 titres from 28 patients. Model fit was examined at a range of threshold values with 

Akaike’s information criterion (AIC) used for threshold comparison, summing the AIC from 

the fixed-slope and time-invariant models.   
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Data were entered in EpiData 3.1 [61] and analysed in R 3.3 [62]. Seroprevalences were 

calculated using intra-cluster correlation coefficients (ICCs) and design effects determined on 

log titres with clustering at the primary sample unit. Putative risk factors for seropositivity 

were estimated with Huber-White robust standard errors, clustered on the same, using the 

“rms” package[63]. A multivariable model was developed from univariable risk factors with p-

values of less than 0.25, after-regrouping sparse cells for numerical stability, using a 

backward stepwise approach fitted by AIC, with deletion of observations with missing data. 

Potential collinearity was assessed by linear-adjusted generalized variance inflation factors in 

the “CAR” package [64,65], and variables were removed if GVIF^(1/(2*Df)) was over 2 and 

not considered epidemiologically important to retain. Data were considered insufficient to 

examine possible risk factors associated with titres that may indicate typhoid carriage. Self-

reported vaccination was assessed as non-informative and participants analysed on vaccine 

status of their residential geography (see supplementary information, section 3.7.1). For 

comparison to age-based seroprevalence, typhoid fever cumulative incidence expected 

across the life-course was estimated with binomial confidence intervals from confirmed cases 

notified in 2008-2014 to the national surveillance system at the Fiji Centre for Communicable 

Disease Control, Mataika House, Suva.   
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3.4 Results 
Group 1: Sixty-four mainland clusters in unvaccinated areas of Viti Levu and Vanua Levu were 

visited for this sero-survey (Figure 3.7). Of 1,565 people approached, five declined and 1,560 

were enrolled. There were no exclusions on medical grounds. A serum IgG titre against Vi 

polysaccharide (anti-Vi IgG) could not be attained for 29 participants (median age 23, IQR 6 to 

34; 19/29 female; 25/29 iTaukei) but was determined in 1,531 individuals (98%). The age of 

the sampled population ranged from one to 85 years (median 29; IQR 16 to 48, Table 3.1). Of 

these, 820/1,530 (54%) were female and 76% (1,164/1,530) were iTaukei (non-responses 

excluded).  

For Group 2, on Taveuni Island, the location for a vaccination campaign, 277 people were 

approached and 256 participants (127 (49.6%) female) in 11 clusters enrolled, with nil 

excluded, and all providing samples that were successfully assayed for anti-Vi IgG (Table 3.2 

and Figure 3.7).   

Group 3: Thirty-seven patients with blood-culture confirmed typhoid fever provided one or 

more samples that were assayed for anti-Vi IgG (19 (51.4%) female, median age 30, IQR 14 to 

42) (Table 3.3); thirty provided two or more blood samples (15 (50%) female, median age 30, 

IQR 15.5 to 44.5); and 19 provided three samples (10 female, median age 32, IQR 17 to 46.5). 

The median duration from reported fever onset to first sample collection was 187 days (IQR 

132 to 272 days). 
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Table 3.1. Group 1. Demographics of mainland Viti Levu and Vanua Levu (unvaccinated areas) 

survey participants  

Variable Value 

Number of participants assayed 1531 

Age (median, IQR) 29 (16 to 48) 

1 to 14 343 (22·4%) 

15-34 554 (36·2%) 

35-54 384 (25·1%) 

55+ 250 (22·9%) 

  

Female 820 (53·6%) 

  

Clusters 64 

Central Division 28 

Northern Division 11 

Western Division 25 

Participants per cluster (SD) 23·9 (2·5) 

  

iTaukei 1164 (76·1%) 

Indo-Fijian 338 (22·1%) 

Other 28 (1·8%) 

  

House income <100 FJD/wk  548 (36.3%) 

100-199 490 (32.5%) 

200-299 296 (19.6%) 

300-399 61 (4.0%) 

400+ 81 (5.4%) 

  

Self-report previous vaccination against typhoid 103 (6.7%) 

Self-report previous typhoid fever 20 (1.3%) 

 

  



127 
 

Table 3.2.  Group 2. Demographics of Taveuni island (Vi-polysaccharide vaccinated area) survey 

participants 

Variable Value 

Number of participants assayed 256 

Age (median, IQR) 36 (24 to 52) 

1 to 14 32 (12.5%) 

15-34 90 (35.3%) 

35-54 85 (33.3%) 

55+ 48 (18.8%) 

  

Female 127 (50%) 

  

Clusters 11 

  

Participants per cluster (SD) 23.3 (3.3) 

  

iTaukei 220 (86.3%) 

Indo-Fijian   27 (10.6%) 

Other     8 (3.1%) 

  

House income <100 FJD/wk 91 (36.5%) 

100-199 99 (39.8%) 

200-299 22 (8.8%) 

300-399 12 (4.8%) 

400+ 14 (5.6%) 

  

Self-report previous vaccination against typhoid 54 (21.1%) 

Self-report previous typhoid fever 5 (2.0%) 
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Table 3. Group 3. Demographics of convalescent confirmed typhoid fever cases 

Variable Value 

Number of participants assayed 37 

Age (median, IQR) 30, 14 to 42 

5 to 14 10 (27.0%) 

15-34 12 (32.4%) 

35-54 12 (32.4%) 

55-74   3 (8.1%) 

  

Female 19 (51.4%) 

  

iTaukei 36 (97.3%) 

Indo-Fijian 0 

Other (Pacific Islander) 1 (2.7%) 

 

Threshold estimation using a mixed model of sero-reversion amongst the Group 3 recovering 

typhoid fever cases exhibited best fit at 64EU (Supplementary Figure S3.1 and Supplementary 

Table S3.1). The ICC and design effect per Group 1 mainland cluster were 0.09 and 3.03, 

respectively. Across the five-year age bands (Supplementary Table S3.2), the Group 1 mean 

ICC and design effect were 0.13 and 1.09, respectively. 

Using the defined seropositivity cut-off (64 EU threshold), 32.3% of Group 1 mainland 

participants (95%CI 28.2 to 36.3%) were seropositive for anti-Vi IgG (Supplementary Table 

S3.3 Table), compared to 71.5% (95% CI 62.1% to 80.9%) of Group 2 (Taveuni island). As a 

sensitivity analysis, when a higher anti-Vi IgG threshold of 100 EU was used, 17·7% of the 

Group 1 mainland participants (95%CI 14·4 to 21.0%) were seropositive, compared to 58.6% 

(95% CI 48.4% to 68.8%) of Group 2 Taveuni islanders (Supplementary Table S3.3). To 

determine a rough estimate of carriage prevalence within Group 1 (mainland), we 

additionally examined those with the highest anti-Vi IgG titres; 2.8% (1·4 to 4·2%) of the 

sampled population had an antibody titre of 500 EU or above and 1.4% (0.4% to 2·4%) of the 

sampled population had an antibody titre of 1,000 EU or above (Supplementary Table S3.3).  

 

The anti-Vi IgG titre distributions are shown in Figure 3.8 for group 1, mainland unvaccinated 

areas (A); group 2, Taveuni island (B); and group 3, convalescent cases (C). The distribution of 

antibody titres in group 2 (Taveuni island) was shifted rightward relative to the Group 1 
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(mainland) titres, as would be predicted with the mass administration of Vi-PS vaccine. Thirty-

nine (15%, 11.2 to 20.4%) of the 256 Group 2 (Taveuni) participants had Vi IgG titres at the 

upper limits of detection. In the recovering typhoid fever cases the data were bimodal, with 

the higher peak above the modal titre for the mainland group.   

 

 

Figure 3.8. Distributions of log10 anti-Vi IgG antibody titres in three Fijian 

groups.  

A) Group 1: residents of Fiji mainland Viti Levu and Vanua Levu islands; B) Group 2: residents 

of Taveuni island, where a vaccination campaign with Vi-polysaccharide injection was 

conducted three years previously; and C) Group 3: recovering cases of culture-confirmed 

typhoid fever. Red vertical line denotes 64 ELISA unit seropositivity threshold determined from 

case antibody kinetic analysis; blue line denotes 100 ELISA unit threshold used in sensitivity 

analysis. Case titres are mean log titre if multiple samples collected, range 68 to 645 days 

from fever onset. 

 

In Group 1 (mainland), the age trends for unvaccinated iTaukei and non-iTaukei ethnic groups 

(Figure 3.9) both showed increasing seroprevalence with age based on the patient-fitted 

threshold. These increased from approximately 20% in the youngest age bands to 50% in the 

oldest, at threshold of 64 EU.  Age and ethnicity trends were comparable when a sensitivity 
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analysis at a higher threshold (100 EU) was performed with seroprevalence rising from <10% 

in younger groups to approximately 30% in the oldest age brackets. At both thresholds there 

was some suggestion that iTaukei seroprevalence may be higher than non-iTaukei 

seroprevalence, though differences between ethnic groups were not statistically significant at 

the 0.05 level. Notably, for both ethnic groups, seroprevalence by age band was substantially 

higher than the equivalent cumulative incidence that would arise if considering only 

confirmed cases, more than ten-fold in iTaukei Fijians and several hundred-fold in non-

iTaukei Fijians. 

 

Figure 3.9. Seroprevalence of anti -Vi IgG by age and ethnicity  

Seroprevalence in iTaukei and non-iTaukei groups at A) 64 ELISA units (case-fitted threshold) 

and B) 100 ELISA units (sensitivity analysis). Each panel also indicates confirmed case 

cumulative incidence by ethnicity. Shared areas denote 95% confidence intervals. 

 

A multivariable analysis of group 1 (mainland) indicated that several factors were significantly 

associated with seropositivity at a 64 EU anti-Vi IgG threshold after adjusting for potential 

confounders (Table 3.4).  Residents of Western Division had an odds ratio (OR) of 0.6 (95%CI 

0.4 to 0.8) for seropositivity in comparison to the Central Division. Age was associated with 

seropositivity, with an adjusted OR of 1.3 (95% CI 1.2 to 1.4) for every ten-year increase. 

Additionally, we found that individuals with pit sewage systems had an adjusted OR of 1.6 

(95% 1.1 to 2.3, p=0.01) for seropositivity in comparison to participants with septic tanks. 

Residence in a settlement rather than residential housing had an adjusted OR 1.6 (95% CI 1.0 

to 2.7) for seropositivity.  
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Table 3.4. Risk factors by adjusted odds ratios for anti-Vi IgG seropositivity 

 at 64 ELISA units for mainland Viti Levu and Vanua Levu by cluster-robust multivariable 

logistic regression. 

Variable Value OR 95% CI p-value  

Division or island Central Division Baseline    

  Western Division 0.58 0.41 to 0.83 0.0027 ** 

  Vanua Levu 0.74 0.46 to 1.17 0.19  

Age Per decade 1.31 1.23 to 1.40 <0.0001 *** 

Ethnicity Other vs iTaukei 0.79 0.54 to 1.14 0.21  

Community type Residential     

  Village 1.07 0.61 to 1.89  0.82  

  Settlement  1.63 1.00 to 2.65 0.048 * 

Rurality Urban baseline    

  Peri-urban 0.65 0.41 to 1.01 0.055  

  Rural 1.17 0.72 to 1.88 0.53  

Home sewage Septic tank Baseline    

  Piped sewer 1.07 0.77 to 1.48 0.69  

  Pit 1.62 1.12 to 2.32 0.01 * 

  Elsewhere 0.82 0.39 to 1.72 0.60  

Typhoid vaccination, self-

report 

Yes 1.34 0.91 to 1.96 0.14  

Typhoid fever diagnosed, 

self-report 

Yes 1.66 0.77 to 3.50 0.18  

* p<0.05, **p<0.01, ***p<0.001 

n=1436 complete records 

Lastly, after adjustment, no significant association with seropositivity was observed at p<0.05 

for ethnicity, community type, rural residence, self-reported typhoid vaccination, or self-

reported diagnosis of typhoid fever. “Home toilet type” was excluded from consideration for 

multivariable analysis: pour-flush (water seal) toilets were found to be associated with 

seropositivity on univariable analysis, however these are installed in response to disease 

outbreaks and so are confounded by indication (Fiji National Taskforce on Control of 

Outbreak-Prone Diseases, personal communication 2015). Other candidate risk factors 

identified on univariable screening (Supplementary table S3.4 Table) were not retained in the 

final model, including sex, drinking water sources, kava consumption, bathing or washing in 

rivers and typhoid fever cases within the household or social network.  
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3.5 Discussion 
This seroepidemiological survey of the Fijian mainland, established in response to a rise in 

confirmed typhoid fever case notifications, found seroprevalence of IgG against the Vi 

antigen of S. Typhi of 32.3% (95%CI 28.2 to 36.3%) based on an threshold of 64 IU determined 

from waning antibody in recovering patients. This seroprevalence, if indicative of past 

infection, is one to two orders of magnitude higher than would be predicted from case 

notifications. Seroprevalence increased with age, suggesting established endemic 

transmission; an alternative hypothesis may be that typhoid in Fiji is predominantly a 

childhood infection and that incidence has dropped over the decades, leaving older cohorts 

with serological signs and younger cohorts unexposed. Such an effect has been seen in 

hepatitis A in Indo-Fijians.[66,67] The serology would be consistent with typhoid primarily 

infecting older adults in a recent upturn, though this seems unlikely. Both iTaukei and non-

iTaukei ethnic groups exhibit similar typhoid seroprevalences across age groups, in contrast 

to typhoid fever, the disease, which is disproportionately reported from iTaukei Fijians. A 

small number of very high titres suggests that carriage occurs. Multivariable logistic 

regression found seropositivity was associated with pit latrines compared with other sewage 

systems, and living in a settlement compared with residential housing or a village. Central 

Division and Vanua Levu island had higher seroprevalences than Western Division. 

 Our investigation used a population-representative survey design rather than a convenience 

sample such as blood donors or hospital patients, or recent outbreak areas. This strengthens 

external validity of seroprevalence estimates, particularly for age-based inference, as children 

are rarely blood donors or inpatients.  A limitation of the study is the use of a single antigen 

due to resource availability, though mitigated by the use of antibody-waning data from 

recovering patients to determine a surveillance threshold. Serum-banking enables future 

investigation of other S. Typhi immune biomarkers.  

The proportion of the survey participants that was non-iTaukei (24%, specifically Indo-Fijian 

(22%)), was lower than expected from the last census [13]. This may be due to a greater 

proportion of Indo- Fijians residing in larger communities within nursing zones than 

documented in the sampling frame, due to migration from rural to urban area, or in areas 

that had been vaccinated; secular trends of a higher emigration rate and lower fertility rate 

for Indo-Fijians than iTaukei may also be have contributed [13]. Post-stratification weighting 

was not considered appropriate given uncertainties in demographic changes since the 2007 

census and sparse population records within nursing zones which could result in 

inappropriate adjustment. Representativeness was addressed through the design of the 

survey, and clustering through use of design-effects (which were modest) and cluster-robust 
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regression. The slight excess of females in the survey may be due to different residency 

patterns, such as male overnight residency in agricultural shelters, as encountered by the 

survey team. 

 

The serological results from the mainland survey, using highly purified Vi, were strengthened 

by benchmarking against serum from two other Fijian groups. Alongside threshold-estimation 

using a mixed model of antibody waning in convalescent cases, the higher anti-Vi 

seroprevalence from Vi-PS vaccinated residents of Taveuni island also informs the use of anti-

Vi IgG as a surveillance marker in the unvaccinated mainland population. Typhoid serology 

remains relatively understudied and further work could be done to strengthen comparability 

between settings and to inform thresholds used for seroprevalence surveys. Hospital-based 

serology studies of fever patients in acute illness and convalescence would be valuable in 

assessing the specificity of Vi antibody response to typhoid against patients with other 

laboratory confirmed diagnoses (notably Enterobacteriaceae family bacteraemias) and 

without specific clinical signs of concurrent typhoid fever or positive S. Typhi culture. 

Despite incomplete international standardisation of Vi assays [68], the distribution of IgG 

titres can be compared across studies. The Fiji results contrast to those from two Vi ELISA 

serosurveys done in Kathmandu, Nepal. The first compared Vi to serum bactericidal activity 

(SBA) found rising SBA with age, suggesting a similar acquisition of exposure with age, but 

found no age trend in anti-Vi IgG. [69] The second, using an assay similar to that applied in 

Fiji, reported high anti-Vi IgG in all age groups, suggesting hyperendemicity [70]. In a study in 

Cape Town, South Africa, where typhoid was considered endemic, 40% of unvaccinated 9 

year olds were found to have anti-Vi IgG titres believed to be protective [71]. In contrast, we 

found in Fiji mean seroprevalence for children of similar age (5 to 9 and 10 to 14 years) was 

not more than 20% (Figure 3.9) suggesting lower force of infection than Cape Town, if these 

antibody thresholds are comparable. This lower serological force of infection would also be 

consistent with lower confirmed case incidence [12,71]. 

The large difference in AIC between the best-fit convalescent titre threshold and higher or 

lower thresholds provide good support the choice of threshold statistically,[72] but needs 

considered in the biological context. Determining and making inference from the IgG waning 

rate is challenging due to statistical uncertainty in the fixed effect slope estimate which allow 

a wide range of biologically plausible scenarios. Incomplete seroconversion (as seen in other 

settings[73]) and waning anti-Vi IgG titres observed amongst convalescent cases in our study 

gives rise to the possibility that the seroprevalence estimates in this survey are under-
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estimates and thus conservative with respect to sero-incidence. Multiple infections, 

symptomatic or otherwise, may be required for the establishment of sustained immunity to 

typhoid fever;[74,75] such a mechanism may explain non-response in patients and be 

consistent with   experimental study of booster vaccination with killed Salmonella Typhi [76] 

as well as recent  models used to estimate vaccine impact in India [29] and elucidate 

transmission determinants in Malawi [31]. In Fiji, model-fitting using age-structured contact 

patterns could shed light on whether the age-dependent increase observed in seropositivity 

is more likely due to long-term endemic transmission or a more recent outbreak with higher 

propensity to affect older age groups. A similar upturn in typhoid fever notifications occurred 

in Papua New Guinea in the 1980-90s, also from a low-level, sporadic baseline [77]. A rise in 

population O antigen was observed [78], suggesting an overall increase in transmission; 

longitudinal serological investigations may likewise be informative to current transmission in 

Fiji. 

There are a number of epidemiologically-plausible, model-testable hypotheses for the 

differences between our seroepidemiological findings and the epidemiology of notified cases 

in Fiji, in which peak incidence is observed in adolescents and young adults of iTaukei 

ethnicity. Ingestion of a large dose of S. Typhi can overwhelm naturally-acquired immunity (as 

well as that from vaccination) [74,76,79,80], and so age- and ethnically-differential exposure 

to high and low dose inocula is one mechanism by which these data may be explained, if for 

example, iTaukei adolescents and young adults ingest larger inocula through exposure to 

particular foods.  Such patterns might also be compatible with genetic differences in typhoid 

susceptibility, potentially mediated by HLA-type [81], with reduced susceptibility in Fijians of 

Indian descent, whose South-Asian ancestors may have experienced many millennia longer 

exposure to S. Typhi than iTaukei Fijians have historically had [82–84].  

Findings from our multivariable analysis suggest that living in a settlement and the use of pit 

latrines may be risk factors for S. Typhi infection. Whilst there are likely to be public health 

benefits from improving conditions in settlements and upgrading sewage systems, specific 

interventions for typhoid prevention should be planned with consideration for findings 

emerging from case-control and environmental health research [48,85]. Widespread 

subclinical infection, both transient and chronic, such as may be inferred from these 

serological findings, suggests that whilst systematic public health management of cases and 

outbreaks and early diagnosis and treatment of patients remain of vital importance to reduce 

morbidity and mortality from typhoid fever in Fiji, a focus on these alone may be insufficient 

to eliminate transmission. Alongside continued socio-economic development and expanded 

access to infrastructure for sanitation, water supplies and handwashing with soap, 
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programmatic vaccination may be amongst interventions necessary to bring about effective 

typhoid control in Fiji. 
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3.7 Supporting Information 

Supplementary Figure S3.1. Serial anti-Vi IgG titres from convalescent 

confirmed typhoid cases  

 

Supplementary Table S3.1. AIC by maximum likelihood for anti-Vi IgG antibody waning fixed 

effect model thresholds in culture-confirmed typhoid cases 

Titre threshold (ELISA units) AIC Δ AIC from best fit 

16 -24.48 29.95 

32 -46.29 8.13 

64 -54.43 0.00 

100 -45.07 9.36 

150 -44.59 9.84 

200 -34.22 20.20 

250 -21.07 33.36 
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Supplementary Table S3.2. Design effects and ICC by 5-year age band, mainland Viti Levu and 

Vanua Levu 

Age band Design effect ICC 

01-04  1.07 0.30 

05-09  1.15 0.14 

10-14  1.11 0.10 

15-19  1.09 0.08 

20-24  1.06 0.05 

25-29  1.06 0.06 

30-34  1.40 0.39 

35-39  1.08 0.11 

40-44  1.07 0.24 

45-49  1.24 0.46 

50-54  1.06 0.13 

55-59  0.97 -0.10 

60-64  1.00 -0.02 

65-69  1.03 -0.30 

70+    0.94 0.45 
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S3 Table. Seroprevalence for anti-Vi IgG at different ELISA unit thresholds  

Amongst Group 1 mainland residents (by self-reported vaccine status),  

Group 2 Taveuni island residents and Group 3 convalescent cases. 

Group Number (proportion, 95% confidence interval)  

(by design effect for mainland and Taveuni) 

1) All mainland survey participants 1531 

Titre ≥ 64 494 (32.3%, 28.2 to 36.3%) 

Titre ≥ 100 271 (17.7%, 14.4 to 21.0%) 

Titre ≥ 500   43   (2.8%,   1.4 to   4.2%) 

Titre ≥ 1000   21   (1.4%,   0.4 to 2.4%) 

  

1a) Mainland unvaccinated (self-

report) 

1304 (excludes don’t know) 

Titre ≥ 64 410 (31.4%, 27.0 to 35.8%) 

Titre ≥ 100 223 (17.1%, 13.5 to 20.7%) 

Titre ≥ 500   37   (2.8%, 1.4 to 4.4%) 

Titre ≥ 1000   18   (1.4%, 0.3 to 2.5%) 

  

1b) Mainland vaccinated (self-

report) 

103 

Titre ≥ 64 42 (40.8%, 31.0 to 50.5%) 

Titre ≥ 100 25 (24.3%, 15.7 to 32.8%) 

Titre ≥ 500   5 (4.9%, 0.6 to 9.1%) 

Titre ≥ 1000   3 (2.9%, 0 to 6.3%) 

  

2) Taveuni island 256 

Titre ≥ 64 183 (71.5%, 62.1 to 80.9%) 

Titre ≥ 100 150 (58.6%, 48.4 to 68.8%) 

Titre ≥ 500   72 (28.1%, 18.8 to 37.5%) 

Titre ≥ 1000   57 (22.3%, 13.6 to 30.9%) 

  

3) Convalescent typhoid cases  37 

Mean titre ≥ 64 21 (56.8%, 39.6% to 72.5%) 

Mean titre ≥ 100 17 (45.9%, 29.8% to 62.9%) 

Mean titre ≥ 500   4 (10.8%, 3.5% to 26.3%) 

Mean titre ≥ 1000   3   (8.1%, 2.1% to 23.0%) 
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Supplementary Table S3.4. Univariable risk factors for seropositivity  

with anti-Vi IgG on mainland Viti Levu & Vanua Levu at 64 ELISA unit threshold 

Variable Value Count OR 95% CI P-value  

Division or island Central Division 667 Baseline    

 Western Division 607 0.68 0.48 to 0.97 0.035 * 

 Vanua Levu 257 1.24 0.85 to 1.81 0.26  

Ethnicity iTaukei 1164 Baseline    

 Other 366 0.91 0.64 to 1.29 0.58  

Age Per decade 1530 1.28 1.21 to 1.36 <0.0001 *** 

Sex Male 710 Baseline    

 Female 820 0.95 0.75 to 1.20  0.67  

Household size Unit increase 1499 0.93 0.88 to 0.98 0.0078 ** 

Community type Residential 430 Baseline    

 Village                 656 1.24   0.86 to  1.79 0.26  

 Settlement  444 1.41 0.99  to 2.02 0.06 ^ 

Rurality Urban 500 Baseline    

 Periurban 262 0.62   0.44  to 0.88 0.0067 ** 

 Rural 763 1.30   0.90  to 1.88 0.16 ^ 

Income  

(FJD household-1 

week-1) 

0-99 548 baseline    

100-199 490 0.98 0.31 to 1.64 0.91  

200-299 296 0.96 0.72 to 1.35 0.77  

 300-399 61 0.78 0.48 to 1.27 0.32  

 400+ 81 0.91 0.49 to 1.67 0.75  

Drink tap water at 

home 

4+d/wk 1427 baseline    

Never 87 1.68 1.15 to 2.47 0.0075 ** 

 Monthly 3 1.09 0.10 to 12.17 0.95  

 1-3d/wk 8 1.3 0.32 to 5.33 0.71  

Drink river water Never 1451 Baseline    

 < monthly 12 0.72 0.24 to 2.13 0.55  

 Monthly 11 1.23 0.45 to 3.31 0.69  

 1-3d/wk 9 2.68 0.73 to 9.93 0.14 ^ 

 4+d/wk 36 1.92 1.04 to 3.55 0.037 * 

Drink kava Any vs never 608:913 1.43 1.12 to 1.84 0.0048 ** 

 At least monthly vs 

less than monthly 

1018:50

3 

1.28 1.02 to 1.61 0.037 * 

Kava shared with 

how many people 

at last 

consumption? 

Not applicable 895 Baseline    

Zero to nine 387 1.28 (1.02 to 1.62) 0.0367 * 

Ten or more 235 1.79 (1.24 to 2.58) 0.0018 ** 

Bath or swim in 

rivers 

Never 1065 Baseline    

< monthly 187 0.89   0.59 to 1.34 0.57   

Monthly 99 0.82   0.52 to 1.29 0.39    

 1-3d/wk 83 0.90   0.51 to 1.56 0.70   

 4+/wk 92 1.40 0.81 to 2.41 0.23 ^ 

Home toilet Flush 1174 Baseline    

 Water seal (pour 

flush) 

244 1.52 1.03 to 2.25 0.035 * 

 Pit or bucket 106 1.38 0.98 to 1.93 0.62  

Sewage Piped sewer 285 Baseline    

 Septic tank 991 1.21   0.90  1.62 0.20 ^ 

 Pit 138 2.07   1.31  3.26 0.0019 * 

 Elsewhere 42 1.17   0.62  2.22 0.63  

Toilet location Indoor 913 Baseline    

 Detached  610 1.22 0.94 to 1.58 0.13 ^ 

Shared toilet Private 1379 Baseline    
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Variable Value Count OR 95% CI P-value  

 Shared 106 0.86 0.59 to 1.26 0.44  

Soap available 

after household 

toilet use 

No 133 baseline    

Yes, reported 1199 0.84 0.52 to 1.35 0.47  

 Yes, seen 189 0.78 0.45 to 1.35 0.38  

 Yes, seen/reported 1388 0.83 0.52 to 1.33 0.44  

Self-reported 

soap use 

No 414 Baseline    

Yes 1091 1.00 0.77 to 1.29 0.99  

Household tap No 102 Baseline    

 Yes 1422 0.72 0.46 to 1.12 0.15 ^ 

Typhoid 

vaccination self-

report 

No + Don’t know 1304+1

12 

Baseline    

Yes 103 1.51 1.07 to 2.12 0.019 * 

Typhoid diagnosis 

self-report 

No 1453 Baseline    

Yes 20 2.15 0.96 to 4.82 0.062 ^ 

Typhoid in the 

household, self-

report 

No + Don’t know 1447+6 Baseline    

Yes 20 0.63 0.19 to 2.12 0.46  

Know at least one 

person who has 

had typhoid 

No + Don’t know 1341+ 

36 

    

Yes 93 1.51 1.01 to 2.25 0.042 * 

 

 

3.7.1 Supporting information on self-reported vaccination.  

Self-reported typhoid immunisation history was considered to be non-informative, as 

only 21% of Taveuni islanders reported vaccination against an expected coverage of 

over 90%.[11] Furthermore, 100 (6.7%) mainland residents reported receiving a 

typhoid vaccine, in locations where coverage was predicted to be zero with only five 

of these participants having possibly previously resided in areas covered by the 2010 

vaccination campaign. A subgroup sensitivity analysis was conducted in the 1,428 

mainland participants who reported no history of typhoid immunisation. 

Seropositivity for anti-Vi IgG in this group was observed at thresholds of 1:64, 1:100, 

1:500 and 1:1,000 for 31.4% (27.0 to 35.8%), 17.7% (13.5% to 20.7%), 2.8% (1.4 to 

4.4%) and 1.4% (0.3 to 2.5%) respectively, indicating no difference from the full 

mainland survey group.  
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Chapter 4. Environmental factors drive the spatial distribution of Salmonella 

Typhi in Fiji: a Vi-antigen seroprevalence study. de Alwis R, Watson CH, 

Nikolay B, et al. Emerging Infectious Diseases. Under Rev. 2017. 
 

4.1 Bridging section 
 

In parallel to the main typhoid serological survey analysis, the data was provided to Rukie de 

Alwis, a postdoctoral laboratory scientist retraining in public health through an MSc at 

LSHTM, to undertake an analysis of geospatial risk factors for anti-Vi seropositivity as her MSc 

project. This was done recognising that there would not be scope within the PhD for me to 

undertake a geospatial element to the typhoid sero-epidemiological analysis, particularly 

given unfolding Ebola response activities, but that there might be epidemiological and public 

health utility in Fiji to also considering findings from such an analysis. The data was made 

available for analysis in academic year 2014-2015 on the understanding of the primacy of the 

main serosurvey paper. The geospatial analysis continued to be developed through to 2017. 

Analysis was led by Rukie de Alwis under the supervision of Jorge Cano and Birgit Nikolay of 

LSHTM.  

The serosurvey was designed from the outset to include collection of coordinates of 

participants’ residential location by handheld GPS devices, enabling geospatial analysis to be 

included. This was a particular consideration for serum banking, and for the ecological-

epidemiological approaches that were to be applied to leptospirosis when this component 

was brought into the serosurvey.  

Two GPS devices were brought to Fiji from London, and two loaned by John Lowry, a GIS 

specialist at the School of Geography, University of the South Pacific, Suva. Teams were 

trained in their use, including need to be outside, and leaving sufficient time to allow satellite 

detection and position lock. Coordinates were entered as Degrees-Hours-Minutes-Seconds to 

reduce transcription errors compared with a degree decimal system when recording onto 

survey questionnaires. Coordinates were converted to degree decimal during data cleaning. 

Geographical data are displayed at a level that avoids individual participant identification. 

John Lowry had painstakingly assembled rich geospatial data of Fiji including data on 

agriculture, rainfall, fluvial systems and soil types, and provided technical input, both of which 

were critical to the analysis. My main contributions were in identifying the scope for 

geospatial analysis, designing and delivering a field survey that could be analysed in such a 

manner. I also contributed to the interpretation of the analysed data, particularly towards 
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caution in interpreting and reporting observed findings, given uncertainties in serology, and 

multiple testing, particularly with respect to clustering.  

This chapter is the only research paper in the thesis on which I am not lead author. It sits 

between a thesis chapter and an appendix. It is closer to an appendix paper in ownership, 

and may be read as such. But because it contributes to the narrative of understanding of 

typhoid in Fiji, it is placed in the main body of the thesis. 

There was a further consideration in collecting the coordinates of study participants. In a 

country without a comprehensive address system, this was an important contributor in being 

able to follow-up study participants. This has been utilised in the arbovirus serological cohort 

study that has continued for two follow-up rounds in the Central Division.  
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Abstract  

Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate the 

geographical distribution and environmental risk factors associated with Salmonella enterica 

serovar Typhi (S.Typhi) infection, we conducted a cross-sectional cluster survey with 

associated serological testing for Vi-specific antibodies (a marker of S.Typhi exposure) in Fiji in 

2013. High Vi-specific seroprevalence “hotspots” were identified in northeast of mainland Fiji. 

Risk of Vi-seropositivity increased with increasing annual rainfall (Odds Ratio, OR: 1.26 per 

quintile increase, 95% CI: 1.12-1.42), and decreased with increasing distance to major rivers 

and major creeks (OR: 0.89 per km increase, 95% CI: 0.80-0.99) and distance to modeled 

flood-risk areas (OR: 0.80 per quintile increase, 95% CI: 0.69-0.92), after being adjusted for 

age, typhoid vaccination and home toilet type. Risk of S.Typhi exposure and its spatial 

distribution in Fiji are strongly driven by environmental factors. This study’s findings can 

directly impact typhoid-control efforts in Fiji.  
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4.2 Introduction 
 

With an estimated disease burden of 20.6 million cases in low and middle-income countries 

(LMICs) in 2010, typhoid fever remains an enteric disease of public health importance (1, 2). 

Typhoid cases largely arise in LMICs, as marked improvements in water, sanitation and 

sewage are considered to have helped reduce typhoid incidence in most developed countries 

(3-6). Salmonella enterica subspecies Typhi (S. Typhi) is the causative agent of typhoid fever. 

S. Typhi is specific to the human host and is typically transmitted faecal-orally between 

humans through the ingestion of contaminated food and water (3, 7). Typhoid infections are 

usually acute, although in around 3-5% of cases S. Typhi establishes an asymptomatic and 

persistent (chronic) infection. These individuals are commonly referred to as typhoid carriers, 

and are capable of shedding bacteria and sustaining transmission within the community (3, 

8).  

Pathogenicity of S.Typhi is conferred by virulence factors such as Vi-polysaccharide. The Vi-

polysaccharide is an outer capsular antigen that enables greater human infectivity than those 

S.Typhi strains not expressing the antigen (9). Due to the highly antigenic nature of Vi, 

infection with Vi-positive S.Typhi strains elicits Vi-specific antibodies in humans (10). 

Therefore, detection of Vi-specific IgG antibodies can be used to measure S. Typhi exposure, 

either past infection(s) or chronic infection (11). Furthermore, the current human-approved 

typhoid vaccines are primarily Vi antigen-based (such as Vi polysaccharide and Vi conjugate 

vaccines) (12). Despite antigenicity of the Vi-polysaccharide, antibodies and immunity 

conferred by the Vi-vaccine is short lived (13). 

Fiji is an archipelago of over 300 islands situated in the Pacific Ocean, with a majority of its 

population living on the two islands of Viti Levu and Vanua Levu. Between 1991 and 2000, 

less than 5 typhoid cases/100,000 people were reported per year, and mostly in Vanua Levu 

(14, 15). However, since 2005, the number of typhoid fever cases have been rising (16) and 

reached a peak of over 50 cases/100,000 inhabitants per year following the widespread 

destruction and flooding caused by Cyclone Tomas in 2010. As a result, the Fiji Ministry of 

Health increased surveillance and implemented additional prevention strategies, such as 

vaccination against typhoid fever in the worst affected regions (17, 18).  

The risk factors for typhoid transmission in Fiji are only partially understood. Inadequate 

hand-washing practices, poor sanitation, lack of access to safe water, dumping of untreated 

waste/sewage are thought to contribute to typhoid transmission in Fiji (17, 19). In addition, 

every year between November and April Fiji experiences powerful cyclones, which have led 
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to destruction of homes and contamination of water sources by extensive rainfall and 

flooding, followed by a rise in diarrheal diseases (20, 21). Although flooding has been shown 

to lead to outbreaks of other food and waterborne diseases (22-24), a direct link between 

flooding and increased typhoid fever incidence has not been confirmed in Fiji.  

Public health efforts to control typhoid have been hampered by the lack of information 

regarding the epidemiology, spatial distribution and risk factors of typhoid exposure in Fiji. 

Therefore, we used the presence of Vi-specific antibodies as a biomarker for typhoid 

exposure, and combined both geospatial and statistical approaches to identify environment-

associated risk factors in the general population of Fiji. Due to the yearly occurrence of 

cyclones in Fiji, we gave special attention to the potential contribution of flooding (and flood-

promoting factors) to S. Typhi Vi-seropositivity.  

 

4.3 Methods 
 

4.3.1 Study design   
This study was a cross-sectional cluster survey with an associated serological analysis, which 

was conducted across three Fijian divisions, i.e. Northern, Central and Western divisions. 

Administrative areas where the 2010 typhoid vaccination campaign (18) had been 

implemented were excluded. Nursing zones were selected using probability-proportional-to-

size (PPS) random sampling based on census data. Cluster sites (“communities”) within 

nursing zones were selected using random list sampling, followed by random sampling of 

households within community cluster sites using community health worker censuses or 

modified World Health Organization’s Expanded Program on Immunization sampling (25), 

and then random sampling of an individual per household. Children under 1 year of age were 

excluded from the study. Community visits and data collection took place during September-

December 2013, and entailed questionnaire administration, blood sample collection and 

geolocation of surveyed households. Geographical coordinates were collected using 

handheld geographical positioning system (GPS) devices at the participant’s house or the 

nearest community center. Sample size was calculated at alpha=0.05 using expected 

seroprevalence informed from prior studies (26). Further details on study design and 

sampling are described in chapter 3 (26).    

Informed consent was obtained in writing or thumb-print from all adult participants and 

parents or guardians of participating children, with written assent from children aged 12 and 
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over. This study was approved by the Fiji National Research Ethics Review Committee 

(#201303) and the London School of Hygiene and Tropical Medicine’s ethics committees 

(#6344 and #9187). 

4.3.2 Survey data  
The cross-sectional survey collected information on forty-four variables, as previously 

described (26). Thirteen survey variables were chosen for the present typhoid risk factor 

analysis based on potential environmental risk factors of interest and potential confounding 

covariates (26). These variables included age, education, self-reported typhoid vaccination 

status, type of toilet at home, type of sewage, work location, urbanization and several 

flooding-related variables (Figure 4.1 and Technical Appendix Table TA4.2).  

 

Figure 4.1. Geographical distribution of anti -Typhoid Vi seroprevalence in 2013 

in Fiji.  

Location of Fiji islands in the Pacific and Vi-seroprevalence in sampled communities in 2013 (A 

and B). Details of typhoid seroprevalence in large Fijian cities (i.e. Labasa, Suva, Nadi and Ba) 

(C). Typhoid seroprevalence estimated for Fijian subdivisions (D).  

 

 

4.3.3 Vi-specific serology 
Vi-specific antibody levels were determined using an enzyme-linked immunosorbent assay 

(ELISA) (methods adapted from Rondini et al 2011) (27). Briefly, ELISA plates were coated 
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with Vi-polysaccharide antigen, blocked with non-fat milk buffer, followed by incubation with 

participant sera (dilution 1:200), proceeded by alkaline phosphatase-conjugated anti-human 

IgG. Antibody binding was detected using p-Nitrophenyl phosphate substrate (Sigma-Aldrich) 

and absorbance measured at 405nm. As previously established in Watson, C et al (2017) (26, 

28), we used a cut-off of ≥64 ELISA units (EU) to classify as Vi-seropositive.  

4.3.4 Geospatial mapping and clustering  
The geographical centroid of each community was estimated by averaging latitude and 

longitudinal coordinates of households sampled within each community. Typhoid 

seroprevalence for each geo-referenced community was computed using the Vi-seroimmune 

status of participating individuals who resided in each community. Confirmed-typhoid case 

incidence data was obtained from the Fijian Ministry of Health and mapped per subdivision. 

All geographical coordinates of communities were presented in the local projected 

coordinate system, Fiji Map Grid 1986. 

Global and Anselin local Moran’s I tests were used to identify statistically significant spatial 

clusters and conducted using GeoDa v1.6.7 (Technical Appendix text TA4.2) (29, 30). Vi-

seroprevalence was log-transformed, separate row-standardized spatial weight matrices 

were calculated based on an inverse-distance relationship, and global and local spatial 

associations were analyzed within each division.  

4.3.5 Environmental variables 
Fijian administrative boundaries were downloaded from Global Administrative Divisions Map 

(GADM) (31). The largest administrative boundaries are known as Divisions (i.e. Central, 

Western, Northern and Eastern), and the island of Viti Levu is made up of Central and 

Western Divisions, while the island Vanua Levu is the Northern Division. Smaller island groups 

make up the administrative Eastern Division (where the present study did not collect 

samples). The Divisions are further broken down into 14 subdivisions.  

Geospatial environmental data were provided by the University of South Pacific (Suva, Fiji): 

topography data (elevation and slope), climate data (annual rainfall, rainfall of the wettest 

month, total rainfall for cyclone season), hydrology data (rivers and creeks) and soil data (soil 

type according to composition and drainage quality) (32, 33). Euclidean distance maps of 

straight-line distance to major rivers and creeks, and poorly drained soils were generated 

from hydrology and soils maps, respectively. Further details of spatial data used in the study 

are provided in Technical Appendix Table TA4.3. 
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A deterministic flood-risk model was generated based on the principle that depressions and 

poorly drained soils are more likely to collect rainwater and be flooded (34). Further details 

on the development of this flood-risk map are provided in Technical Appendix text TA4.1 and 

Technical Appendix Figure TA4.1.  

Except for the rainfall variables that were extracted at the community level, the remaining 

environmental data were extracted at the individual geo-spatially coded household level 

using bilinear interpolation. All geospatial processing and mapping was done using ArcGIS 

v10.2 (Redlands CA, USA). 

4.3.6 Multilevel mixed-effect logistic regression 
Risk factors for typhoid Vi-seropositive status were identified using multilevel mixed-effects 

logistic regression (also known as a generalized linear mixed-effect model, GLMM) by 

including environmental and individual-related covariates as fixed-effect and a random 

intercept. First, a null multilevel mixed-effects logistic model was run with the typhoid sero-

immune status (binary variable) as the dependent variable. The variance partition coefficient 

(VPC) and a caterpillar plot (Technical Appendix Figure 2) were generated using community 

residuals.  

Sixteen environmental covariates (Table 4.1) were tested in the univariable analysis. 

Regarding continuous independent variables, if analysis showed at least moderate evidence 

of an association with seropositivity (p<0.05), then the variable was used in the multivariable 

analysis as a continuous variable. However, if analysis showed weak or no evidence of an 

association with typhoid seropositivity (p>0.05), then the continuous variable was divided 

into quintiles (Technical Appendix Table 4.4) and re-tested in the univariable model 

separately as categorical or ordered-categorical variables. All continuous variables associated 

with Vi-seropositivity with a p<0.10 were tested for collinearity. Variables with high 

collinearity (correlation coefficient>0.8) were grouped, and the variable with the smallest p-

value from each group was included in the multivariable analysis. 
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Table 4.1. Association between environmental factors and typhoid seropositivity using 

univariable multilevel mixed-effects logistic analysis 

 
Environmental Variable n 

Variable 
Type 

Odds Ratio  
(95% CI) 

P value 

Survey Data     

 Is there a stream nearby? (0=No, 1=Yes) 1,508 Binary 1.09 (0.82-1.46) 0.528 

  No 616    

  Yes 892    

 No. of times house has flooded in the past 3 
years 1,483 Categorical 

  

  0 1,380  1.00 (reference) - 

  1 to 2 97  0.87 (0.52-1.47) 0.604 

  3 to 5 6  0.89 (0.15-5.13) 0.897 

 
No. of times land has flooded in the past 3 years 1,496 Categorical 

  

  0 1,264  1.00 (reference) - 

  1 to 2 174  1.13 (0.77-1.66) 0.534 

  3 to 5 58  1.21 (0.66-2.22) 0.542 

 Work Location* 1,359 Categorical   

  Indoors 636  1.00 (reference) - 

  Outdoors 267  1.59 (1.15-2.19) 0.005† 

  Both indoor and outdoor 456  1.22 (0.93-1.60) 0.160 

 Urbanization* 1,510 Categorical   

  Urban 500  1.00 (reference) - 

  Periurban 247  0.61 (0.37-1.01) 0.054 

  Rural 763  1.27 (0.89-1.81) 0.185 

Geospatial Data     
 Elevation (by quintiles) 1462 Ordered 

Categorical 
1.02 (0.90-1.15) 0.793 

 Slope (by quintiles) 1462 Ordered 
Categorical 

1.04 (0.93-1.15) 0.519 

 Temperature (by quintiles) 1462 Ordered 
Categorical 

0.95 (0.84-1.07)  0.398 

 Annual Rainfall (by quintiles)* 1462 Ordered 
Categorical 

1.13 (1.01-1.28) 0.039† 

 Rainfall in wettest month (by quintiles) 1462 Ordered 
Categorical 

1.15 (1.02-1.30) 0.020† 

 Rainfall during cyclone season (by quintiles) 1462 Ordered 
Categorical 

1.14 (1.01-1.29) 0.029† 

 Distance to major rivers (by quintiles) 1462 Ordered 
Categorical 

1.07 (0.95-1.20) 0.255 

 Distance to major rivers and major creeks 
(Km)* 

1462 Continuous 0.99 (0.99-1.00) 0.081 

 Distance to major rivers, major and minor 
creeks (by quintiles) 

1462 Ordered 
Categorical 

0.96 (0.86-1.07) 0.439 

 Distance to poorly drained soils - major & 
secondary flood plains (by quintiles) 

1462 Ordered 
Categorical 

0.92 (0.80-1.06) 0.275 

 Distance to poorly drained soils - major flood 
plains only (by quintiles) 

1462 Ordered 
Categorical 

1.00 (0.87-1.17) 0.949 

 Distance from modelled flood-risk area (by 
quintiles)* 

1462 Ordered 
Categorical 

0.90 (0.78-1.03) 0.134 

*Variables included in the multivariable multilevel analysis. †Variables that quite strongly associated with typhoid 
sero-immune status in the univariable analysis (i.e. p<0.05). 
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In addition to five environmental variables (as indicated in Table 4.1), several non-

environmental risk factors (i.e. age, education, self-reported typhoid vaccine status, type of 

home toilet, type of sewage, and know people who have had typhoid) of S. Typhi Vi-

seropositivity were confirmed as significant risk factors by univariable analysis (Technical 

Appendix Table TA4.2) and included in the multivariable analysis. Parsimonious regression 

models were developed using a backward stepwise variable selection approach, eliminating 

one variable at a time based on the highest p-value in a likelihood ratio test and retaining 

only variables with p≤0.05. The final fitted multivariable statistical model was validated using 

the Hosmer-Lemeshow test and by generating predicted typhoid seroprevalence values for 

sampled communities (Technical Appendix Figure TA4.2). Data were analyzed using Stata v14 

(Statacorp, College Station). 

4.3.7 Boosted regression trees (BRT) modeling  
A base model was developed using the location of communities (longitude and latitude) and 

those variables that were found to be associated with Vi-seropositivity in the univariable 

analysis. A simplification of the base model was conducted by removing redundant or non-

informative variables. An ensemble of 50 BRT models with 11 of the most influential 

predictors and random sampling from a total of 1,305 samples (a minimum of 750 sampled at 

one time) was conducted to estimate relative contributions and marginal effect plots of the 

most influential variables. Further details on the BRT model are given in Technical Appendix 

Text TA4.3. BRT modeling was conducted in R (v3.2.2, www.R-project.org) using the ‘gbm’ 

library (35). 

 

4.4 Results 
 

4.4.1 Detection of typhoid hotspot communities in Fiji 
Approximately one-third of the serum samples (485/1,516) were sero-positive for Vi-specific 

antibodies (Technical Appendix Table TA4.1). Vi-seroprevalence among sampled communities 

in Fiji ranged from 8% to 65%, with 35% and 24% estimated for Central and Western 

divisions, respectively (Figure TA4.1). Furthermore, although northern division (Vanua Levu) 

has a smaller population, it had almost 40% Vi-seroprevalence.  

Global Moran’s I analysis showed strong evidence of geographical clustering of Vi-

seroprevalence among sampled communities in the Western division (I=0.49, p=0.002), and 

weak evidence for Central and Northern divisions (I=0.08 and -0.42, p=0.08 and 0.10, 

respectively). Anselin Local Moran’s I test showed that although Vanua Levu had high typhoid 
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seroprevalence, there was no apparent typhoid hot-spot clustering among communities in 

this island (Figure 4.2A). However, four high-high (hot-spot) seroprevalence cluster 

communities were detected in the north and northeast of Western and Central divisions, 

respectively (Figure 4.2B and 4.2C), while cold-spots were primarily detected in the Western 

division (Figure 4.2B).    

 

Figure 2. Local clustering of typhoid seroprevalence within divi sions in Fiji.  

Local Anselin Moran's I analysis conducted for each division separately using an inverse-

distance weighting for the communities within the three divisions, north (A), western (B) and 

central (C). High-high clusters (also known as hotspots) are high Vi-seroprevalence 

communities that are close to other high Vi-seroprevalence communities. Similarly, low-low 

clusters (also known as coldspots) are low Vi-seroprevalence communities that are in close 

proximity to other low Vi-seroprevalence communities.   
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4.4.2 Multilevel univariable and multivariable analysis 
Univariable analysis identified four environmental variables (i.e. work location, annual 

rainfall, rainfall in the wettest month and rainfall in the cyclone season) and four non-

environmental variables (i.e. age, education, sewage disposal, typhoid vaccination status) 

with significant association with Vi-seropositivity (p<0.05) (Table 4.1 and Technical Appendix 

Table TA4.2). Furthermore, there was suggestive evidence of an association with Vi-

seropositivity (i.e. 0.1>p>0.05) for several other environmental and non-environmental 

variables (i.e. urbanization, distance to major rivers and major creeks, toilet type, knowing 

people who has had typhoid) (Table 4.1 and Technical Appendix Table TA4.2).  

One rainfall variable and all other environmental and non-environmental factors with at least 

a suggestive association (i.e. p<0.01) were included in the multivariable multilevel logistic 

regression analysis (indicated in Table 4.1 and Technical Appendix Table TA4.2). Proximity to 

modelled flood-risk areas was included as a fixed-term in the final fitted multivariate model 

regardless of its evidence of association on the univariable analysis, since other 

environmental factors (such as rainfall and proximity to rivers) maybe confounding the 

univariable analysis. The final multivariable statistical model contained six variables that 

significantly explained the variation in Vi-seropositivity for sampled individuals and 

communities. After adjusting for potential confounders (i.e. age, typhoid vaccination and 

flush toilets), annual rainfall showed positive association (OR=1.26 per quintile increase, 

p<0.001, respectively), while distance to major rivers and major creeks and to modeled flood-

risk areas showed negative associations with Vi-seropositivity (OR: 0.89 per km increase 

p=0.031 and OR 0.80 per quintile increase p=0.002, respectively) (Table 4.2).  

Table 4.2. Association between social and environmental factors with Typhoid sero-immune 

status using a multivariable multilevel model 

Variable 
Odds Ratio (95% 

CI)* 
P value 

Annual Rainfall (by quintiles) 1.26 (1.12-1.42) <0.001 

Distance to major rivers and major creeks 

(km) 0.89 (0.80-0.99) 0.031 

Distance to modelled flood-risk areas (by 

quintiles) 0.80 (0.69-0.92) 0.002 

Age of participant (yr) 1.03 (1.02-1.03) <0.001 

Vaccination status (0=Not vaccinated, 

1=Vaccinated) 1.62 (1.02-2.57) 0.041 

Type of toilet at home   

 Flush -  

 Water seal/ pour-flush 1.66 (1.16-2.38) 0.006 
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 Pit (with/without slab) & bucket 1.51 (0.91-2.52) 0.110 

*The multivariable model was run using 1,338 observations in 61 communities. 

The fitted model not only explained fixed-effect variation across individuals, but also some of 

the variation across sampled communities. Comparison of the null and final models showed a 

reduction in VPC from 7.6% (p<0.0001) to 2.1% (p<0.0001), which means that the final 

statistical model explained 72% of the variation in seropositivity between communities. The 

final multivariable model fitted was validated using the Hosmer-Lemeshow test, where the 

predicted proportions computed at the individual level were not significantly different from 

the observed proportions (p=0.558) (Technical Appendix Figure TA4.2).  

4.4.3 Boosted Regression Tree modelling 
Age, GPS location and the three environmental factors, i.e. distance to major rivers and major 

creeks, distance to flood-risk areas and annual rainfall were estimated to be the major 

predictors of Vi-seropositivity in Fiji (Table 4.3). These six covariates accounted for almost 

90% of the estimated relative contribution to S.Typhi Vi-seropositivity.  

Table 4.3. Relative contributions (%) of predictor variables from an ensemble of 50 boosted 

regression tree models for typhoid seropositivity developed with cross-validation on data from 

1,305 samples and 11 variables 

Variable Data type 
Relative Contribution  

(95% CI) 

Age (yr) Continuous 33.0   (31.1 – 34.8) 

Longitude (Degrees) Continuous 15.5 (14.7 – 16.0) 

Distance from major rivers & 

creeks (m) 
Continuous 14.5 (13.6 – 15.3) 

Annual rainfall (mm) Continuous 9.3 (8.5 – 10.0) 

Distance from flood-risk areas (m) Continuous 7.7 (6.8 – 8.4) 

Latitude (Degrees) Continuous 6.9 (5.6 – 7.9) 

Education Categorical 4.2 (3.8 – 4.6) 

Urbanization Categorical 3.3 (2.9 – 3.8) 

Typhoid vaccination Binary 2.3 (2.1 – 2.5) 

Sewage disposal Categorical 1.8 (1.5 - 2.2) 

Toilet type at home Categorical 0.8 (0.6 – 1.2)  

 

The marginal effect plot for age showed that a majority of initial exposure to S.Typhi occurs 

before 40 years of age and plateaus above 60 yrs (Figure 4.3A). Distances of less than ~1,300 

m to major rivers and major creeks were predicted to increase Vi-seropositivity, with 

distances less than ~200 m having the largest effect (Figure 4.3B). Annual rainfall had minimal 

effect on Vi-seropositivity until around 1,700 mm, above which the risk increased 
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dramatically (Figure 4.3C). Furthermore, shorter distances to modeled flood-risk areas 

showed some contribution to typhoid seropositivity (Figure 4.3D).  

 

Figure 4.3. Partial dependence plots for the four most influential variables in 

the BRT model for typhoid seropositivity.  

The partial dependence plots of age (A), Distance to major rivers and creeks (B), Annual 

rainfall (C) and Distance to flood-risk areas (D). The final ensemble BRT was built upon 50 BRT 

models, 11 environmental and social covariates, using data from 1,305 samples. The grey 

area depicts the 95% confidence intervals of the plots. 

 

4.5 Discussion 

In the past two decades Fiji has observed a steady rise in confirmed typhoid fever cases (16-

18). However, little is known about the geospatial distribution and underlying risk factors of 

typhoid fever in Fiji. Our study demonstrated a spatially heterogeneous exposure to typhoid 

fever across Fiji, with Vanua Levu island having the highest seroprevalence. High-

seroprevalence communities (hotspots) were only detected in Viti Levu whilst typhoid fever 

appeared to be more homogeneously distributed in Vanua Levu, suggesting a different 

transmission pattern in the two islands. Annual rainfall, and proximity to major rivers, creeks 
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and potentially floodable areas were found to be important environmental risk factors of 

serological evidence of exposure to S.Typhi in Fiji.  

The Vi-seroprevalence distribution closely resembled the typhoid case incidence pattern 

reported by the Fijian Ministry of Health for the period 2008-2013 (Technical Appendix Figure 

4.3), with Vanua Levu and the northeast of Viti Levu having the largest typhoid burden. 

Interestingly, in April 2016 following the wake of cyclone Winston hitting Fiji, there was a 

sudden outbreak of typhoid fever in the villages of Qelekuro and Nabulini (36), which were 

both located in northeastern Viti Levu. This latest typhoid outbreak in Fiji supports our 

findings of high-risk areas for S.Typhi exposure particularly in the northeastern region of Viti 

Levu island (Figure 4.2A) and reinforces the hypothesis of increased exposure to typhoid due 

to environmental anomalies in the aftermath of a cyclone.  

Similar to our findings, other studies have found positive associations between faecal-orally 

transmitted diseases (such as cholera and typhoid) and waterborne diseases (such as 

leptospirosis) with heavy rainfall and proximity to major rivers (37-41). Heavy rains in Fiji, 

particularly during the cyclone season (November-April) (21), may lead to the overflowing of 

septic tanks and contamination of the local environment and drinking water sources. 

Furthermore, our study indicated proximity to major rivers and creeks as a risk factor for 

acquiring S.Typhi probably due to major rivers and creeks being used in Fiji (similar to many 

other middle-income countries) as places for washing clothes, taking baths and swimming 

(42). In addition, streams near populated areas can become contaminated as a result of 

cyclones or heavy rains causing overflow of sewage and waste systems. Therefore, future 

studies investigating environmental risk factors should sample surrounding water sources for 

water quality assessment.   

Many food and waterborne diseases have been shown to increase soon after heavy flooding 

(22-24, 43). Fiji experiences typhoid fever and leptospirosis outbreaks following devastation 

and flooding by cyclones (16, 18, 41, 44). Our multivariate model demonstrated an increased 

risk for S.Typhi infection for those individuals living closer to the modeled flooding areas. 

Annual cyclone season and heavy rainfall combined with a majority of the Fijian population 

living in low-lying coastal areas make exposure to flooding a very common phenomenon in 

Fiji and a potential conduit of S.Typhi transmission.  

A major strength of this study is the unbiased, individual-level assessment of environmental 

factors specific to each participant based on their residential GPS coordinates. Furthermore, 

the large sample number analyzed enabled inclusion of a large number of independent 



164 
 

variables (consisting both major non-environmental risk factors and environmental variables) 

in the statistical modeling. Despite many strengths, the present study also has several 

limitations. Although Vi-specific antibodies were measured as a proxy for S.Typhi infection, 

the role and dynamics of Vi-specific antibodies following S.Typhi infection is unclear. For 

example, anti-Vi antibodies have been found to numtyphoid vaccination. Furthermore, 

geospatial cluster analysis was partially hampered by an uneven distribution of surveyed 

communities. To mitigate this potential spatial bias, we conducted spatial clustering analysis 

separately for each division.  

The present study is an in-depth study of the spatial epidemiology of typhoid in Fiji. It also 

investigates flooding as a risk factor for typhoid transmission. Findings of this study can be 

used to inform future typhoid control programs. Recent outbreak detection in high 

seropositivity areas (36) suggests that anti-Vi IgG sero-surveillance offers potential for 

identification of areas and communities at higher risk of typhoid fever. This spatial 

epidemiology analysis suggests flood-prone areas and other communities lying close to major 

rivers and creeks or in high-rainfall areas could be prioritized for stricter flood-control and 

typhoid-preventative measures, such as improved sanitation, provision of secure water 

sources, and typhoid vaccination campaigns. 
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4.7 Technical Appendix 
 

 

Technical Appendix Figure TA4.1.  Development of a flood-risk model.  

Detailed methods are described in Technical Appendix text TA4.1 
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Technical Appendix Figure TA4.2. Validation of the fitted multilevel mixed -effect 

logistic regression model.  

Distribution of community random effect residuals with 95% CI to justify the use of a 

multilevel model (A). Validation of the final multilevel regression model to explain variation in 

sero-immune status to typhoid Vi antigen using the Hosmer-Lemeshow test (p-value= 0.558) 

(B). Assessing the final statistical model by comparing the predicted and observed typhoid 

sero-prevalence at the community level (C). 
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Technical Appendix Figure TA4.3. Confirmed typhoid fever case incidence per 

100,000 inhabitants reported for each subdivision during 2008 -2013 and 2014. 
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Technical Appendix Table TA4.1. Characteristics of samples collected by the survey and those 

included in the statistical analysis  

 Variable n 

Survey Samples  

 Individuals 1,560 

 Communities 65 

 Anti-Typhoid IgG 1,531 

 
Individuals per community, mean 

(range) 
24 (15-28) 

Samples included in analysis† 

 Individuals 1,516 

 Communities 63 

 Anti-S. Typhi Vi IgG‡ 1,516 

  Sero-negative (<64 EU) 1,031 

  Sero-positive (≥64 EU) 485 

 GPS coordinates 1,463 

 Community cluster area, km2  (IQR)* 
0.04 (0.02-

0.13) 

*Cluster area of each community was assessed using the sampled household 

locations of each community. 

†Samples from pilot study were not included in present analysis. 

‡Samples with missing Anti-S. Typhi Vi IgG titres were excluded from analysis. 
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Technical Appendix Table TA4.2. Univariable analysis of non-environmental risk factors of S. 

Typhi Vi-seropositivity used in the present study  

 Variable 
Variable 

Type 

Odds Ratio  

(95% CI) 

P-

value 

Age (yr) Continuous 1.03 (1.02-1.03) <0.001* 

Education Categorical   

 No Schooling  1.00 (reference)  

 Primary  1.47 (0.94-2.30) 0.091 

 Secondary  1.71 (1.11-2.64) 0.015* 

 Vocation & University  1.17 (0.71-1.93) 0.546 

     

Toilet at home Categorical   

 Flush  1.00 (reference) - 

 Water seal/pour-flush  1.40 (1.00-1.95) 0.051* 

 Pit (with/without slab) & 

bucket 

 1.22 (0.75-1.99) 0.425 

     

Sewage disposal at home Categorical   

 Piped sewer system  1.00 (reference) - 

 Septic tank  0.59 (0.35-0.99) 0.048* 

 Pit latrine  0.65 (0.43-0.99) 0.043* 

 elsewhere  0.61 (0.28-1.33) 0.215 

     

Typhoid vaccination status 

(0=No, 1=Yes) 
Binary 1.67 (1.07-2.59) 0.023* 

Do you know people who have 

had typhoid?  (0=No, 1=Yes) 
Binary 1.56 (0.96-2.54) 0.073* 

*These non-environmental variables were included in the multivariable analysis. 
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Technical Appendix Table TA4.3. Characteristics of the topographical and environmental data 

variables used 

Variable 
Resolution 

(meters) 

Mean  

(Std Err.) 
Range 

Geospatial data    

 Elevation (m) 25 41.1(±89.3)  0-761 m 

 Slope (degree) 25 3.02(±3.81)  0-25.0  

 Mean Temperature (°C) 100 25.1(±27.5)  0-26.1  

 Annual Rainfall (mm) 100 2490(±660)  0-4040  

 Rainfall in wettest month (mm) 100 372(±76)  0-789  

 Rainfall during cyclone season (mm) 100 1032 (±195)  0-2055  

 Distance to major rivers (km) 25 1.21(±1.74)  0-9.8  

 Distance to major rivers and major 

creeks (km) 
25 0.360(±0.343)  0-2.250  

 Distance to major rivers, major and 

minor creeks (km) 
25 0.148(±0.177)  0-1.280  

 Distance to poorly drained soils - 

major & secondary floodplains (km) 
25 0.722(±1.710)  0-11.250  

 Distance to poorly drained soils -

major floodplains only (km) 
25 2.370(±3.670)  0-17.410  

 Distance from modelled flood-risk 

area (km) 
25 1.890(±4.260)  0-25.540  

  



173 
 

Technical Appendix Table TA4.4. The range of each category for the continuous variables that 

were broken into quintiles 

Variables Range 

Elevation Q1 0-7 m 

Q2 8-15 m 

Q3 16-19 m 

Q4 20-39 m 

Q5 ≥40 m 

Slope Q1 0.00 deg 

Q2 0.40-1.21 deg 

Q3 1.28-2.29 deg 

Q4 2.36-4.45 deg 

Q5 ≥4.46 deg 

Temperature Q1 0-25.19°C 

Q2 25.20-25.37°C 

Q3 25.38-25.64°C 

Q4 25.65-25.81°C 

Q5 ≥25.82°C 

Annual Rainfall Q1 0-1909 mm 

Q2 1910-2265 mm 

Q3 2266-2582 mm 

Q4 2583-3104 mm 

Q5 ≥3105 mm 

Rainfall in wettest month Q1 0-338 mm 

Q2 339-360 mm 

Q3 361-379 mm 

Q4 380-408 mm 

Q5 ≥409 mm 

Rainfall during cyclone season Q1 0-943 mm 

Q2 944-1001 mm 

Q3 1002-1053 mm 

Q4 1054-1125 mm 

Q5 ≥1126 mm 

Distance to major rivers Q1 0-0.150 km 

Q2 0.151- 0.459 km 

Q3 0.460-0.908 km 

Q4 0.909-1.726 km 

Q5 ≥1.727 km 

Distance to major rivers and major creeks 

 

 

 

 

 

Q1 0-0.090 km 

Q2 0.091-0.195 km 

Q3 0.196-0.320 km 

Q4 0.321-0.506 km 

Q5 ≥0.507 km 

Distance to major rivers, major and minor creeks Q1 0-0.025 km 
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Variables Range 

Q2 0.026-0.075 km 

Q3 0.076-0.111 km 

Q4 0.112-0.200 km 

Q5 ≥0.201 km 

Distance to poorly drained soils (major & secondary 

floodplains) 

Q1 - 

Q2 0-0.044 km 

Q3 0.045-0.152 km 

Q4 0.153-0.776 km 

 Q5 ≥0.777 km 

Distance to poorly drained soils (major floodplains only) Q1 - 

Q2 0-0.276 km 

Q3 0.277-1.521 km 

Q4 1.522-4.310 km 

Q5 ≥4.311 km 

Distance from modelled flood-risk area (km) 

  

Q1 - 

Q2 0-0.127 km 

Q3 0.128-0.576 km 

Q4 0.577-1.681 km 

Q5 ≥1.682 km 
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4.7.1 Technical appendix text 
 

Technical Appendix Text TA4.1. Building of a flood-risk model. 

The flood-risk model was created in four main steps as described below:  

1. A map depicting depression sites (or sink areas) was created using the DEM raster. A 

convex or depression surface was obtained with the formula; original DEM – mean DEM, 

where values < 0 were identified as convex zones. First, a mean DEM raster was created 

by averaging the elevation of 10x10 neighbouring (i.e. a 250x250m area). Then, the 

depression map was obtained by subtracting the mean DEM raster from the original DEM 

map, and selecting only the regions with negative pixel values.  

2. Areas selected as potential flooding areas where those that were convex and fall within 

an elevation range between 0-40 m, which is approximately the elevation range 

corresponding to the lower alluvial plains, which is generally affected during severe 

flooding (Townsend PA, Walsh SJ: Modeling floodplain inundation using an integrated GIS 

with radar and optical remote sensing. Geomorphology 1998, 21:295-312.).  

3. Then a raster map with poorly drained soils was created using the polygon features 

ranging from imperfectly to very poorly drained soils.  

4. A new raster flood-risk map was created using only the overlapping regions of the 

depressions map and the poorly drained soils map. These overlapping regions were 

marked as regions at high-risk of flooding. Finally, a surface map estimating Euclidean 

distances to these high-risk flooding regions was created. 
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Technical Appendix Text TA4.2. Implementation of the spatial autocorrelation analysis 

Global Moran’s I statistic (Moran PAP: Notes on continuous stochastic phenomena. 

Biometrika 1950, 37:17-23) was used to account for the global spatial autocorrelation of 

typhoid fever sero-prevalence. For the Moran’s I statistic, the sum of covariations between 

the sites for the distance d(i,j) was divided by the overall number of sites W(di,j) within the 

distance class d(i,j). Thus, the spatial autocorrelation coefficient for a distance class d(i,j) was 

the average value of spatial autocorrelation at that distance. 

𝐼 =  
n

S𝑝
 
∑ ∑ 𝑊𝑖𝑗(𝛾𝑖−𝛾̅)(𝛾𝑗−𝛾̅)𝑛

𝑗=1
𝑛
𝑖=1

∑ (𝛾𝑖−𝛾̅)2𝑛
𝑖=1

, where 

n = the sample size; 

𝑊𝑖𝑗 =  {
1 if sites i, j are neighbours

0 otherwise
= row-standardized spatial weights matrix of sites i and j; 

S𝑝 =  ∑ ∑ 𝑊𝑖.𝑗 
𝑛
𝑗=1 = sum of the number of sampling locations per distance class𝑛

𝑖=1 ;  

 𝛾𝑖 = the value at community 𝑖; and 𝛾̅ = global mean value 

The actual value for Moran’s I was then compared with the expected value under the 

assumption of complete randomisation.  

𝐸(𝐼) =  −
1

𝑛 − 1
 

Moran’s I values may range from -1 (disperse) to +1 (clustered). A Moran’s I value of 0 

suggests complete spatial randomness. To verify that the value of Moran’s I was significantly 

different from the expected value, a Monte Carlo randomisation test was applied with 9,999 

permutations to achieve highly significant values. This statistic is a global statistic in that it 

averages all cross outcomes over the entire domain.  

A local version, called Local Indicator of Spatial Association (LISA) or Anselin Local Moran’s I 

statistic (Anselin L: Local Indicators of Spatial Association—LISA. Geographical Analysis 

1995, 27:93-115) allows us to test for statistically significant local spatial clusters, including 

the type and location of these clusters. It is calculated as follows: 

𝐼𝑖(𝑑) =  
(𝛾𝑖−𝛾̅)

1

𝑛
∑ (𝛾𝑖−𝛾̅)𝑛

𝑖=1

 ∑ 𝑊𝑖𝑗(𝑑)(𝛾𝑖 − 𝛾̅)𝑛
𝑖=1 , where 

𝑊𝑖𝑗(𝑑) is the row-standardized weights matrix given a local neighbourhood search radius d. 

The conceptualization of spatial relationship (i.e. neighbourhood definition) was the same as 

the global statistics were applied. Unlike the global Moran’s I, which has the same expected 
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value for the entire study area, the expected value of local Moran’s I varies for each sampling 

location because it is calculated in relation to its particular set of neighbours.  

𝐸(𝐼𝑖) =  −
1

𝑛 − 1
 ∑ 𝑊𝑖,𝑗

𝑛

𝑗=1

 

 

The significance of the local Moran’s I was calculated using a randomization test on the Z–

score with 9,999 permutations to achieve highly significant values. Positive spatial 

autocorrelation occurs when, a community with a specific typhoid sero-prevalence is 

surrounded by neighbouring communities with similar outcome value (low-low, high-high), 

thus forming a spatial cluster.   
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Technical Appendix Text TA4.3. Implementation of BRT modelling approach on typhoid sero-

positivity data. 

First, a single BRT model was constructed with the individual typhoid sero-immune status 

binary data, cross-validation optimization and accounting for multi-way interactions. As per 

guidelines (Elith J, Leathwick JR and Hastie T. A working guide to boosted regression trees. J 

Anim Ecol 2008, 77:802-813) the learning rate (lr) and tree complexity (tc) were set according 

to the number of observations and testing different values on a subset of samples (75%), 

using deviance reduction as the measure of success. After several test, lr of 0.0025 and tc of 5 

were identified as optimal parameters, thereby enabling the model to account for up to 5 

potential interactions and slowing it down enough to get the model converged without over-

fitting the data. The base model was constructed including location of communities 

(longitude and latitude) and the eleven variables that were found to be associated with 

typhoid sero-positivity in the univariable logistic regression analysis (Technical Appendix 

Table TA4.2).  

A simplification of the base model was conducted by removing redundant or non-

informative variables without compromising the predictive performance of the model. This 

simplification process (implemented using the function gbm.simplify) was run within a 10-

fold cross-validation (CV) procedure, progressively simplifying the model fitted to each fold, 

and using the average CV error to decide how many variables could be removed from original 

model without affecting predictive performance. Then an ensemble BRT (i.e. 50 BRT models) 

was run with the simplified model using five parallel CPUs to attain 95% confidence intervals 

in both the relative contributions of the variables and the marginal effect plots. Relative 

contributions of variables to typhoid sero-positivity were estimated using the ensemble BRT 

model. Fitted functions of the ensemble BRT model was visualized by graphing the marginal 

effect curves or partial dependence plots, which demonstrate the effect of each independent 

variable on the typhoid sero-positive outcome while all other variables in the model are held 

constant at its average.   
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Chapter 5. Social mixing in Fiji: who-eats-with-whom contact 

patterns and the implications of age and ethnic heterogeneity for 

disease dynamics in the Pacific Islands. Watson CH, Coriakula J, 

Dung TTN, et al  
 

5.1 Bridging section 
 

Social contact data has a well-established role in improving mathematical model predictions 

on transmission of spread of “close-contact” infections, such as measles, tuberculosis and 

meningococcus, where such data was previously estimated [1–3].  The introductory chapter 

of this thesis reviewed the historical and contemporary literature on transmission of 

Salmonella Typhi infection  as a necessary prerequisite for the development of typhoid fever. 

Some of the challenge of typhoid epidemiology and control comes from its potential for 

multi-modal transmission. Faecal contamination of drinking water has contributed to high 

incidence in many settings.[4–6] Typhoid fever is recognised as a disease of “contagion” [6], 

“contact”[7], and “prosodemic” (person-to-person) transmission[8], which might be further 

separated into direct transmission, without intermediaries, and indirect transmission, such as 

through food prepared by a typhoid carrier [9]. A World Health Organization expert elicitation 

exercise found a diverse range of estimates of the contemporary contribution of water, 

foodborne and “person-to-person” disease across WHO regions [10].  

Social mixing data does not directly disentangle of the important modes of transmission in 

any given setting. It cannot say if any association between social contact rates and incidence 

is attributable to direct transmission, or reflects, for example, common exposure of a 

particular social group to contaminated food or surface water. Melegaro and colleagues have 

noted the utility of social contact data in describing the strength of social relations, finding 

more intimate connections to be better predictors than more causal forms of social contact in 

influenza. As such, this data on social structure is potentially an informative proxy for 

transmission risks. The role of social mixing data in typhoid may be in examining whether 

socially structured contact patterns better predict infection than less structured transmission 

matrices that may reflect ubiquitous exposures.  

This chapter describes the social mixing data used in the chapter 6, which examines models 

of transmission in Fiji. The social mixing survey was embedded in the seroepidemiological 

survey, obtaining data from the same participants. The preparatory work and field operations 

are described in the bridging section for the serosurvey paper (3.1). I conceived the idea of 
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using mealtime mixing as an appropriate contact matrix for enteric infection following the 

preliminary visit to Fiji in November-December 2012. Whilst it was potentially critically 

important to determine the ethnicity of participants’ contacts for epidemiological 

understanding, I recognised this to be a potentially highly sensitive question and sought input 

from local partners. With the field team, I developed a suitable approach to this line of 

enquiry, with this typically asked as “all [self-reported ethnicity of participant]?” after 

completing the participant’s report for each meal’s co-diners. This gave the participant a 

simple yes/no answer with a natural route to correct the interviewer with which contacts 

were of a different ethnicity if this was the case. This was piloted successfully and 

implemented uncontroversially.  

For analyse of the data, I was fortunate to have advice and some relevant pieces of R code 

from Stefan Flasche and Olivier Le Polain, who had recently completed social mixing analysis 

for pneumococcal disease (manuscript in preparation). I adapted this code to provide mixing 

pattern estimates for the survey mixing groups and population of Fiji, and undertook logistic 

regression analysis with the serological data to examine association with contact rates to 

examine whether serology supported the use of social mixing patterns for typhoid modelling.  
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Abstract 

Empirical data on contact patterns can inform dynamic models of infectious disease 

transmission. Such information has not been widely reported from Pacific islands, nor 

strongly multi-ethnic settings, and few attempts have been made to quantify contact 

patterns relevant for the spread of gastrointestinal infections. As part of enteric fever 

investigations, we conducted a cross-sectional survey of the general public in Fiji, finding that 

within the 9,650 mealtime contacts reported by 1,814 participants, there was strong like-

with-like mixing by age and ethnicity, with higher contact rates amongst iTaukei than non-

iTaukei Fijians. Extra-domiciliary lunchtime contacts follow these mixing patterns, indicating 

the overall data do not simply reflect household structures. Inter-ethnic mixing was most 

common amongst school-age children. Serological responses indicative of recent Salmonella 

Typhi infection were found to be associated, after adjusting for age, with increased contact 

rates between meal-sharing iTaukei, with no association observed for other contact groups. 

Animal ownership and travel within the geographical division were common. These are novel 

data that identify ethnicity as an important social mixing variable, and use retrospective 

mealtime contacts as a socially acceptable metric of relevance to enteric, contact and 

respiratory diseases that can be collected in a single visit to participants. Application of these 

data to other island settings will enable communicable disease models to incorporate locally 

relevant mixing patterns in parameterisation. 
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5.2 Introduction 
Infectious disease models synthesise epidemiological data and germ theory to understand 

and predict disease transmission. Non-homogeneous contact patterns are widely used in 

estimating the spread of an infection within a population (Hethcote and Yorke, 1984; Bansal, 

Grenfell and Meyers, 2007). For public health policy making, the prior practise of inferring 

social contact patterns as part of the model fitting has increasingly been replaced with data 

collection on social contact patterns (Edmunds, O’Callaghan and Nokes, 1997; Hens et al., 

2012). This can strengthen model validity when assessing the potential impact of 

interventions such as school closures or vaccination (Baguelin et al., 2013). 

Whilst social mixing has been studied in Europe (Mossong et al., 2008); Africa, including 

South Africa (Johnstone-Robertson et al., 2011; Dodd et al., 2016), Kenya (Kiti et al., 2014), 

Zambia (Dodd et al., 2016) and Zimbabwe (Melegaro et al., 2017); Asia, including Vietnam 

(Horby et al., 2011), Taiwan (Fu, Wang and Chuang, 2012), southern China (Read et al., 2014) 

and Japan (Ibuka et al., 2015); and Australia (Rolls et al., 2015), there is a paucity of social 

contact data for Pacific island states. This lack of data is despite the enormous historical 

mortality impact of diseases such as measles and bacillary dysentery in Pacific populations 

(Schmitt and Nordyke, 2001; Shanks, 2016), and contemporary burdens such as streptococcal 

diseases (Steer et al., 2008; Temple et al., 2012) and scabies (Romani et al., 2015). Such data 

could also inform ongoing programmes such as trachoma elimination (Marks et al., 2015), 

emerging infection preparedness (Moss et al., 2016) and surveillance-response system 

strengthening (Craig, Kool and Nilles, 2013), and insights from island outbreaks of pathogens 

such as Zika (Duffy et al., 2009; Cao-Lormeau et al., 2016; Kucharski et al., 2016). A sustained 

upturn in notified enteric fever cases caused by Salmonella Typhi in Fiji (Thompson et al., 

2014), prompted this investigation of social-mixing patterns. 

Social mixing epidemiological research has predominantly considered conversational contact 

relevant to respiratory diseases such as influenza, or sexual contacts for infections such as 

HIV. Faecal-orally transmitted diseases such as typhoid are not transmitted by droplet or 

aerosol routes, (Cvjetanovic, Grab and Uemura, 1978; Feachem, Mara and Bradley, 1983) 

making conversation less relevant to transmission than mechanisms that involve food, 

fomites, direct contact or waterborne transmission (Bakach et al., 2015). Sexual transmission 

of typhoid is rare, and associated with penile-anal or penile-oral rather than vaginal sex 

(Reller et al., 2003). Methods for social contact patterns estimation of relevance to enteric 

pathogens are required. Quantifying food-sharing contacts may be one approach (Bates et 

al., 2007; Phimpraphai et al., 2017). 
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Furthermore, whilst rarely a reported feature of social contact surveys, ethnicity – which 

encompasses perception of common ancestry or homeland, kinship, language, culture, 

physical characteristics, religion and history (Cornell and Hartmann, 2007)– may also be 

critical to understanding disease dynamics in specific epidemiological circumstances, though 

requires sensitive consideration in biomedical research (Osborne and Feit, 1992; McKenzie 

and Crowcroft, 1996). 

The contribution of different modes of transmission to typhoid fever incidence has been 

reviewed in the historical literature. Rosenau uses “contact infection” as a “convenient term” 

spanning direct and indirect spread from close association in time and place between the 

infectious and the susceptible, whether through physical contact, contaminated linen, 

medical equipment, shared food, drink, cutlery and crockery or other household 

transmission.(Rosenau MJ et al., 1913)  

Budd demonstrated the potential for typhoid person-to-person transmission along social 

networks through his detailed description of an outbreak in rural England, reported alongside 

other outbreaks involving water contaminated by faeces from typhoid fever cases (Budd, 

1873). Sedgwick and Winslow (1902) showed that once piped water had been cleaned in New 

England towns, the residual or prosodemic (person-to-person) transmission of typhoid had a 

mortality rate of around 25 per 100,000 person years; adjusting for historical death-to-

clinical-disease ratios puts these settings into the very high incidence range by today’s 

standards, suggesting waterborne disease is not the only mechanism by which sustained high 

incidence can be attained. 

The contribution of typhoid transmission by direct or indirect person-to-person in the Pacific 

islands is highly uncertain, with a World Health Organization expert elicitation exercise 

deriving a median estimate of 13% and a 95% uncertainty interval of 0% to 51% with similar 

variability in estimates of transmission from food and water. (Hald et al., 2016). Social mixing 

surveys may not directly address this but may inform another form of conceptualisation in 

typhoid epidemiology: short- and long cycle transmission. Though the exact definition is not 

agreed,(González-Guzmán, 1989; Pitzer et al., 2013; The SAGE Working Group on Typhoid 

Vaccines & the WHO Secretariat, 2017) “short cycle” transmission is typically through 

contamination of the immediate environs, which is more likely to be socially-structured, and 

“long-cycle” through the broader environment, which is typically not related to social contact 

patterns. 

Additional to day-to-day contacts, diseases with person-to-person communicability may be 

spread by population movement within a country, if infection does not entirely impede 
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mobility. A further public health threat is the spillover of disease from livestock or wildlife to 

humans, such as leptospirosis (Lau et al., 2012). Zoonotic diseases may give the impression of 

sustained human-to-human transmission when in fact there are multiple spillover events 

from an epizootic (Bausch et al., 2006). Knowledge of human-animal contact patterns may 

inform zoonotic transmission models. 

This social-mixing survey, conducted as part of a seroepidemiological survey, sought to 

determine 1) the distribution of social contacts by age and ethnicity 2) travel and internal 

migration patterns and 3) animal ownership and contact as relevant to the spread of 

communicable diseases in Fiji and other Pacific island settings. 

 

5.3 Methods 

5.3.1 Ethics approval 
The study was approved by the Fiji National Research Ethics Review Committee (2013-03) 

and the London School of Hygiene & Tropical Medicine observational study research ethics 

committee (6344). 

 

5.3.2 Setting 
Fiji is an upper-middle income state of 837,000 people in the South Pacific Ocean (Fiji Bureau 

of Statistics, 2012). Administratively, Viti Levu, the largest island, is divided into Central 

Division (population 342,000 including the capital, Suva) and the Western Division 

(population 320,000). The northern Division (population 136,000) comprises the next largest 

two islands, Vanua Levu and Taveuni. Eastern Division (population 39,000) comprises of many 

smaller island groups.  

An international expert meeting was convened in 2012 by the Fijian Ministry of Health and 

Australian Aid to investigate an upturn in typhoid fever cases from the mid-2000s. Over 90% 

of typhoid cases are reported in indigenous iTaukei Fijians who comprise 57% of the 

population,(Thompson et al., 2014) giving an odds ratio >6 relative to other ethnic groups, 

which include Fijians of Indian descent (Indo-Fijians, 38%) and Fijians of Chinese or European 

descent, thus suggesting ethnicity is important in understanding transmission. Communal 

eating, beyond the immediate family, was commonly observed in iTaukei villages and 

amongst paid workers and students of both major ethnicities in Fiji. Co-dining and food-

sharing was thus identified as a means of recording epidemiologically-relevant mixing 

patterns for enteric infections.  
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5.3.3 Survey methods 
A multistage, clustered, cross-sectional survey was done in the Central, Northern and 

Western Divisions of Fiji between September and December 2013 as a joint serological, risk-

factor and social mixing investigation. The Eastern Division, was excluded for logistical 

reasons, and we did not attempt to assess seasonal variation in contact patterns. 

The community clusters were randomly-selected from Ministry of Health and Medical 

Services administrative lists for nursing zones, a contiguous health geography, with the zones 

selected randomly with probability proportional to population size. Within each cluster, 25 

households were randomly selected. If registers were held by community health workers or 

nurses, these were preferentially used. Otherwise, in street-based settings, rapid 

enumeration of households was done with random start points and set sampling intervals. In 

rural villages/settlements extended program on immunization (EPI)-derived methods were 

used, enumerating households in random (pen-spin) directions from community centroids. 

One participant was randomly selected from each household. Fieldwork was done from 

Monday to Saturday, thereby recording social mixing for Sunday to Friday. Days for visits 

were determined by operational feasibility, not by randomisation and results are not 

reported by day. If a randomly selected household member was temporarily absent from the 

household at the time of the visit due to e.g. work or school, the survey team revisited later 

in the day after their expected return. The full survey methods have been described 

elsewhere (Lau et al., 2016; Watson et al., 2017) Sample size was calculated based on 

expected typhoid seroprevalence in 10 year age bands, the linked serosurvey’s primary 

endpoint.  Whilst a sample size was not calculated for the social mixing survey aspect and 

would be inappropriate to do post-hoc, the study size is consistent with or larger than other 

social mixing surveys (Mossong et al., 2008; Horby et al., 2011; Fu, Wang and Chuang, 2012; 

Read et al., 2014). Where others report individual year contact rates we used broader age 

bands in the survey’s implementation and analysis to provide appropriate precision in ethnic 

and age strata.  

The purpose of the survey was explained to community leaders if applicable, to the head of 

the household and the selected participant, and their permissions sought for inclusion in the 

survey. Written informed consent was sought and obtained from adult participants and 

parents of child (under 18 years) participants. Children aged 12-17 years provided written 

informed assent.  
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Interviews were done face-to-face by a trained, multilingual Fijian fieldworker in iTaukei, 

Hindi or English at the preference of the participant, at the participant’s home or in a 

community centre. Venous blood was collected by a trained phlebotomist or physician. 

Participants provided demographic details, including their age, sex and self-reported 

ethnicity. They were first asked to recall where they had lunch and dinner the previous day, 

to enable recording of both close extra-household and household contact rates. We then 

asked how many people of each age group (defined below) they ate each meal with and 

asked how many of the lunch and dinner contacts were the same individuals (to enable 

calculation of unique daily meal contacts), and asked to give their assessment of the ethnicity 

of co-diners. Ages of contacts were categorised into 0 to 4 years (preschool children), 5 to 14 

years (school-age children), 15 to 34 years (young adults), 35 to 54 (older working-age adults) 

and 55+ (retirement-age adults). If more than fifteen contacts were reported in an age group, 

then ranges 16 to 24, 25 to 49 and 50 to 99 were recorded and midpoints of these bands 

used in analysis. Parents answered on behalf of young children. Infants under one were 

omitted from participation our study, as ineligible for the serological aspect of the field 

survey, though were included in the under 5s as contacts in participant responses. Participant 

ages were categorised as above, with the youngest band 1 to 4 years accordingly. In domestic 

eating settings, including villages, participants were asked to report the details of people with 

whom they actually shared food i.e. cooking pots or buffet meals. For those eating in settings 

where cooking pot sharing would be impossible to estimate and not an appropriate measure 

of social contact (such as at a restaurant or canteen), they were asked to report with whom 

they shared a table or shared a table-like setting. See thesis Appendix A1 for the mealtime 

social contact questionnaire tool. 

 

Participants were further asked about travel outside of their neighbourhood (including 

villages or settlements) in the past week, ever having lived in a different neighbourhood, and 

about animal ownership or physical (touch) contact with select wild animals. 

We also sought information on physical contacts of participants. During survey piloting, 

candidate questions about skin-to-skin human physical contact were often met with 

embarrassment, and often received reports of zero contact with anyone other than between 

parents and infant offspring, despite observance of frequent social contact such as 

handshaking or arm-touching in villages and settlements. This line of enquiry was dropped to 

reduce participant survey fatigue and risk of social response biases in other part of the 

survey. Similarly, breakfast contacts were not sought due to expected overlap with dinner 
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contacts. Fomite contacts are hard to quantify (Read et al., 2012)  and were not sought. 

Water-related exposures are described elsewhere  (Watson et al., 2017). 

 

5.3.4 Data analysis 

Data were entered in EpiData (Lauritsen and Bruus, 2005) and analysed in R version 3.3.2 (R 

Core Team, 2017). Bootstrap 95% confidence intervals (CI) were estimated for mean contact 

rates. Total daily contacts between age and ethnicity subgroups were estimated based on 

census populations and participant-reported rates and used to construct a reciprocal-contact 

adjusted, symmetrical mixing matrix (Wallinga, Teunis and Kretzschmar, 2006). Binomial 95% 

confidence intervals were estimated for travel and animal ownership as prior analysis had 

found minimal influence of clustering on variances for age-structured data on similar 

exposures (Watson et al., 2017).  

To assess possible association between mealtime contacts and biological markers of enteric 

infection transmission, for participants resident in unvaccinated areas, we estimated by 

logistic regression the age-adjusted odds ratios for iTaukei and non-iTaukei contacts and S. 

Typhi seropositivity using anti-Vi IgG titres from a linked serosurvey at thresholds 64 ELISA 

units (EU) and 100 EU alongside examining potential confounders. Previous research in Fiji 

(Watson et al., 2017) established 64 EU as the threshold towards which case titres decay; 

≥100 EU is used to indicate a recent (months to a few years) infection such as may be 

influenced by the reported social mixing patterns. 
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5.4 Results 
 

5.4.1 Study population 
We received 1,814 analysable responses from 1,816 interviewees (two withdrew before 

contributing sufficient data, 1,842 were documented as having been approached, response 

rate = 98.6%). Of these, 1,409 (78%) were iTaukei ethnicity and 53.3% were female (Table 

5.1).  The median age was 30 years (IQR 17 to 48 years), with a median age of 29 years (IQR 

26 to 47 years) in iTaukei and 35 years (IQR 21 to 52 years) in non-iTaukei. In comparison to 

the 2007 census, the non-iTaukei Fijians were under-represented amongst survey 

participants (Supplementary Figure S5.1). Over half of participants resided in rural areas, with 

rural living more common for the iTaukei population (60%), typically living in formal village 

settings (47%), than non-iTaukei (42%) who resided almost exclusively in settlements (59%) 

or residential housing (37%).   

Table 5.1. Participant demographics  

 All participants iTaukei Non-iTaukei 

1,814 1,409 (78) 405 (22) 

Sex (%) Female 966 (53.3) 744 (53.3) 222 (54.8) 

Age (%) 1 to 4    87  (4.8)   74   (5.3)   13  (3.2) 

5-14 299 (16.5) 246 (17.5)    53  (13.1) 

15-34 654 (36.1) 523 (37.1) 131 (32.3) 

35-54 473 (26.1) 347 (24.6) 126 (31.1) 

55+ 301 (16.6) 219 (15.5)   82 (20.2) 

Setting (%) Urban        505 (27.8) 386 (27.4) 119 (29.4) 

Peri-urban       289 (15.9) 175 (12.4) 114 (28.1) 

Rural       1,020 (56.2) 848 (60.2) 172 (42.5) 
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5.4.2 Contact patterns 
The 1,814 participants reported a total of 9,650 mealtime contacts. The distribution of daily 

mealtime contacts reported by participants was right-skewed (Figure 5.1A). Whilst both the 

iTaukei and non-iTaukei modal value was two (Figure 5.1B and C), the iTaukei participant’s 

contacts distribution had higher median (4 vs. 3) than the non-iTaukei participants and a 

higher interquartile range (2-7 vs. 2-5, respectively). After stratification by age and ethnicity 

(Figure 5.1D), heavy-tailed distributions were apparent for the iTaukei in comparison with 

equivalent-age non-iTaukei. The iTaukei aged 5 to 14 years and 15 to 34 years were the most 

likely to report between 5 and 10 mealtime contacts. Few respondents of any age or ethnicity 

reported more than ten such contacts.  

 

Figure 5.1. Distribution of daily contacts   

Reported by A) all participants, B) iTaukei participants, C) non-iTaukei participants and D) 

participants stratified by age and ethnicity.  Fig 1 A to C panels truncated at 50 contacts and D 

panels at 25 contacts for clarity as there were few reports of contact numbers in higher 

bands; densities are for the full range of reported value. 

 

 

Residents of Fiji exhibited strong assortative mixing by age within the two ethnicity categories 

(Table 5.2). The highest mean reported contact rate was for iTaukei participants aged 
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between 5 to 14 years who shared a meal with people of the same age and ethnicity (3.2 

contacts per day; 95% CI 2.67 to 3.98). Few contacts were reported with people of different 

ethnic groups to the respondents; all iTaukei participant age groups had confidence intervals 

that included zero for contacts of different ethnicity. The highest mean reported heteroethnic 

contact rates were reported by Non-iTaukei participants aged between 5 and 14 years with 

their iTaukei counterparts of the same age at 0.61 contacts per day (95% CI 0.25 to 1.14). 

 

Table 5.2. Unweighted mean number of daily contacts by age and ethnicity and 95% bootstrap 

confidence interval 
 

 

 

Contacts 

iTaukei Non-iTaukei 

Age 0 to 4 5 to 14 15 to 34 35 to 54 55+ 0 to 4 5 to 14 15 to 34 35 to 54 55+ 

P
ar

ti
ci

p
an

ts
 

N
o

n
-i

Ta
u

ke
i 

1 to 

4 

0 0.07  

(0 to 

0.23) 

0 0.29  

(0 to 

0.73) 

0.2  

(0 to 

0.62) 

0.13  

(0 to 

0.5) 

0.29  

(0 to 

0.67) 

0.77  

(0.26 to 

1.3) 

0.54  

(0.2 to 1) 

0.45 

(0.09 to 

0.93) 

5 to 

14 

0.09 

(0.02 to 

0.2) 

0.61 

(0.25 to 

1.14) 

0.18 

(0.06 to 

0.34) 

0.31 

(0.06 to 

0.8) 

0.02  

(0 to 

0.07) 

0.17 

(0.07 to 

0.27) 

1.56 

(1.09 to 

2.15) 

0.75  

(0.42 to 

1.31) 

0.93  

(0.68 to 

1.19) 

0.33 

(0.18 to 

0.53) 

15 

to 

34 

0.16 

(0.06 to 

0.31) 

0.13 

(0.04 to 

0.25) 

0.28 

(0.16 to 

0.43) 

0.1  

(0.02 to 

0.23) 

0.14  

(0.05 to 

0.28) 

0.36 

(0.25 to 

0.51) 

0.48 

(0.32 to 

0.67) 

1.18  

(0.91 to 

1.5) 

1.02  

(0.8 to 

1.27) 

0.41 

(0.24 to 

0.63) 

35 

to 

54 

0.04  

(0 to 

0.09) 

0.08 

(0.02 to 

0.16) 

0.17 

(0.07 to 

0.3) 

0.11 

(0.05 to 

0.18) 

0.02  

(0 to 

0.06) 

0.35 

(0.18 to 

0.57) 

0.56  

(0.4 to 

0.77) 

1.07  

(0.81 to 

1.36) 

1.27  

(0.9 to 

1.76) 

0.57  

(0.3 to 

1.03) 

55+ 

0.01  

(0 to 

0.04) 

0.03  

(0 to 

0.13) 

0.08 

(0.01 to 

0.17) 

0.07 

(0.01 to 

0.16) 

0.07  

(0.01 to 

0.15) 

0.1  

(0.03 to 

0.18) 

0.19 

(0.07 to 

0.35) 

0.82  

(0.55 to 

1.14) 

0.57  

(0.39 to 

0.76) 

0.59 

(0.43 to 

0.79) 

iT
au

ke
i 

1 to 

4 

1.15 

(0.84 to 

1.49) 

1.05 

(0.63 to 

1.62) 

1.66 

(1.32 to 

2.09) 

0.85 

(0.61 to 

1.1) 

0.51  

(0.33 to 

0.72) 

0.01  

(0 to 

0.05) 

0 0 0.03  

(0 to 0.1) 

0 

5 to 

14 

0.63 

(0.47 to 

0.81) 

3.2  

(2.67 to 

3.98) 

1.25 

(1.09 to 

1.4) 

1.28 

(1.16 to 

1.4) 

0.33  

(0.24 to 

0.45) 

0.01  

(0 to 

0.02) 

0.03  

(0 to 

0.07) 

0  

(0 to 

0.02) 

0.01  

(0 to 0.03) 

0  

(0 to 

0.01) 

15 

to 

34 

0.75 

(0.64 to 

0.87) 

0.99 

(0.86 to 

1.13) 

2.31 

(2.05 to 

2.58) 

1.34 

(1.14 to 

1.56) 

0.67  

(0.54 to 

0.83) 

0  

(0 to 

0.01) 

0.01  

(0 to 

0.01) 

0.01  

(0 to 

0.02) 

0.01  

(0 to 0.03) 

0 

35 

to 

54 

0.47 

(0.37 to 

0.58) 

1.19 

(1.02 to 

1.36) 

1.42 

(1.18 to 

1.69) 

1.54 

(1.28 to 

1.84) 

0.59  

(0.45 to 

0.75) 

0 0  

(0 to 

0.01) 

0.02  

(0 to 

0.04) 

0.01  

(0 to 0.04) 

0.01  

(0 to 

0.02) 

55+ 

0.48 

(0.36 to 

0.61) 

0.84 

(0.67 to 

1.04) 

1.08 

(0.89 to 

1.32) 

0.92 

(0.71 to 

1.19) 

0.91  

(0.74 to 

1.1) 

0 0 0.01  

(0 to 

0.02) 

0  

(0 to 0.02) 

0.01  

(0 to 

0.02) 
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iTaukei household sizes had a median of 5 residents and mean of 4.9 residents compared 

with a median of 4 residents and mean of 4.0 residents for non-iTaukei households. Data 

from lunchtime contacts indicated that contact rates did not only reflect household structure. 

Whilst eating dinner at home was almost universal (95%), 22% of iTaukei respondents had 

lunch contacts away from home, as did 21% of non-iTaukei. Those reporting lunch away from 

home also reported more contacts than those lunching at home (mean, median and IQR 8.0, 

6, 3 to 9 and 4.5, 4, 2 to 6 contacts, respectively, p<0.0001). Participants eating lunch away 

from home (Table 5.3) had contact patterns indicating similar age and ethnically assortative 

mixing as seen in the overall contact pattern. 

 

Table 5.3. Unweighted mean number of non-household lunch contact by age and ethnicity 

(bootstrap 95% confidence intervals) 
 

 

 

Contacts 

iTaukei Non-iTaukei 

Age 0 to 4 5 to 14 15 to 34 35 to 54 55+ 0 to 4 5 to 14 15 to 34 35 to 54 55+ 

P
ar

ti
ci

p
an

ts
 

N
o

n
-i

Ta
u

ke
i 

1 to 

4 NA NA NA NA NA NA NA NA NA NA 

5 to 

14 

0.08  

(0 to 

0.18) 

0.7  

(0.19 to 

1.34) 

0.19 

(0.03 to 

0.36) 

0.43 

(0.05 to 

1.14) 0 

0.14 

(0.03 to 

0.26) 

1.78 

(1.21 to 

2.45) 

0.78  

(0.3 to 

1.48) 

0.84  

(0.54 to 

1.12) 

0.38 

(0.17 to 

0.64) 

15 

to 

34 

0.19  

(0 to 

0.67) 

0.22  

(0 to 

0.69) 

0.25  

(0 to 

0.67) 

0.22  

(0 to 

0.78) 

0.19  

(0 to 0.67) 

0.56 

(0.24 to 

1) 

0.5  

(0.09 to 

1.06) 

2.38  

(1.68 to 

3.21) 

1.69  

(1.08 to 

2.46) 

0.72 

(0.22 to 

1.5) 

35 

to 

54 0 0 0 

0.05  

(0 to 

0.15) 0 

1  

(0.06 to 

2.14) 

1  

(0.33 to 

1.83) 

1.95  

(0.92 to 

3.18) 

3.3  

(1.28 to 6) 

2.1  

(0.35 to 

4.4) 

55+ 0 0 0 0 0 0 

0.5  

(0 to 2) 

0.75  

(0 to 3) 

1.25  

(0 to 4) 

0.25  

(0 to 1) 

iT
au

ke
i 

1 to 

4 

2  

(0.33 to 

4) 

2.67  

(0 to 

8.59) 

0.83  

(0 to 

1.67) 

1.33 

(0.33 to 

2.33) 

0.33  

(0 to 0.8) 0 0 0 0 0 

5 to 

14 

0.65 

(0.42 to 

0.93) 

4.86 

(3.72 to 

6.51) 

1.3 (1.07 

to 1.56) 

1.27 

(1.08 to 

1.45) 

0.38  

(0.23 to 

0.57) 

0.01  

(0 to 

0.03) 

0.04  

(0 to 

0.12) 

0  

(0 to 0) 

0.01  

(0 to 0.03) 

0.01  

(0 to 

0.03) 

15 

to 

34 

0.86 

(0.54 to 

1.24) 

1.28 

(0.96 to 

1.68) 

3.42 

(2.79 to 

4.11) 

2.15 

(1.56 to 

2.95) 

0.86  

(0.45 to 

1.48) 0 0 

0.03  

(0 to 0.07) 

0.03  

(0 to 0.06) 0 

35 

to 

54 

0.54 

(0.17 to 

1) 

1.37 

(0.82 to 

2.08) 

2.44 

(1.48 to 

3.59) 

2.76 

(1.77 to 

3.94) 

0.93  

(0.41 to 

1.56) 0 0 

0.05  

(0 to 0.17) 

0.05  

(0 to 0.17) 0 

55+ 

1  

(0.48 to 

1.62) 

1.39 

(0.76 to 

2.11) 

1.93 

(1.17 to 

2.9) 

1.79 

(0.91 to 

2.87) 

1.32  

(0.75 to 2) 0 0 0 0 0 

 

After adjusting for reciprocity of contacts (census population and survey participant pyramids 

are shown in Supplementary Figure S5.1), total daily contact data indicated sparse mixing 

between iTaukei and non-iTaukei ethnicity categories in all but school-age children (Figure 
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5.2). Age-assortative mixing was apparent within the two ethnicity categories, along with off-

diagonal mixing, indicative of parent-child contact.  In both ethnic categories, school-age 

children had the highest mean contact rates, followed by working-age adults. In contrast to 

the iTaukei pre-school children, the non-iTaukei children aged 1 to 4 years exhibited 

disassortative mixing, with more contacts reported within the working age adults than 

children of the same age. 

 

Figure 5.2. Age and ethnicity structured mixing matrices of reciprocity-weighted 

unique mealtime contacts per day.  

 

We next examined the influence of unit increases in number of contacts on seropositivity for 

anti-Vi IgG S. Typhi amongst 1,559 participants (1,530 with complete data) from unvaccinated 

areas of Fiji. Age-adjusted seropositivity showed no correlation at threshold 64 EU used as a 

marker of any previous or current infection (odds ratio (OR) 1.01; 95% CI 0.99 to 1.02; p=0.3) 

but some evidence of association at 100 EU, posited as indicative of recent infection (OR 

1.02; 95% CI 1.00 to 1.03; p=0.002) (supplementary text S5.1). 

We performed further age-adjusted analyses to identify potential confounding variables and 

ascertain drivers for any such observed effect (supplementary text S5.1). Examination by 
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ethnicity of contacts across both participant ethnic categories combined identified elevated 

odds ratios for association between unit increase in number of iTaukei contacts and the 100 

EU recent infection serological threshold. No association was found for number of non-

iTaukei contacts and seropositivity. The iTaukei contact rate association was not influenced 

by adjustment for participant ethnicity, the number of non-iTaukei contacts, or eating lunch 

outside the home when examined by multivariable regression (supplementary text 5.1). 

Analysis stratified by participant ethnicity found an effect of increasing contact rates in 

increasing seroprevalence amongst iTaukei participants but not non-iTaukei participants.  

A parsimonious epidemiological model was constructed for serological association of recent 

infection with age-adjusted iTaukei contact rates in the unvaccinated iTaukei group, with 

non-iTaukei excluded from the model due to the absence of observed association between 

any contact rates and seropositivity, finding evidence of association at the 100 EU threshold 

(“recent infection”) for a per contact increase in odds of seropositivity, after adjusting for age   

A final model for recent was developed adjusting for epidemiological risk factors found 

previously to be associated with seropositivity at 64 EU: after adjusting for these, iTaukei 

contact remained associated with seropositivity, with adjusted odds of 1.027 (1.008 to 1.045) 

(table 5.4). 

 

Table 5.4. Logistic regression model of association between contact rates and seropositivity 

For anti-Vi IgG seropositivity (100 EU), iTaukei daily contact number and participant age in 

1,189 iTaukei participants from areas of Fiji never vaccinated against typhoid, adjusted for co-

variables found significant in the seroepidemiology survey (chapter 3). 

    

    

 

Variable Adjusted odds ratio (95%CI) p-value 

iTaukei contact (per) 1.027 (1.008 to 1.045) 0.003 

Age (per year) 1.025 (1.018 to 1.032) <0.001 

Sewage – septic tank Reference   

Sewage – piped sewer 1.05 (0.69 to 1.60) 0.8 

Sewage – pit latrine 1.10 (0.67 to 1.73) 0.7 
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Sewage – elsewhere 0.97 (0.42 to 2.03) 0.9 

Community - Residential Reference   

Community - Village 1.07 (0.72 to 1.63) 0.7 

Community - Settlement 1.35 (0.91 to 2.01) 0.14 

 

 

5.4.3 Travel and internal migration patterns 
Local travel was common amongst the survey participants, with over half reporting travel 

outside of their residential community in the past week for all but the youngest and oldest 

age groups (figure 5.3). Similar proportions of iTaukei and non-iTaukei reported travel in the 

past week. Recent travel was similar for urban, rural, and peri-urban residents (data not 

shown). Most travel was within the geographical administrative division (i.e. Central, Eastern, 

Northern, or Western Division of Fiji); of 974 participants reporting travel, 43 (4.2%, 95%CI 

3.2% to 5.6%) reported travel to another Division in the past week. 

 

Figure 5.3. Travel outside of the community in the past week  

 

Overall 37.2% (670/1803, 95% CI 35.0 to 39.4%) reported having moved residential 

community in their lifetimes. Participants aged 40 to 44 were most likely to have moved from 

a different place (Supplement Fig S5.2A) to their current community of residence.  Those 

aged 20 to 24 years were most likely to report having moved in the past 5 years, regardless of 

ethnicity category (Supplement Figs S5.2B and S5.2C). Non-iTaukei children were more likely 
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to have moved than iTaukei children, while adult iTaukei were more likely to have moved 

recently than non-iTaukei. 

 

5.4.4 Animal ownership and contact 
Animal ownership was common in both ethnicity categories and across urban/peri-urban and 

rural households (Supplementary Tables S5.1A and S5.1B). Pigs were the most commonly 

owned animal (28% of households (95% CI22 to 26%) despite being infrequently kept by non-

iTaukei Fijians (5.7%, 95% CI 3.8 to 8.4%).  Chickens were also widely kept, particularly by 

non-iTaukei (36%, 95% CI 31.5 to 40.8%). In rural communities, 20.8% (95% CI 18.4 to 23.4%) 

owned horses, with comparable ownership in both ethnic groups. This association contrasted 

with goat ownership, which was predominantly amongst rural non-iTaukei (30.8, 95%CI 24.4 

to 38.1%, compared with mean prevalences <10% amongst other groups). Few Fijians 

reported keeping sheep (1.2% 95% CI 0.8 to 1.8%).  Physical contact with wild rats or 

mongooses was reported infrequently (Supplement Table S5.1C) despite sightings of these by 

90% and 75% of participants, respectively.  
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5.5 Discussion 
Empirical research on contact patterns for infectious disease modelling has to date primarily 

considered epidemiological contacts for transmission of sexual or respiratory diseases. Social 

mixing patterns of direct relevance to enteric infections, or patterns of animal contact 

relevant to zoonotic spillover are less studied.  

Using unique daily mealtime contacts, our social contact survey of Fiji found that within 

iTaukei and non-iTaukei ethnic groups there is age-assortative mixing, even within broad age 

categories, similar to contact patterns studied in the transmission of respiratory diseases 

seen in Asian or European settings (Mossong et al., 2008; Horby et al., 2011; Fu, Wang and 

Chuang, 2012; Read et al., 2014). We found minimal social mixing between people of the two 

ethnic categories, with inter-ethnic mixing most common amongst school-age children. 

iTaukei participants had higher mean daily contact rates than non-iTaukei participants. 

Examination of extra-domestic lunchtime contacts indicates that these patterns are 

replicated outside the home, showing that data do not simply reflect household structure. 

High levels of mobility in the population for all ages from 5 years upwards (overall >50% 

travelling in the previous week) suggest that communities on these larger Fijian islands are 

not isolated and transmission between urban and rural populations is readily feasible. 

These data suggest it is plausible that effectively independent epidemics could occur in 

iTaukei and non-iTaukei residents of Fiji, for pathogens whose transmission can be 

approximated by mealtime contacts, given the low rates of substantive hetero-ethnic 

contact. The higher contact rates amongst iTaukei Fijians would more readily sustain short-

cycle transmission than the rates in non-iTaukei Fijians. Analysis of age-adjusted contact rates 

and anti-Vi IgG to Salmonella Typhi found association with inter-iTaukei contacts and titres 

above a threshold that may be indicative of recent past infection but no association for 

contact rates involving non-iTaukei, further supporting use of these ethnically-structured 

social contact data in infectious disease modelling. This association remained after adjusting 

for covariables found to be significant in prior work, (Watson et al., 2017) suggesting social 

structure to be important.  Our recording of animal ownership by ethnicity enables 

estimation of the impact of differential seeding of zoonotic diseases such as avian influenza 

were they to first arrive in the Pacific as an epizootic. 

The absolute contact rates obtained in this study cannot readily be compared with those 

from Mossong and others which are primarily conversational in nature and not restricted to 

mealtimes. Nor do we attempt to document changing social contact patterns during acute 

illness (Eames et al., 2010; Van Kerckhove et al., 2013). However, their origins in mealtime 
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contact do not limit these data to application in enteric disease only. As Goeyvaerts  and 

colleagues (2010) note, the importance of empirically-obtained social mixing rates is that 

they represent relative mixing patterns between population subgroups as proxies for the 

distribution of mechanisms of disease transmission. This study does not attempt to elucidate 

the relative contributions these components of the potential chain of typhoid transmission 

from portal of entry to exit but suggests these distributions may be reflected in social contact 

patterns. Similarly, Melegaro and colleagues’ 2011 study of airborne viral pathogens found 

“that intimate types of contacts explain the pattern of acquisition of serological markers by 

age better than other types of social contacts”.  

In the absence of setting-specific data, these data might be very cautiously applied to use in 

other Pacific Island countries and territories, though more applicable to larger states than to 

low-lying small islands given that data collection excluded Fiji’s Eastern Division. Unadjusted 

iTaukei contact rates could be applied in many settings; unadjusted inter-ethnicity contact 

patterns could have potential application in settings such as French Polynesia where the 

estimated ethnically non-Polynesian population is relatively large at 22% (Anon, 2016), 

though do not account for the different social and cultural norms of such settings.  

Our survey demonstrates that it is feasible and socially acceptable to gather data on social 

mixing not only by age but by ethnicity, in settings where heterogeneity may be of relevance 

to transmission networks and dynamics. Interestingly, we found non-iTaukei pre-school 

children had non-assortative mixing, in that they had greater contact with older age groups 

rather than with children of the same age, suggesting mealtime contact within a small family 

structure. Similar findings were reported in a UK study of under-ones (van Hoek et al., 2013). 

This contrasts to assortative mixing in iTaukei pre-schoolers, consistent with sustained high 

birth rates/large extended families in iTaukei Fijians (Fiji Bureau of Statistics, 2012) and the 

divergent demographic trends in iTaukei and non-iTaukei Fijians (Supplementary Fig S5.1).  

Compared with social contact survey settings overseas, low relative contact rates in older 

adult Fijians may reflect both lower adult life expectancy (Taylor et al., 2013) as well as 

different social mixing patterns. 

We found that non-iTaukei participants, predominantly comprising Indo-Fijians, were under-

represented in the survey relative to census estimates, despite use of a structured sampling 

method. This may to some extent reflect continued outmigration and potentially within-

country rural-to-urban migration differentially increasing nursing zones populations in 

majority Indo-Fijian areas above the numbers used in the sampling frames. Boosted surveys 

of non-iTaukei residents could address this, though value of the expected potential gains in 
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precision would need consideration. The high reported enrolment rate likely reflects 

incomplete documentation of candidate participants approached who declined involvement. 

Theoretical mixing structures that are not informed by data are largely being replaced in 

infectious disease modelling by contact patterns derived from data. Traditional, line-listing, 

prospective, paper-based, contact diaries can be demanding for participants and in data 

entry/analysis. Methods of measuring contact utilising portable electronic devices, such as 

mobile phone tracing (Wesolowski et al., 2012; Bengtsson et al., 2015) and RFID tagging 

(Cattuto et al., 2010; Stehlé et al., 2011) increasingly offer methods for collecting rich data on 

contact patterns but can involve substantive cost and/or complexity. There can be an 

advantageous degree of simplicity in asking people with whom they ate yesterday and where 

they travelled in the last week.  Data for model parameterisation can be collected in a single-

contact survey potentially alongside serology and behavioural or environmental risk data. 

Although retrospective survey responses may risk recall bias, we found that the previous 

day’s lunch and dinner partners were readily recallable by participants. This also reduces 

respondent fatigue and avoids potential for behaviour modifications that a prospective diary 

might trigger. Social response bias is reduced by reassurance that individual responses are 

kept confidential, and the socially-acceptable nature of enquiry, including careful structuring 

of ethnicity questions. 

 

Whilst eating patterns themselves are an important public health topic with regards to the 

enormous impact of the epidemic of non-communicable disease in the Pacific and worldwide 

(Taylor, 1983; Ng et al., 2017) they also offer insights for infectious disease epidemiologists 

and modellers. “Who-eats-with-whom” reflects social intimacy as well as specific food-borne 

and fomitic transmission risks and can effectively document ethnic- as well as age-assortative 

mixing. The universality of food-sharing as a human experience lends this approach, 

developed for enteric infectious diseases in Pacific Islands, to a range of settings where 

people interact and infections may transmit. 
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5.7 Supplementary material 
 

 

Supplementary Fig S5.1. Age distribution (count) of iTaukei and non -iTaukei in 

Fiji in A) 2007 census and B) 2013 social contact survey.  

 

  



210 
 

 

 

Supplementary Fig S5.2. Lifetime prevalence of having moved community and 

moved in the last five years  

for A) all participants, B) iTaukei participants, C) non-iTaukei participants, by five-year age 

bands. Hollow points denote 95% confidence intervals. 
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Supplement Table S1. Animal contact by ethnicity and geography  

(A: owned livestock, B: other owned domesticated animals, C: physical contact with wild 

rodents) 

A 
Geography 

Overall  

n            % (95% CI) 

iTaukei  

n    % (95% CI) 

Non-iTaukei  

n  % (95% CI) 

Chicken All 441 24.3 (22.4 to 26.3) 295 20.9 (18.9 to 23.1) 146 36 (31.5 to 40.8) 

Urban 23 4.6 (3.1 to 6.7)  16 4.1 (2.6 to 6.6)  7 5.9 (2.9 to 11.6)  

Peri-urban 55 19 (14.9 to 24)  24 13.7 (9.4 to 19.6)  31 27.2 (19.9 to 36)  

Rural 

363 35.6 (32.7 to 38.6)  255 30.1 (27.1 to 33.2)  108 

62.8 (55.4 to 

69.7)  

Cows All 388 

21.4 (19.6 to 23.3) 

316 22.4 (20.3 to 24.7) 72 17.8 (14.4 to 

21.8) 

Urban 44 8.7 (6.6 to 11.5)  42 10.9 (8.2 to 14.4)  2 1.7 (0.5 to 5.9)  

Peri-urban 41 14.2 (10.6 to 18.7)  27 15.4 (10.8 to 21.5)  14 12.3 (7.5 to 19.6)  

Rural 303 29.7 (27 to 32.6)  247 29.1 (26.2 to 32.3)  56 32.6 (26 to 39.9)  

Goats All 155 8.5 (7.3 to 9.9) 91 6.5 (5.3 to 7.9) 64 15.8 (12.6 to 

19.7) 

Urban 29 5.7 (4 to 8.1)  27 7 (4.9 to 10)  2 1.7 (0.5 to 5.9)  

Peri-urban 26 9 (6.2 to 12.9)  17 9.7 (6.2 to 15)  9 7.9 (4.2 to 14.3)  

Rural 

100 9.8 (8.1 to 11.8)  47 5.5 (4.2 to 7.3)  53 

30.8 (24.4 to 

38.1)  

Pigs 

 

All 508 28 (26 to 30.1) 485 34.4 (32 to 36.9) 23 5.7 (3.8 to 8.4) 

Urban 64 12.7 (10.1 to 15.9)  62 16.1 (12.7 to 20.1)  2 1.7 (0.5 to 5.9)  

Peri-urban 57 19.7 (15.5 to 24.7)  47 26.9 (20.8 to 33.9)  10 8.8 (4.8 to 15.4)  

Rural 387 37.9 (35 to 41)  376 44.3 (41 to 47.7)  11 6.4 (3.6 to 11.1)  

Sheep All 21 1.2 (0.8 to 1.8) 14 1 (0.6 to 1.7) 7 1.7 (0.8 to 3.5) 

Urban 0 0 (0 to 0.8)  0 0 (0 to 1)  0 0 (0 to 3.1)  

Peri-urban 11 3.8 (2.1 to 6.7)  10 5.7 (3.1 to 10.2)  1 0.9 (0 to 4.8)  

Rural 10 1 (0.5 to 1.8)  4 0.5 (0.2 to 1.2)  6 3.5 (1.6 to 7.4)  
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B 
Geography 

Overall  

n            % (95% CI) 

iTaukei  

n    % (95% CI) 

Non-iTaukei  

n  % (95% CI) 

Cats 

 

All 320 17.6 (16 to 19.5) 219 15.5 (13.7 to 17.5) 101 24.9 (21 to 29.4) 

Urban 84 16.6 (13.6 to 20.1)  59 15.3 (12 to 19.2)  25 21 (14.7 to 29.2)  

Peri-urban 

63 21.8 (17.4 to 26.9)  38 21.7 (16.2 to 28.4)  25 

21.9 (15.3 to 

30.4)  

Rural 

173 17 (14.8 to 19.4)  122 14.4 (12.2 to 16.9)  51 

29.7 (23.3 to 

36.9)  

Dogs All 577 31.8 (29.7 to 34) 397 28.2 (25.9 to 30.6) 180 44.4 (39.7 to 

49.3) 

Urban 

146 28.9 (25.1 to 33)  101 26.2 (22 to 30.8)  45 

37.8 (29.6 to 

46.8)  

Peri-urban 98 33.9 (28.7 to 39.5)  48 27.4 (21.4 to 34.5)  50 43.9 (35.1 to 53)  

Rural 333 32.6 (29.8 to 35.6)  248 29.2 (26.3 to 32.4)  85 49.4 (42 to 56.8)  

Horses All 265 14.6 (13.1 to 16.3) 233 16.5 (14.7 to 18.6) 32 7.9 (5.7 to 10.9) 

Urban 35 6.9 (5 to 9.5)  33 8.5 (6.2 to 11.8)  2 1.7 (0.5 to 5.9)  

Peri-urban 18 6.2 (4 to 9.6)  18 10.3 (6.6 to 15.7)  0 0 (0 to 3.3)  

Rural 212 20.8 (18.4 to 23.4)  182 21.5 (18.8 to 24.4)  30 17.4 (12.5 to 

23.8)  

 

 

 

C 
Geography 

Overall  

n        % (95% CI) 

iTaukei  

n        % (95% CI) 

Non-iTaukei  

n        % (95% CI) 

Mongooses All 110 6.1 (5.1 to 7.3) 103 7.3 (6.1 to 8.8) 7 1.7 (0.8 to 3.5) 

Urban 19 3.8 (2.4 to 5.8)  18 4.7 (3 to 7.3)  1 0.8 (0 to 4.6)  

Peri-urban 13 4.5 (2.6 to 7.5)  9 5.1 (2.7 to 9.5)  4 3.5 (1.4 to 8.7)  

Rural 78 7.6 (6.2 to 9.4)  76 9 (7.2 to 11.1)  2 1.2 (0.3 to 4.1)  

Rats 

 

All 247 13.6 (12.1 to 

15.3) 

220 15.6 (13.8 to 17.6) 27 6.7 (4.6 to 9.5) 

Urban 56 11.1 (8.6 to 14.1)  50 13 (10 to 16.7)  6 5 (2.3 to 10.6)  

Peri-urban 

38 13.1 (9.7 to 17.5)  26 14.9 (10.3 to 20.9)  12 

10.5 (6.1 to 

17.5)  

Rural 153 15 (12.9 to 17.3)  144 17 (14.6 to 19.7)  9 5.2 (2.8 to 9.6)  
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5.7.1 Supplementary text. 
 

Supplementary text S5.1. Seropositivity and social contact regression analysis 

This supplementary text describes logistic regression analyses that were undertaken to 

develop understanding of association between mealtime social contact rates and 

seroprevalence in Fiji when taking into account potential confounding variables and ethnicity-

based contact rates. These analyses follow an initial strong signal for association between 

total contact rates and seropositivity in the total survey group. These analyses are of 

residents of unvaccinated areas of mainland Fiji only, to reduce noise from vaccine-associated 

seropositivity on Taveuni island. 

Figure ST5.1 Fig 1 shows participants’ contact rates, by participant ethnicity and proportion of 

contacts that were of iTaukei ethnicity. These data show that most participants have contact 

with only one ethnicity category of contact, which is usually the same category as the 

participant. There are a number of participants with mealtime contacts from the other ethnic 

category only, and relatively few with mealtime contacts across both ethnic categories. 

 

ST5.1 Fig 1. Number of contacts per iTaukei and non -iTaukei participant, by 

proportion of contacts that were iTaukei.  

 

We first examined odds ratios for association between anti-Vi IgG seropositivity and total 

number of contacts, adjusting for participant age, without ethnicity adjustment for contacts 
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or participants. This association was examined at both a seropositivity threshold of 64 EU, 

determined in prior research to be suggestive of previous or current infection, and 100 EU, 

more suggestive of recent or current infection. The recent infection 100 EU marker was 

considered to be more likely to be influenced by the participants’ reported contact rates, as 

contact rates may have changed over time, particularly given the variation in contact rates 

demonstrated across age groups in the social mixing survey. Data for 64 EU are reported here 

for completeness. Data were available for 1559 participants from unvaccinated areas of Fiji 

mainland. 

Evidence of association between seropositivity and total contact rates (contacts of any ethnic 

category) was observed at 100 EU, with an effect size of approximately* 2% additional 

likelihood of seropositivity per additional contact. No association was demonstrated at 64 EU 

(ST5.1 Tables 1 and 2). 

* Cummings P. The relative merits of risk ratios and odds ratios. Arch Pediatr Adolesc Med. 2009;163(5):438-445. 

The data were then analysed by ethnicity of contacts (ST5.1 Table 1 and 2). Some evidence 

was observed for association with iTaukei contacts at 64 EU, with stronger evidence of 

association at 100 EU, where data showed a similar effect size per contact to the above total 

contact rates analyses and greater strength of association. Weak association between 

increasing non-iTaukei contact rates and seronegativity was observed at 64 EU but not 

supported by examination at 100 EU. This suggested there was no association between non-

iTaukei contact rates and seropositivity but that these data might contribute to non-

differential misclassification when included in analysis of total contact rates. 

ST5.1 Table 1. 100 EU Vi IgG threshold, participants from unvaccinated areas, all ethnicities. 

Model Variable Odds ratio  p-value AIC 

1. Any contact 

Age  

1.02 (1.00 to 1.04)  

1.025 (1.019 to 1.032) 

0.02 

<0.0001 

1376 

2. iTaukei contact 

Age 

1.025 (1.007 to 1.042)  

1.026 (1.019 to1.033) 

0.005 

<0.0001 

1373.5 

3. Non-iTaukei contact 

Age 

0.96 (0.89 to 1.02)  

1.025 (1.018 to 1.031) 

0.2 

<0.0001 

1378.9 

 

ST5.1 Table 2.  64 EU Vi IgG threshold, participants from unvaccinated areas, all ethnicities. 
Model Variable Odds ratio  p-value AIC 

4. Any contact  

Age 

1.01 (0.99 to 1.02) 

1.026 (1.020 to 1.032) 

0.33 

<0.0001 

1854.1 
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5. iTaukei contact 

Age 

1.01 (1.00 to 1.03)  

1.026 (1.020 to 1.032) 

0.08 

<0.0001 

1852.1 

6. Non-iTaukei contact 

Age 

0.96 (0.91 to 1.00) 

1.026 (1.020 to 1.031) 

0.1 

<0.0001 

1851.7 

 

Analyses were next undertaken to determine whether an effect remained when data were 

stratified by the ethnicity of the survey participant. Amongst the 1,189 iTaukei participants, 

strong association with 100 EU seropositivity was observed for increasing total or iTaukei 

contact rates (ST5.1 Table 3). This is consistent with the ST5.1 Table 1 models and ST5.1 Fig 1, 

as iTaukei participants comprise the large majority of respondents and primarily report 

iTaukei contacts. At 64 EU, models of iTaukei participants including total contacts or iTaukei 

contacts showed some association (ST5.1 Table 4). Non-iTaukei contact rates in iTaukei 

participants showed weak evidence of association for 64 EU seropositivity and this 

association further weakened at 100 EU.  

Amongst the 370 non-iTaukei participants, no association between seropositivity and 

contacts of any or either ethnic category was observed at 100 EU or 64 EU thresholds (ST5.1 

Tables 5 and 6). 

 

ST5.1 Table 3. 100 EU Vi IgG threshold, participants of iTaukei ethnicity from unvaccinated 

areas. 

Model Variable Odds ratio (95% CI) P value AIC 

7. Any contact, age 

adjusted 

Any contact 

Age (year) 

1.026 (1.007 to 1.045) 

1.023 (1.015 to 1.030) 

0.005 

<0.0001 

1046 

8. Ethnically-stratified 

contact, age adjusted 

iTaukei contact 

non-iTaukei contact 

Age (year) 

1.026 (1.007 to 1.044) 

1.24 (0.84 to 1.77) 

1.023 (1.015 to 1.031) 

0.005 

0.2 

<0.0001 

1047 

 

ST5.1 Table 4. 64 EU Vi IgG threshold, participants of iTaukei ethnicity from unvaccinated 

areas. 

Model Variable Odds ratio (95% CI) P value AIC 

9. Any contact, age 

adjusted 

Any contact 

Age (year) 

1.01 (1.00 to 1.03) 

1.026 (1.019 to 1.032) 

0.1 

<0.0001 

1416.7 

10. Ethnically-stratified 

contact, age adjusted 

iTaukei contact 

non-iTaukei contact 

1.01 (1.00 to 1.03) 

1.40 (1.00 to 2.04) 

0.1 

0.06 

1415.1 
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Age (year) 1.026 (1.019 to 1.033) <0.0001 

 

ST5.1 Table 5. 100 EU Vi IgG threshold, participants of non-iTaukei ethnicity from unvaccinated 

areas. 

Model Variable Odds ratio (95% CI) P value AIC 

11. Any contact, age 

adjusted 

Any contact 

Age (year) 

0.95 (0.86 to 1.02) 

1.035 (1.020 to 1.052) 

0.3 

<0.0001 

328.42 

12. Ethnically-stratified 

contact, age adjusted 

iTaukei contact 

non-iTaukei contact 

Age (year) 

0.98 (0.80 to 1.10) 

0.95 (0.85 to 1.02) 

1.035 (1.020 to 1.052) 

0.8 

0.2 

<0.0001 

330.28 

 

ST5.1 Table 6. 64 EU Vi IgG threshold, participants of non-iTaukei ethnicity from unvaccinated 

areas. 

Model Variable Odds ratio (95% CI) P value AIC 

13. Any contact, age 

adjusted 

Any contact 

Age (year) 

0.95 (0.88 to 1.01) 

1.027 (1.015 to 1.041) 

0.1 

<0.0001 

436.05 

14. Ethnically-stratified 

contact, age adjusted 

iTaukei contact 

non-iTaukei contact 

Age (year) 

0.92 (0.75 to 1.04) 

0.95 (0.88 to 1.01) 

1.027 (1.015 to 1.040) 

0.3 

0.2 

<0.0001 

437.83 

 

Having observed an age-adjusted association between increasing daily number of iTaukei 

contacts and recent Salmonella Typhi infection, driven by contacts made by iTaukei 

participants, we examined the full participant dataset for the influence of covariates such as 

lunching away from home on this association (S3 Tables 7 and 8). As these covariates did not 

substantially influence the effect size or evidence of association, the model presented in the 

main paper is the parsimonious model accounting for iTaukei contacts and participant age 

only. As non-iTaukei participants showed no association between contact rates and 

seropositivity, the model shown in the main paper is that applying to iTaukei only. 

 

ST5.1 Table 7. 100 EU Vi IgG threshold multivariable regression models, unvaccinated areas, 

participants of all ethnicities 

Model Variable Odds ratio (95% CI) P value AIC 

15.  iTaukei contact 

non-iTaukei contact 

Age (year) 

1.023 (1.005 to 1.041) 

0.98 (0.91 to 1.03) 

1.026 (1.019 to 1.033) 

0.01 

0.4 

<0.0001 

1374.8 
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16. iTaukei contact 

non-iTaukei contact 

Age (year) 

Non-iTaukei ethnicity 

1.025 (1.006 to 1.044) 

0.96 (0.87 to 1.02) 

1.025 (1.018 to 1.032) 

1.2 (0.8 to 1.8) 

0.007 

0.3 

<0.0001 

0.4 

1376 

17. iTaukei contact 

non-iTaukei contact 

Age (year) 

Lunch away from home 

1.01 (1.00 to 1.04) 

0.97 (0.91 to 1.02) 

1.026 (1.019 to 1.034) 

1.2 (0.8 to 1.6) 

0.022 

0.4 

<0.0001 

0.3 

1375.4 

18. iTaukei contact 

non-iTaukei contact 

Age (year) 

Non-iTaukei ethnicity  

Lunch away from home 

1.023 (1.004 to 1.042) 

0.95 (0.87 to 1.02) 

1.026 (1.019 to 1.033) 

1.2 (0.8 to 1.8) 

1.2 (0.8 to 1.7) 

0.015 

0.3 

<0.0001 

0.4 

0.3 

1376.5 
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ST5.1 Table 8. 64 EU Vi IgG threshold multivariable regression models, unvaccinated areas, 

participants of all ethnicities 

Model Variable Odds ratio (95% CI) P value AIC 

19. iTaukei contact 

non-iTaukei contact 

Age (year) 

 

1.01 (0.99 to 1.03) 

0.97 (0.91 to 1.01) 

1.026 (1.020 to 1.032) 

0.17 

0.17 

<0.0001 

1851.8 

20. iTaukei contact 

non-iTaukei contact 

Age (year) 

Non-iTaukei ethnicity 

1.01 (0.99 to 1.03) 

0.97 (0.91 to 1.02) 

1.026 (1.020 to 1.032) 

0.92 (0.69 to 1.29) 

0.2 

0.3 

<0.0001 

0.6 

1853.6 

21. iTaukei contact 

non-iTaukei contact 

Age (year) 

Non-iTaukei ethnicity  

Lunch away from home 

1.01 (1.00 to 1.03) 

0.97 (0.91 to 1.02) 

1.026 (1.021 to 1.033) 

0.93 (0.67 to 1.3) 

1.04 (0.78 to 1.37) 

0.2 

0.3 

<0.0001 

0.7 

0.8 

1852.5 

22. iTaukei contact 

non-iTaukei contact 

Age (year) 

Non-iTaukei ethnicity  

Lunch away from home 

Interaction for contacts  

1.02 (0.99 to 1.03) 

0.97 (0.91 to 1.02) 

1.026 (1.021 to 1.033) 

0.93 (0.67 to 1.3) 

1.04 (0.78 to 1.37) 

1.03 1.00 (0.94 to 1.05) 

0.2 

0.3 

<0.0001 

0.7 

0.8 

1 

1854.4 
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Chapter 6. Transmission dynamics of typhoid fever in Fiji: a model 

of vaccination and WASH. CH Watson, AJ Kucharski, WJ Edmunds 
London School of Hygiene & Tropical Medicine. 

 

6.1 Bridging section 
 

This final research paper chapter describes the fitting of, and findings from, a transmission 

dynamic model. The model was conceptualised by me in late 2016 in terms of a 

compartmental structure that could synthesis case and serological data by means of dose-

dependency of pathogenicity, with input from the co-authors. It was developed by me in 

summer 2017 after a break to return to professional duties at Public Health England. I have 

been able to estimate model parameters by maximum likelihood estimation, and produce a 

number of informative intervention impact scenarios and sensitivity analyses. The 

interpretation of findings is intended to be appropriately cautious, particularly with regard to 

precision, but the results are indicative of relative importance of parameters and may be 

indicative of impacts of putative interventions. The development of the model framework 

opens the prospect for further analysis of the situation in Fiji and to further explore the 

transmission drivers, uncertainties in parameterising the model and plausible programme 

impacts. 

Conceptualisation and coding of the model was done by me in the R statistical environment. I 

had used the analysis of the serological survey and the social mixing data to improve my R 

literacy, rather than opting for quicker and easier Stata or Excel based analyses and this 

proved extremely useful in coding up the model. Under the tutelage of Adam Kucharski and 

supervision of John Edmunds, the model was substantially extended by me from an SI 

example model, to one with six compartments (SIRCAV), 80 ages and two ethnicities.  Adam 

coded the aging process to reflect the demographic structure, which was our joint 

conceptualisation but beyond my numeracy, and checked the compartment-transition 

differential equations. I parameterised the aging process model to visual fit with census data.  

I developed the likelihood function with input from Adam Kucharski and John Edmunds, 

adapting a log likelihood function originally developed for the Fiji dengue fever model of 

adult and child dengue case data and arbovirus immunity data from the serosurvey and 2015 

follow-up. The modelled typhoid incidence case count was initially to be fitted to case data 

through a negative binomial function. However, the negative binomial overdispersion 

parameter was found to be intractable and the function unsuitable and so a Poisson 
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distribution was utilised. An important step was identifying means of reducing model run 

times from over an hour to seconds, by taking advantage of time step handling properties in 

the ODE45 implementation of the Runge Kutta differential equation solver. This opened up 

scope to run maximum likelihood estimation using the bbmle package rather than through a 

low-resolution grid search. My analysis, sensitivity analysis, interpretation and drafting of the 

manuscript was done with review by John Edmunds.  

Preliminary findings have been discussed with the Ministry of Health and research partners in 

October 2017 in support of typhoid control. 
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Transmission dynamics of typhoid fever in Fiji:  

a model of vaccination and WASH.  

 
CH Watson, AJ Kucharski, WJ Edmunds 

London School of Hygiene & Tropical Medicine. 

 

6.2 Introduction 

Typhoid fever is a systemic human bacterial disease, caused by Salmonella enterica serovar 

Typhi (S. Typhi), spread through the faecal-oral route. Initial symptoms of fever and malaise 

can be followed by debilitating abdominal pain, headache, cough, anorexia, nausea, myalgia 

and confusion, with life-threatening complications in prolonged illness including intestinal 

perforation, gastrointestinal haemorrhage and encephalopathy.1 As in many parts of Asia-

Pacific,2,3 typhoid fever is a pressing public health concern in Fiji.  An emergency typhoid Vi-

polysaccharide (ViPS) mass vaccination campaign was implemented in the highest-risk areas 

of Fiji (7% by population) following Cyclone Tomas in 2010, demonstrating effectiveness 

consistent with vaccine efficacy and coverage.4  Ministry of Health and public health partners 

have sought to understand and control the disease, convening an expert meeting to assess 

long-term strategies for control, and knowledge gaps that would support this. Serologically-

informed modelling was proposed to inform vaccination programme considerations.5  

Typhoid has an incidence of approximately 380 blood-culture confirmed cases per annum in 

Fiji, or 45 per 100,000 person-years.5 Over 90% of reported culture-confirmed cases are of 

the indigenous iTaukei community (57% of the census population), predominantly affecting 

young adults, with few cases reported in Fijians of Indian descent (Indo-Fijians) or other non-

iTaukei ethnicities.5,6 This contrasts to findings of our serological survey, which identified 

similar seroprevalences in both iTaukei and non-iTaukei ethnic groupings of anti-Vi IgG, a 

putative marker of current or past S. Typhi exposure, based on a case cohort-fitted 

threshold.7 The survey indicated seroprevalence of approximately 1 in 3, though there remain 

considerable uncertainties as to the sensitivity and specificity of such thresholds, and found 

increasing seroprevalence by age and a non-significantly higher seroprevalence in iTaukei 

than non-iTaukei. 

Different conceptual frameworks exist for typhoid transmission models,8,9 with different 

analytical intent, described previously.10 One conceptualisation of typhoid immunogenicity 

and pathogenicity is that the occurrence and presentation of typhoid fever is dependent on 

the inoculating dose of S. Typhi. A simplified schematic for the role of dose-dependency in 
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the “clinical iceberg” of typhoid fever is shown in figure 6.1. With known surveillance case 

numbers and sero-survey data supporting estimates for the total size of ever-infected 

population in Fiji, a transmission dynamic approach offers potential insight into the relative 

size of the infectious case population that would drive disease dynamics, and the impact of 

underlying natural immunity on interventions such as vaccination. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.  Clinical iceberg conceptual schematic for acute typhoid fever.  

The dose response gradient for typhoid infection is dichotomised into high and low doses 

exposures from S. Typhi shedding in a primary case. These result in infectious (grey triangle) 

or non-infectious (white triangle section) secondary cases depending on the ingested dose. Of 

infectious cases, a proportion are unwell enough to seek medical care, and of these some 

have blood taken, test positive and are notified to public health surveillance (black triangle).  

 

As outlined in the introduction to this thesis, high inoculating doses were established in the 

Maryland typhoid human challenge studies as more likely to result in symptomatic disease, as 

assessed by various diagnostic approaches, with earlier onset compared to low-dose 

challenge.11,12 In community settings, high inoculating doses may be derived from prepared-

food faecal contamination; direct person-to-person and fomite transmission in the absence of 

adequate infection control and hygiene practices; or consumption of drinking water with high 

volumes of faeces containing S. Typhi, most typically stored or surface water in the 

immediate environment around a case.  Symptomatic cases from such events are very likely 

to shed S. Typhi in faeces.11 Immunity occurs following recovery, with infectious 

asymptomatic carriage established in a small proportion of cases.1  

Low-dose inoculation, such as may be derived from contamination of the environment, water 

contaminated with lower volumes of faeces (such as that further away from cases) and 
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unprepared foods, or other similar distal, non-direct transmission, may give rise to 

asymptomatic infection and natural immunity without observed or surveillance-notified 

development of systematic disease. The Maryland challenge studies found an inoculating 

threshold below which clinical disease did not develop. Low dose exposure may act as an 

immunising force, creating immunity without faecal shedding. Mild or asymptomatic typhoid 

infection in childhood can preclude severe disease later in life,13 consistent with classical 

models of tropical infection.14  

Both typhoid immunisation and other interventions to reduce transmission offer potential to 

reduce the burden of typhoid in Fiji; though relative impact may depend on both intervention 

efficacy and the underlying immuno-epidemiological landscape. 

 

6.2.1 Aims 

We developed a deterministic, compartmental, dynamical model of typhoid fever in Fiji 

utilising field data on social mixing patterns and seropositivity, alongside national surveillance 

data. This study aimed to describe the observed serological and case data for Fiji and examine 

a range of model structures reflecting different epidemiological conceptual constructs of 

typhoid transmission in Fiji, and the goodness-of-fit of these to the data. We sought to 

estimate the potential impact on typhoid fever incidence of immunisation programmes and 

other programmes to reduce transmission, such as adequate water, sanitation and (hand & 

food) hygiene (collectively: WASH).15,16 We considered different vaccination strategies such as 

school-entry vaccination programmes and one-time school-age campaigns, which were 

examined with and without WASH interventions. 

 

 

6.3 Methods 

6.3.1 Ethics approval 

This study was approved by the Fiji National Research Ethics Review Committee (2013-03) 

and the London School of Hygiene and Tropical Medicine’s ethics committees (6344). 

 

6.3.2 Data sources 

Anonymised, blood-cultured confirmed, national surveillance case data were provided by the 

Fiji National Centre for Communicable Disease Control for the years 2008 to 2014, the 
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complete range of cleaned, disaggregated data available for analysis.  There were mean 363 

(range 285 to 425) cases annually, which were relatively stable with an average decline of 11 

cases per year (r2 = 0.15). Ninety-seven percent of cases were iTaukei. 

Serological data was obtained through a field survey, described previously, of 1,531 residents 

aged 1year and over in unvaccinated areas of the two main Fijian islands (Viti Levu and Vanua 

Levu) conducted between September and December 2013. An anti-Vi IgG ELISA titre 

threshold of 64 was considered indicative of natural immunity, based on a mixed model of 

antibody decay in recovering confirmed cases.7  

 

6.3.3 Model structure 

The full model structure comprises of six compartments representing five disease states plus 

vaccination (figure 6.2). Each compartment is age- and ethnicity- structured (0 to 79 years; 

iTaukei and non-iTaukei). Daily movements between compartments are specified by a system 

of ordinary differential equations (equations 1 to 6). Simpler model structures can be created 

by setting relevant parameters to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model structure 

 

Susceptible (S) non-immune individuals can move into the Infectious (I) compartment at a 

rate λhi following inoculation from a high dose of S. Typhi from a case (I) or long-term 

infectious carrier (C), due to proximal or short-cycle transmission including direct contact and 
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localised transmission from locally-contaminated water, food, fomites and environment with 

force of infection determined by social contact patterns. They can be joined in I by S 

compartment individuals arriving at a rate λlowpd, indicating a proportion of individuals 

receiving a low inoculating dose (generalised force of infection independent of contact 

patterns) that results in becoming infectious (with or without symptoms).  

 

 

𝑑𝑆𝑖,𝑗

𝑑𝑡
= 𝑏𝑖,𝑗 + 𝜙𝑖−1,𝑗𝜁𝑖,𝑗  𝑆𝑖−1,𝑗 + 𝜔𝑛𝑅𝑖,𝑗 + 𝜔𝑣𝑉𝑖,𝑗 − 𝜆ℎ𝑖𝑔ℎ,𝑖,𝑗(1 − 𝑝𝑛,𝑗)𝑆𝑖,𝑗

− 𝜆𝑙𝑜𝑤𝑆𝑖,𝑗 − 𝜈𝑖,𝑗𝑆𝑖,𝑗 − 𝜙𝑖,𝑗𝑆𝑖,𝑗 

 

(1) 

𝑑𝐼𝑖,𝑗

𝑑𝑡
= 𝜙𝑖−1,𝑗𝜁𝑖,𝑗  𝐼𝑖−1,𝑗 + 𝜆ℎ𝑖𝑔ℎ,𝑖,𝑗(1 − 𝑝𝑛,𝑗)𝑆𝑖,𝑗 +  𝜆𝑙𝑜𝑤 𝑝𝑑 𝑆𝑖,𝑗

+  𝜆ℎ𝑖𝑔ℎ,𝑖,𝑗(1 −  𝑝𝑣)(1 − 𝑝𝑛)𝑉𝑖,𝑗 − 𝛾𝑑𝐼𝑖,𝑗 − 𝜙𝑖,𝑗𝐼𝑖,𝑗 

 

(2) 

𝑑𝑅𝑖,𝑗

𝑑𝑡
= 𝜙𝑖−1,𝑗𝜁𝑖,𝑗  𝑅𝑖−1,𝑗 + 𝛾𝑑(1 − 𝑝𝑐) 𝐼𝑖,𝑗 + 𝛾𝑐𝐶𝑖,𝑗 + 𝛾𝑑𝐴𝑖,𝑗  − 𝜔𝑛𝑅𝑖,𝑗

− 𝜙𝑖,𝑗𝑅𝑖,𝑗 

 

(3) 

𝑑𝐶𝑖,𝑗

𝑑𝑡
= 𝜙𝑖−1,𝑗𝜁𝑖,𝑗  𝐶𝑖−1,𝑗 + 𝛾𝑑𝑝𝑐 𝐼𝑖,𝑗 −  𝛾𝑐𝐶𝑖,𝑗  − 𝜙𝑖,𝑗𝐶𝑖,𝑗 

 

(4) 

𝑑𝐴𝑖,𝑗

𝑑𝑡
= 𝜙𝑖−1,𝑗𝜁𝑖,𝑗 𝐴𝑖−1,𝑗 + 𝜆𝑙𝑜𝑤(1 − 𝑝𝑑) 𝑆𝑖,𝑗 −  𝛾𝑑𝐴𝑖,𝑗 − 𝜙𝑖,𝑗𝐴𝑖,𝑗 

 

(5) 

𝑑𝑉𝑖,𝑗

𝑑𝑡
= 𝜙𝑖−1,𝑗𝜁𝑖,𝑗 𝑉𝑖−1,𝑗 + 𝜈𝑖,𝑗𝑆𝑖,𝑗 −  𝜆ℎ𝑖𝑔ℎ,𝑖,𝑗(1 − 𝑝

𝑣
)(1 − 𝑝𝑛)𝑉𝑖,𝑗 −  𝜔𝑣𝑉𝑖,𝑗

− 𝜙𝑖,𝑗𝑉𝑖,𝑗 

 

(6) 

𝑑𝐹𝑖,𝑗

𝑑𝑡
=  𝜆ℎ𝑖𝑔ℎ,𝑖,𝑗(1 − 𝑝𝑛)𝑆𝑖,𝑗 +  𝜆𝑙𝑜𝑤 𝑝𝑑 𝑆𝑖,𝑗

+  𝜆ℎ𝑖𝑔ℎ,𝑖,𝑗(1 −  𝑝𝑣)(1 − 𝑝𝑛)𝑉𝑖,𝑗 

(7) 

 

Where:  

Si,j, Ii,j, Ri,j, Ci,j, Ai,j and Vi,j are the number of susceptible, acute infectious, recovered (naturally 

immune), chronic infectious carrier, asymptomatically infected non-infectious  and 

vaccinated individuals respectively in the population, by year of age and  ethnicity.  

Fi,j records incident acute infectious typhoid cases, by year of age and  ethnicity. 
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i denotes year of age (0 to 79) 

j denotes ethnicity (iTaukei or non-iTaukei) 

bi,j is ethnicity-specific daily births into for i=0 (0 for i>0) 

γc  is the daily recovery rate from carriage C class infection 

γd  is the daily recovery rate from infectious I and asymptomatic A class infection 

φi,j is daily aging rate, by year of age and  ethnicity (φi-1,j = 0 if i=0) 

ζi,j is survival proportion following aging, by year of age and  ethnicity 

νi,j is the daily rate of vaccination to achieve a specified vaccine coverage over the course of a 

year in a specified year of age and ethnic group  

pc is the proportion of cases that become carriers 

pd is the proportion of low dose infections that lead to the infectious I class 

pn,j is the proportionate reduction in high-dose force of infection for non-iTaukei relative to 

iTaukei (pn=0 if j = iTaukei) 

pv is the vaccine efficacy 

ωn is daily waning rate of natural immunity 

ωv is daily waning rate of vaccine immunity 

λhigh, i,j is the daily high-dose force of infection and λlow is the low-dose force of infection 

 

 

An age and ethnic group structured F compartment records incident I-compartment cases 

(equation 7). A subset of F-compartment cases is reported in culture-confirmed national 

surveillance at a reporting rate p1 which is further modified by p2, the reduction in reporting 

rate in children. See “surveillance reporting” section for details.  

S compartment individuals transition to an asymptomatic, non-infectious (A) compartment at 

rate λlow(1-pd) indicating receipt of a low inoculating dose without becoming infectious. 

Individuals exit A and enter a recovered (R), naturally immune compartment at a rate γd. The 

same exit rate applies to the I class, with a proportion pc entering the C compartment and the 

remainder entering R. Carriers leave C and enter R at a rate γc. The transition rate for R to S 

(loss of natural immunity) is ωn. The model does not include a latent period. Force of 

infection is described by equations 8 and 9.  

Force of infection (high-dose) is  

𝝀𝒉𝒊𝒈𝒉,𝒊,𝒋 =  𝜷 ∑ ∑ 𝑴𝒊𝒋 𝒌𝒍

𝟐

𝒏=𝟏

(
𝑰𝒌,𝒍 + 𝑪𝒌,𝒍

𝑵𝒌,𝒍

)

𝟓

𝒎=𝟏

 

(8) 

And force of infection (low-dose) is 

𝝀𝒍𝒐𝒘 =  
𝜶𝜷 ∑ ∑ (𝑰𝒌,𝒍 + 𝑪𝒌,𝒍)

𝟐
𝒍=𝟏

𝟓
𝒌=𝟏

∑ ∑ 𝑵𝒌,𝒍
𝟐
𝒍=𝟏

𝟓
𝒌=𝟏

 

(9) 
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Where:  

i is year of age and j is ethnic group of susceptible and vaccinated individuals  

k is age band (0-4, 5-14,15-34, 35-54 and 55-79 years) and l is ethnic group of infectious and 

carrier individuals 

Mij kl is the contact matrix by year of age (i) and age band (k) and ethnic group (j and l), 

weighted for reciprocal contact, for transmission from kl to ij  

β is the effective contact rate for high-dose transmission 

α is the low-dose β ratio 

Nk,l is the population size by age band and ethnic group. 

 

Vaccination transition S to V occurs at a rate ν with V to S loss of vaccine immunity at rate ωv. 

V compartment individuals enter I with 𝜆ℎ𝑖𝑔ℎ modified by 1-pv where pv is vaccine efficacy, 

but do not transition to A as vaccine is assumed to fully protect against low dose typhoid 

infection.   

 

6.3.3.1 Structural sensitivity analysis 

Alternative epidemiological models were examined as follows: 

 With high-dose social mixing homogeneous within iTaukei and non-iTaukei groups 

 With high-dose social mixing homogenous across age band and ethnic groups 

 Without low-dose force of infection and thus no asymptomatic non-infectious 

compartment; and high dose force of infection social mixing: 

o heterogeneous by age and ethnic group  

o homogeneous within iTaukei and non-iTaukei ethnic groups. 

o homogeneous across age band and ethnic groups 

 

6.3.3.2 Waning force of infection sensitivity analysis 

In chapter 3, the possibility was raised that the observed seroepidemiological age patterns 

could be explained by endemic transmission, or decreasing force of infection across several 

decades, potentially with transmission concentrated in childhood. Using an approach 

adapted from Gay for hepatitis A,17 a five-fold higher baseline equilibrium was fitted and 

models of decreasing force of infection were run as a sensitivity analysis using a monotonic 

decline function (equation 10).  
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𝜓 =  3 − 2 tanh (
2(𝑡 − 𝑚𝑒𝑑 (𝑡))

𝑇
) 

(10) 

Where: 

Ψ is the Beta scaling factor 

t is the time period of analysis in years 

T is the time period over which force of infection predominantly declines in years. 

 

In the sensitivity analyses t is 100 years and T is 50 years.  

 

 

6.3.4 Software 

Analysis was conducted in R version 3.4.1.18 The model was established as a series of ordinary 

differential equations which were solved using the ODE45 adaptive time step Runge-Kutta 

method in package deSolve.19  

 

6.3.5 Demographics 

A demographic process operates across each model compartment to approximate the 2007 

census population structure for each ethnicity category.20 Individuals are born into the 

iTaukei or non-iTaukei age zero strata of the susceptible compartment, with daily births equal 

to the sum of the ethnicity-specific all-age deaths. Individuals exit each age stratum with a 

daily aging rate and a number enter the next age stratum proportional to an age- and 

ethnicity- specific survival probability.   This survival proportion is less than one for all ages of 

iTaukei and one for non-iTaukei to the age of 39, after which it declines. Comparison between 

the census population and the equilibrium synthetic population are shown in figure 6.3 

below.  

The demographic process is identical across each compartment; there is no adjustment to 

death rates for disease states. The model population structures are attributable only to 

constant rates of births and deaths with no adjustment for migration or historical trends in 

birth and death rates.  
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6.3.6 Social contact 

A reciprocity-weighted contact matrix of mealtime social contacts, determined by a field 

survey and described previously (chapter 5),21 was used for daily contact rates for high-dose 

transmission events. Age groups were 0-4, 5-14,15-34, 35-54 and 55+ years and ethnic 

categories were iTaukei and non-iTaukei. In the analysis of association between social mixing 

and seropositivity for anti-Vi IgG, we found that an increase in number of age-adjusted 

contacts was associated with increased odds of seropositivity, driven by inter-iTaukei contact. 

This supports the utilisation of the field-sourced mealtime contact rate matrix in this 

modelling analysis. 

 

 

Figure 6.3. Model demographic structure and census population (2007) by age 

and ethnicity and after 100-year equilibration.  

Panels denote iTaukei (top row) and non-iTaukei (bottom row) demographics. Starting 

parameters (left panel dots and right panel dashed lines) indicate census population relative 

to the model equilibrium demographic state (right panels’ solid lines).  
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6.3.7 Model fitting 

Three transmission parameters and two reporting parameters were fitted by maximum 

likelihood estimation (MLE) using the mle2 function in the package bbmle.22  Parameter space 

exploration was first undertaken with visual fitting to surveillance data and serology. MLE was 

performed using Nelder-Mead optimisation.  

The model was fitted to case and serology data. Simulation surveillance-reported cases were 

compared to data for annual (2008-2014) national surveillance blood culture confirmed case 

reporting, disaggregated by age group (as per the social mixing matrix) and ethnic category. 

Simulated R compartment proportion by year of age and ethnic category was compared to 

IgG Vi seropositivity from the 2013 serological survey. Fixed parameters are shown in table 

6.1. 

Model 

Parameter 

Description Value Source 

γd Recovery rate from acute 

infection (14 days) 

1/14 per day CCDM23 

γc Recovery rate from 

carriage (10 years) 

1/(365*10) 

per day 

Assumed from 24,25 

pc Proportion of infectious 

cases becoming carriers 

1% Adapted from 26 

pn Proportion of low-dose 

inoculation recipients 

developing infectious 

illness 

1% Assumed 

ωn Loss of natural immunity 

(40 years) 

1/(365*40) Inferred from 27 

and examined by 

sensitivity analysis 

Table 6.1. Fixed parameter values 

 

The log likelihood function is given in equation 10 below. 

𝐿(𝜃|𝑋, 𝑍) =  ∑ ∑  

2

𝑒=1

5

𝑏=1

((∑  𝑥𝑦𝑙𝑜𝑔𝑝1 𝑝2,𝑏Λ𝑏,𝑒

7

𝑦=1

) − 7Λ𝑏,𝑒)  

+ ∑ ∑(𝑧𝑎,𝑒 log 𝑝𝑎,𝑒 + (𝑛𝑎,𝑒 − 𝑧𝑎,𝑒)log (1 − 𝑝𝑎,𝑒))

2

𝑒=1

80

𝑎=1

 

(11) 
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Where:  

x are national surveillance case data across five age groups (b), (0-4, 5-14,15-34, 35-54 and 
55+ years) two ethnic groups (e) (iTaukei and non-iTaukei) and seven surveillance years from 
2008 to 2014 (y); 
Λ is the simulation equilibrium annual case count by age and ethnic group;  
p1 is the surveillance reporting fraction and p2 is the reporting fraction modifier for children 
(b≤2; 0 to 14 years, 1 for b>2) 
z is the observed seropositive count from n serosurvey participants in each of 80 one-year 
ages (a) and two ethnic groups (e); and pa,e is the simulation equilibrium R compartment 
prevalence by year of age and ethnic group.  
 

6.3.8 Surveillance reporting 

Propensity to seek care, propensity to obtain blood for culture, poor blood culture sensitivity 

and incomplete notification to national authorities leads to under-ascertainment of cases in 

national culture-confirmed surveillance.3,28  There is no known differential care-seeking 

behaviour (including antimicrobial utilisation, which may avert seroconversion arising in 

prolonged infection)29 in different ethnic groups in Fiji and so we do not modify reporting by 

ethnicity.20,30 Data we collected in 2015 for a dengue fever serosurvey found no difference in 

health-seeking behaviour between iTaukei and non-iTaukei Fijians who had had recent fever 

(34 of 43 and 17 of 20 respectively; odds ratio for non-iTaukei 1.5; 95% confidence interval 

0.4 to 9.7; p-value = 0.6). Under-ascertainment in children relative to adults is well 

established internationally3,31 and so we include both a surveillance reporting fraction p1 for 

adults (age 15+) and a further modifier to this for children (p2). 

 

6.3.9 Carriage 

Typhoid is noted for its asymptomatic carriage, which contributes to sustained transmission 

in low endemicity settings.32 Anderson and May33 posit that typhoid carriers should not have 

the same β as acute cases, as this gives them a contribution in excess of ten times that of 

acute cases after taking into account duration of infection.  Feachem and colleagues14 note 

that typhoid carriers shed very high concentrations of bacteria in faeces, of the same orders 

of magnitude as cases. Shedding events may be intermittent, making detection challenging,34 

and making it challenging to estimate the infectiousness of a carrier relative to an acute case 

(notwithstanding the depletion of susceptibles socially-connected to a carrier, which may 

become saturated during their infectious period).  

Recent data on the proportion of cases who become carriers is sparse, particularly for low 

and middle income countries.25,35 Surveillance data from Baltimore, USA, found 0 carriers 

from 55 child typhoid cases while in Scotland 32 carriers were identified relative to 267 acute 
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cases though potential differential ascertainment precludes assuming this to be a ratio.36 US 

data from the pre-antibiotic era found 2.9% of cases became carriers with increasing risk with 

age26 – approximating for the Fijian population distribution, we modelled 1% of acute 

infectious cases becoming carriers, but do not vary this proportion by age.37 

Carriage duration varies from months to years with the longest known carriage 41 years.24,25 

We model recovery from carriage as an exponentially waning rate with mean duration 10 

years rather than assuming lifelong carriage.37 

 

6.3.9.1 Carriage sensitivity analysis 

Sensitivity analysis of the full model were undertaken with carrier β set as one-tenth and one-

hundredth of case β. 

 

6.3.10 Natural immunity 

Typhoid immunity is generally considered partial in that it can be overwhelmed by a large 

inoculum.38 However, data on second attacks suggests this is infrequent, and most likely to 

occur 10 years or more after the first attack.27 We reflect this by modelling natural immunity 

as initially complete but waning over a long time period. Sensitivity analysis of duration of 

natural immunity was done. We do not include acute relapse in the model.39 

 

 

6.3.11 Control scenarios 

Two Vi-containing vaccines were modelled based on parameters from a systematic review.40 

The characteristics of these vaccines in the baseline analyses are: 

1) Licensed Vi-polysaccharide (ViPS) of 70% (leaky) initial efficacy, 3 year mean duration 

2) A typhoid Vi-conjugate (TCV) of 95% (leaky) initial efficacy, 15 year mean duration. 

The following scenarios were modelled for each vaccine. 

1) Baseline scenario (no vaccination) 

2) Routine vaccination at school entry (6 years old) 

3) Routine vaccination at school exit (15 years old) 

4) Routine vaccination at school entry and exit 
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5) Routine vaccination at school entry and exit with a one-time school catch up 

campaign (ages 7 to 14 year). 

6) A one-time school catch-up campaign (age 6 to 15 years).  

A sensitivity analysis was done on the most impactful single-dose routine vaccination 

scenario to examine the impact of different vaccine efficacies and durations of immunity. 

These allow for impact assessment for vaccines such as different regimen and formulations of 

the Ty21a live oral typhoid vaccine, which might otherwise be considered comparable to 

ViPS,40–42 and for vaccines in clinical trials.43,44 

A further scenario was modelled for TCV only, reflecting efficacy data,40 and the current WHO 

position paper which recommends TCV vaccination in endemic areas at  age six months, or 

nine months or in the second year of life (to align with measles-containing vaccination and 

other vaccinations that may be given at the same time.45 

7) Vaccination at 12-23 months of age. 

Vaccination coverage was set at 95% per school year (modelled as a rate applied to the S 

compartment over 365 days) and per campaign, consistent with the UNICEF estimate (94%) 

and 2016 official figures for measles-rubella vaccine first dose and school entry dose.46 

 

The above were run with WASH scenarios: 

1) Baseline transmission 

2) 10% reduction in transmission parameter β 

3) 25% reduction in transmission parameter β 

4) 50% reduction in transmission parameter β. 

These are consistent with previous typhoid modelling studies.8,37 WASH programmes were 

not disaggregated by component elements (nor readily can be) but treated as a single 

intervention in the model. While not directly applicable to S. Typhi and typhoid fever, 

systematic reviews of the available, limited, data on WASH for diarrhoeal disease control 

suggest risk reduction for handwashing with soap (HWWS), improved water quality and 

excreta disposal as 48%, 17% and 36% respectively,15 suggesting these are a plausible range 

of modelled scenarios for effectively implemented programmes.  

A further set of sensitivity analysis was done examining the impact of a hypothetical WASH 

intervention reducing the low-dose transmission scaling factor α by the above proportions 
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with no change to β. Equivalent changes to the surveillance reporting fraction p1 were also 

examined graphically.  

 

 

6.4 Results 

6.4.1 Model fit 

The full model was able to reproduce the seroprevalence patterns and case-surveillance data 

for typhoid in Fiji. Figure 6.4 shows the model output for the best fit parameters attained 

through MLE. Convergence occurred from a range of starting parameters, suggesting no local 

minima were found. The step-changes observed in figure 6.4 in simulation case data indicate 

transition across age-boundaries of the social contact matrix. 

There are two particularly notable findings in the fitted parameters (Table 6.2). The first is 

that α, the low-dose force of infection scaling parameter was clearly non-zero, indicating that 

the movement of susceptible individuals into the asymptomatic non-infectious compartment 

was an important contributor to the model fit. The second is that due to the low incidence of 

non-iTaukei cases in surveillance data, model best fit arose when pn, the reduction in force of 

infection from high dose exposures acting on susceptible non-iTaukei relative to iTaukei 

counterparts, was 99%. This suggests high-dose exposures almost never occur to non-iTaukei, 

or that if they do, these exposures do not lead to surveillance-detectable disease.   The 

surveillance reporting fractions for acute infectious cases were 20% in adults and 8% (overall) 

in children. Sensitivity analysis of duration of natural immunity found no statistically 

significant difference between 40 year and 50 year immunity, which were better fits than 

other durations of natural protection (table 6.3) and returned the same fitted parameter 

values. We used 40 year natural immunity for scenario projections.  
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Figure 6.4. MLE-fitted age- and ethnicity-specific model equilibrium outputs 

with anti-Vi serological and confirmed case data.  

A: iTaukei serology (anti-Vi IgG>=64 ELISA units) and immunity at model equilibrium.    

B iTaukei modelled cases (solid line) and modelled cases scaled for reporting (dashed line). 

Dots represent cases data by age with each colour representing a different year. 

C: Non-iTaukei serology (anti-Vi IgG>=64 ELISA units) and model output line for immunity.    

D: Non-iTaukei modelled cases (solid line) and modelled cases scaled for reporting (dashed 

line). Dots represent cases data by age with each colour representing a different year. 
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Model Parameter Description Fitted Value 

β (Beta) Per contact daily effective transmission risk for “high-

dose” exposure from I and C individuals 

0.00558 

α (Alpha)  Ratio parameter for the low dose force of infection 

relative to the high dose force of infection.  

The fitted value indicates that for each symptomatic 

secondary case generated, approximately five 

asymptomatic infections would occur in a susceptible 

population, all else being equal. 

 

5.42 

pn Proportion reduction in high-dose Beta in non-iTaukei 

relative to non-iTaukei 

 

99.1% 

p1 Reporting fraction 1.  

 

Proportion of adult (15+) I-compartment 

symptomatic infectious cases that appear in national 

surveillance confirmed-case surveillance. 

19.6% 

p2 Reporting fraction 2.  

 

Further reduction in the proportion of child (0-14) I-

compartment symptomatic infectious cases that 

appear in national confirmed-case surveillance. 

 

This gives I-compartment children a 19.6% x 40.1% = 

7.9% probability of appearing in national surveillance. 

40.1% 

Table 6.2. Fitted parameter values 
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Mean duration of 

natural immunity 

Negative log 

likelihood 

20 years 512 

30 years 500 

40 years 498 

50 years 497 

Lifelong 617 

Table 6.3. Sensitivity analysis of duration of natural immunity   
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6.4.1.1 Sensitivity analysis of model structure 

 

Model fit was examined under different mixing matrices and in the absence of low-dose 

infection giving rise to a non-infectious asymptomatic compartment (table 6.4). As would be 

anticipated from the best-fit value of α, models without low-dose force of infection had 

significantly worse fit than those with this. For models with or without a low-dose force of 

infection and non-infectious asymptomatic compartment, examining mixing patterns for high 

dose force of infection found that a matrix with age-ethnic heterogeneity fitted the data 

significantly better than homogenous or ethnically heterogeneous matrices.  Interestingly, 

models with ethnically heterogeneous mixing did not have improved fit over those with 

homogeneous mixing. 

 

Model Asymptomatic 

non-infectious 

component 

Mixing pattern in high-

dose force of infection 

Negative log likelihood 

1 No Homogeneous 784.4 

2 No Ethnic only 784.6 

3 No Age-ethnic 713.6 

4 Yes Homogeneous 576.0 

5 Yes Ethnic only 594.5 

6 (full) Yes Age-ethnic 498.1 

Table 6.4. Model fit under different epidemiological assumptions 
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6.4.1.2 Sensitivity analysis of declining force of infection 

For models without low dose force of infection, fit was improved by including historically 

higher incidence through a time-dependent scaling parameter (table 6.5, models 7 and 9 vs 

table 6.4, models 1 and 3).  However, these were still significantly poorer fit than models with 

an asymptomatic component. In a variant (model 8) of the homogenous mixing model (model 

7), allowing transmission to be predominantly in childhood did not improve fit. Against the 

best-fit model of stable transmission (model 6), inclusion of historically high transmission did 

not fit as strongly (model 10).  

 

Model 

With 

declining 

force of 

infection 

Asymptomatic 

non-infectious 

component 

Mixing pattern in high-

dose force of infection 

Negative log likelihood 

7 No Homogeneous 740.3 

8 No Homogeneous with adult 

beta one-tenth of child 

beta 

795.2 

9 No Age-ethnic 688.3 

10 Yes Age-ethnic 508.7 

Table 6.5 Model fit under declining force of infection 

 

 

6.4.1.2 Sensitivity analysis of carriage 

In sensitivity analysis of carrier infectiousness, the fit of models with carriers' infectiousness 

reduced by 90% or 99% relative to acute cases was very close to that of the best fit model 

(table 6.6, models 11 and 12 vs table 6.4, model 6). Scenario projections were therefore 

taken forward of interventions under reduced carrier contribution to transmission. 

 

Model Carrier beta relative to acute infectious case beta Negative log likelihood 

11 10% 499.0 

12 1% 499.1 

Table 6.6 Model fit under reduced carriage beta 
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6.4.2 Interventions 

With peak surveillance incidence in young adults, we first examined the projected impact of a 

school-leavers ViPS vaccination programme, which cut cases by an estimated 8% (notified 

cases by 9%) (figure 6.5 and table 6.5). A school-entry vaccination programme was more 

effective, reducing cases by 16% (notified: 13%) indicating the role of school-aged mixing in 

contributing to the high-dose force of infection in the model suggesting this is a preferable 

timing if the model assumptions are valid.  Combined school entry and leaver vaccination 

resulted in 24% (notified: 22%) reduction in projected cases. The projected gain for a one-

time catch-up campaign of other school years was modest, an additional 2% over 50 years, 

with benefits largely accruing in the first decade and incidence returning to baseline after two 

decades. This was the same case reduction seen for a one-off school-age ViPS campaign, with 

incidence returning to baseline after two decades. 

 

Figure 6.5. Projected total (A) and notified (B) typhoid fever cases over 50 years 

by ViPS vaccination scenario.  

 

A WASH intervention that reduced transmission per case by 10% would be estimated to 

result in a 25% reduction in annual cases (notified: 24%) (table 6.4 and figure 6.6); equivalent 

to the most effective ViPS programmes.  

A                                                                                 B 
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Figure 6.6. Projected total (A) and notified (B) typhoid fever cases over 50 years 

by ViPS vaccination scenario with 10% transmission reduction through WA SH. 

 

Vaccine Intervention scenario Total 

annual 

cases 

 

Averted 

total 

annual 

cases % 

Notified 

annual 

cases 

 

Averted 

notified 

annual 

cases % 

None Baseline 2579 0 0 384 0 0 

None WASH 10% risk reduction 1929 650 25 290 94 24 

None WASH 25% risk reduction 1072 1506 58 163 221 58 

None WASH 50% risk reduction 350 2229 86 54 330 86 

Table 6.7. Projected impacts of transmission reduction through WASH  

 

Adding the above ViPS programmes to a 10% WASH programme brings projected incremental 

benefits approximately equivalent to the arithmetic sum of the WASH and vaccine 

programme (table 6.5, figure 6.6).   
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Vaccine Intervention scenario Total 

annual 

cases 

 

Averted 

total 

annual 

cases % 

Notified 

annual 

cases 

 

Averted 

notified 

annual 

cases % 

None Baseline 2579 0 0 384 0 0 

ViPS School entry  2172 407 16 335 49 13 

ViPS School leaver  2360 219 8 348 36 9 

ViPS Entry and Leaver  1957 622 24 299 85 22 

ViPS Entry & Leaver + campaign 1911 668 26 293 91 24 

ViPS Campaign 2515 64 2 376 8 2 

ViPS WASH 10% + School entry 1591 988 38 247 137 36 

ViPS WASH 10% + School leaver 1733 846 33 258 126 33 

ViPS WASH 10% + Entry &Leaver 1414 1165 45 218 166 43 

ViPS WASH 10% + Entry & Leaver + 

campaign 

1374 1205 47 213 171 45 

ViPS WASH 10% + Campaign 1868 711 28 282 102 27 

ViPS WASH 25% + School entry 890 1689 65 140 244 64 

ViPS WASH 25% + School leaver 955 1624 63 144 240 62 

ViPS WASH 25% + Entry & Leaver 793 1786 69 123 261 68 

ViPS WASH 25% + Entry & Leaver + 

campaign 

765 1814 70 119 265 69 

ViPS WASH 25% + Campaign 1025 1554 60 157 227 59 

ViPS WASH 50% + School entry 313 2266 88 49 335 87 

ViPS WASH 50% + School leaver 323 2256 87 49 335 87 

ViPS WASH 50% + Entry &Leaver 290 2289 89 45 339 88 

ViPS WASH 50% + Entry & Leaver + 

campaign 

279 2300 89 44 340 89 

ViPS WASH 50% + Campaign 332 2247 87 51 333 87 

Table 6.8. Projected impacts of ViPS vaccination programmes with transmission reduction 

through WASH  

 

 

If WASH resulted in 25% or 50% reduction in the per-case transmission parameter (figure 6.7 

and figure 6.8, table 6.4), the model suggests this would reduce cases by 58% and 86% 
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respectively, down to tens of notified cases for a 50% WASH intervention. Projections suggest 

adding vaccination programmes to a 25% WASH programme has further benefits, for a total 

case reduction of 65% with school-entry vaccination and marginal gain for more intensive 

programmes. The projected incremental gains of ViPS vaccination programmes on 50% WASH 

were very modest compared with use in other modelled WASH scenarios (table 6.5).  

 

Figure 6.7. Projected total (A) and notified (B) typhoid fever cases over 50 years 

by ViPS vaccination scenario with 25% transmission reduction thro ugh WASH. 
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Figure 6.8. Projected total (A) and notified (B) typhoid fever cases over 50 years 

by ViPS vaccination scenario with 50% transmission reduction through WASH.  

 

If a TCV vaccine was available with the efficacy and durable immunity utilised in our model, it 

could have substantial impact (table 6.6, figures 6.9 to 6.12).  

Vaccine Intervention scenario Total 

annual 

cases 

 

Averted 

total 

annual 

cases % 

Notified 

annual 

cases 

 

Averted 

notified 

annual 

cases % 

None Baseline 2579 0 0 384 0 0 

TCV Infant 1311 1268 49 214 170 44 

TCV School entry 1348 1231 48 216 168 44 

TCV School leaver 1771 808 31 252 132 34 

TCV Entry and Leaver 961 1618 63 149 235 61 

TCV Entry & Leaver +campaign 837 1742 68 132 252 66 

TCV Campaign 2252 327 13 337 47 12 

TCV WASH 10% + Infant 977 1602 62 159 225 59 

TCV WASH 10% + School entry 992 1587 62 159 225 59 

TCV WASH 10% + School leaver 1268 1311 51 182 202 53 

TCV WASH 10% + Entry &Leaver 720 1859 72 112 272 71 
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TCV WASH 10% + Entry & Leaver + 

campaign 

626 1953 76 99 285 74 

TCV WASH 10% + Campaign 1627 952 37 246 138 36 

TCV WASH 25% + Infant 603 1976 77 98 286 74 

TCV WASH 25% + School entry 603 1976 77 97 287 75 

TCV WASH 25% + School leaver 718 1861 72 104 280 73 

TCV WASH 25% + Entry & Leaver 461 2118 82 72 312 81 

TCV WASH 25% + Entry &Leaver + 

campaign 

402 2177 84 64 320 83 

TCV WASH 25% + Campaign 867 1712 66 133 251 65 

TCV WASH 50% + Infant 256 2323 90 42 342 89 

TCV WASH 50% + School entry 253 2326 90 41 343 89 

TCV WASH 50% + School leaver 273 2306 89 40 344 90 

TCV WASH 50% + Entry & Leaver 210 2369 92 33 351 91 

TCV WASH 50% + Entry & Leaver + 

campaign 

186 2393 93 30 354 92 

TCV WASH 50% + Campaign 285 2294 89 44 340 89 

Table 6.9. Projected impacts of TCV vaccination programmes with transmission reduction 

through WASH  
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Figure 6.9. Projected total (A) and notified (B) typhoid fever cases over  50 years 

by TCV vaccination scenario.  

 

Figure 6.10. Projected total (A) and notified (B) typhoid fever cases over 50 

years by TCV vaccination scenario with 10% transmission reduction through 

WASH. 

A                                                                                 B 

A                                                                                 B 



248 
 

 

Figure 6.11. Projected total (A) and notified (B) typhoid fever cases over 50 

years by TCV vaccination scenario with 25% transmission red uction through 

WASH. 

 

 

 

Figure 6.12. Projected total (A) and notified (B) typhoid fever cases over 50 

years by TCV vaccination scenario with 50% transmission reduction through  

WASH. 

  

A                                                                          B 

A                                                                          B 
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The optimal single-dose programme of those modelled would be vaccination in the second 

year of life rather than school age, reducing cases by an estimated 31% (notified 34%) in the 

absence of WASH intervention. A two dose school programme could cut incidence by an 

estimated 63% with the possibility of greater gain from an infant plus school leaver 

programme given the projected effect of the single dose infant programme and durability of 

vaccine immunity. Combining TCV annual programmes with WASH interventions suggests 

incidence reduction of over 60% over a 50-year horizon, with TCV programmes projected to 

be more effective than ViPS in reducing incidence over the gains accrued from major WASH 

interventions.  

A sensitivity analysis of vaccine efficacies and durability of vaccine immunity modelled 

incidence reduction in a school-entry routine immunisation programme (figure 6.13) and 

allows comparison across combinations of effects. For example, a 95% initial efficacy 3-year 

vaccine offers similar incidence reduction to a 70% initial efficacy 5-year vaccine.  

 

Figure 6.13. Impact of vaccine efficacy and duration of vaccine immunity.  

Percentage reduction in cases over 50 years for a school entry vaccination programme. 
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Projections were done for scenarios in which carriers’ infectiousness per contact per day 

(beta) was 90% less than acute cases. To achieve the same reported case incidence requires a 

higher annual incidence of total acute infections than the baseline model: 3768 vs 2579. 

Examining TCV vaccination and 10% WASH improvements, without the “damping” effect of 

so many carriers, interventions resulted in more rapid drop in incidence, but also “rebound” 

effects following one off-campaigns (figure 6.14). 

 

Figure 6.14. Projected total (A) and notified (B) typhoid fever cases over 50 

years in scenarios with carrier beta at 10% of acute case beta . 

 

Over the 50 year projected time horizon, a greater reduction in incidence would be observed 

than under equivalent scenarios with carrier beta equal to acute case beta. For example, 

infant TCV vaccination with 10% WASH improvement results in 87% reduction in notified 

cases (table 6.10) versus 59% reduction (table 6.9), with the gain from vaccination 

proportionately greater than the gain from WASH (30% vs 24% effectiveness for 10% WASH 

improvement), as a result of indirect protection. Carriage contribution therefore represents a 

considerable degree of uncertainty in projected impacts, particularly for vaccination, and 

could affect the balance of prioritisation within WASH versus vaccination. There is no change 

to order of effectiveness in terms of vaccination strategies. 

 

A                                                                                     B 
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Intervention scenario Notified 

annual 

cases 

 

Averted notified 

annual cases % 

Baseline 385 0 0 

WASH 10% 269 116 30 

WASH + Vi-conjugate infancy 51 334 87 

WASH + School entry 66 319 83 

WASH + School leaver 119 266 69 

WASH + Entry and Leaver 40 344 89 

WASH + Entry and Leaver with campaign 23 362 94 

WASH + Campaign 231 154 40 

Table 6.10 projected reduction in annual notified cases of typhoid fever over 50 years in 

scenarios with carrier beta at 10% of acute case beta. 

 

Whilst this paper is directed towards interventions from Fiji’s current situation, the 

mechanism by which the current epidemiological situation arose bears consideration in 

assessing assumptions implicit in the model. There has been a notable upturn in confirmed 

case incidence from pre-2004 when incidence was <5 per 100,000 person-years47 to the 

approximately 45 per 100,000 levels seen in 2008 onwards.5 These analyses offer some 

possible insight into the observed epidemic dynamics. These projections start from the 

current modelled equilibrium rather than projecting forward to the present day from 

unknown historical immunological situation. We examined a scenario set in which the low-

dose per-case α transmission parameter was reduced while keeping constant the β 

parameter that determines high-dose transmission (figure 6.15 and table 6.11). These 

scenarios suggest that the resultant increase in number of susceptibles would be projected to 

increase case numbers by 5% in a 10% α-reduction scenario over 50 years, and 31% if α was 

reduced by 50%. Loss of immunity through a reduced α parameter and declining 

asymptomatic infection leads to a build-up of susceptible individuals and subsequent increase 

in cases. Such scenarios are plausible in settings in which infectious disease is in decline. The 

modelled timeline over which this takes place and scale – approximately three to four 

decades for a 40% increase in cases at a halved α is not consistent with the observed 
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epidemic increase of typhoid in Fiji.  In an illustrative set of models, increasing the reporting 

fraction p1 scaled notified cases linearly (figure 6.16) suggesting this is a feasible mechanism 

to explain the observed increase in notifications. 

 

Figure 6.15. Projected total (A) and notified (B) typhoid fever cases over 50 

years in scenarios reducing low-dose force of infection only.  

 

Reduction in low 

dose force of 

infection only 

Total 

annual 

cases 

Additional 

annual cases 
% 

Reported 

annual 

cases 

Additional 

annual reported 

cases 

% 

Baseline 2579 0 0 384 0 0 

10% α reduction 2699 120 5 402 18 5 

25% α reduction 2910 331 13 435 51 13 

50% α reduction 3381 802 31 506 122 32 

Table 6.11. Projected impact of reduction in low dose force of infection 

 

 

A                                                                                     B 
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Figure 6.16. Projected total  (A) and notified (B) typhoid fever cases under 

different reporting scenarios.  

  

A final scenario set projection of an increase in the β per-case transmission parameter was 

undertaken for consideration alongside the sensitivity analyses of the α parameter and 

reporting fraction (figure 6.17). An increase in the effective β per-case transmission 

parameter may be suggested as associated with increased inter-person contact rates with 

travel, housing and work pattern changes, changes to transmission mechanisms such as 

sanitation breakdown or increases in the pathogen’s innate biological transmissibility. An 

increase in β appears more consistent with the observed trend in notified cases than changes 

to α, with a slight decline in cases following the sharp epidemic upturn that may or may not 

reflect such a change in transmissibility.  

 

A                                                                                       B 
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Figure 6.17. Projected total (A) and notified (B) typhoid fever cases under 

different increases to β transmission parameter.  
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6.5 Discussion 

This study examines models of the epidemiology of typhoid fever in Fiji and explores the 

potential impact of control measures in age- and ethnicity-structured transmission dynamic 

model projections. The findings are strengthened by model-fitting under a range of 

epidemiological constructs, which found that generation of asymptomatic, non-infectious 

cases, and assortative mixing for case generation were important in reproducing the field 

serology and surveillance data. The study combines a conceptual framework incorporating a 

literature-grounded assessment of typhoid dose-dependence of infection with Fijian national 

surveillance data and a nationally-representative field survey for serology and social contact 

patterns.  

Projecting over a fifty-year time horizon, we found that ViPS vaccination programmes offered 

modest reduction in incidence when implemented as school-age programmes. The largest 

incidence reduction, of around 25%, was seen with a programme utilising school entry and 

school leaver vaccination, with equivalent reduction in incidence from a 10% reduction in 

per-case transmission parameters, such as through effective enhancement of WASH 

infrastructure and norms. School vaccination campaigns and catch-ups offered some short-

term additional benefits to programmatic use without long-term impact. A high efficacy TCV 

programme could substantially reduce incidence, including through implementation 

alongside measles-rubella vaccination at 12 months of age and in parallel to WASH 

strengthening. Notably, vaccination at 12 months, as recommended by WHO, was projected 

to have less impact than a schedule with two doses (one in early childhood and a second dose 

at school-exit age); though this is based on speculative duration of vaccine effect, which 

remains an important area for research. There is important uncertainty in the model 

projections due to the role of carriers in transmission. If carriers are substantially less 

infectious per day than cases, then the impacts projected in this paper may underestimate 

the impact of vaccination and improvements to WASH, and the balance of these, with lower 

carriage contribution enhancing the impact of vaccination. 

The finding of best fit at a 99% reduction in high dose inoculation in non-iTaukei Fijians was 

unexpected in its magnitude. Descriptive data collected during the linked serosurvey on 

putative risk factors such as HWWS, socio-economic status, piped water and sanitation 

systems would not seem to account for such a scale of difference in risk between iTaukei and 

non-iTaukei Fijians, though social response bias is a consideration. Differences in health-

seeking behaviour of this scale did not seem borne out in public sector hospital attendances 

observed during fieldwork, nor in responses to a dengue fever survey. This model finding 

adds weight to the hypothesis that the notified disease difference may be in part due to 
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reduced susceptibility in Indo-Fijians. There is a known protective HLA type,48 and the  

ancestral exposure of Fijians of Indian descent to S. Typhi through millennia of double-digit 

typhoid case fatality rates would be a potent driver of selection for immunity. This contrasts 

to the known vulnerability of iTaukei and other Melanesians to dysenteric infections.49 Budd 

reports the population of Tahiti, a Polynesian island, being “swept off” by typhoid imported 

from Europe 150 years ago.50 

Our approach is similar to but conceptually distinct from short-cycle (direct) and long-cycle 

(environmental, indirect) transmission modelling.37,51 Our model explicitly includes the 

different pathogenic outcomes following low or high dose inoculation, building on the 

Maryland challenge studies,11,12 focussing on the inoculating infectious event and its 

consequences rather than the source of the inoculum.  Long-cycle may be more likely to 

typically convey low-dose inoculum with low probability of pathogenesis and short cycle to 

convey high dose, though this is not an explicit component of this model. The high dose 

contact patterns and transmission events in the model do not preclude an element of long-

cycle transmission and vice versa, given known localised environmental bacterial detection 

around cases,52 and serological association with wetter areas described previously53 as well as 

reports of river-borne transmission between iTaukei villages.  

We examine WASH as a reduction in the β per contact transmission parameter, without 

prescribing components for intervention, which are be better determined by case-control 

studies, such as a recent paper by Prasad and colleagues.54 Prasad’s study found risk factors 

to be (by decreasing population attributable risk (PAR)) unimproved sanitation (72%), non-

washing for produce before consumption, intermittent water supplies, and consumption of 

surface water as a secondary water source. Protective factors were HWWS and high 

handwashing frequency after defecation. All of these are compatible with the findings of this 

modelling study – the two studies together suggest substantial impact would be possible by 

addressing safe sanitation systems as a priority. 

 

The balance of infectious and immunising forces in the model was examined by a sensitivity 

analysis of the α scaling parameter for low-dose transmission. Reducing this increases the 

susceptible population and caused a rise in cases, though not on a timescale that explains the 

upturn in cases seen in the last decade. It is unlikely that interventions for WASH might 

independently act to reduce α without impacting primarily on β: follow up serosurveys and 

national typhoid fever surveillance would be important means of observing changes to 

population immunity and any association with case incidence.  
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A number of mechanism may explain the rise in cases in Fiji in the 2000s. In Malawi, the 

arrival of the globally-expanding virulent multidrug resistant H58 subclade of S. Typhi has 

been suggested as increasing transmission.55 The absence of emerging antimicrobial 

resistance5 or of persistence of H58 isolated in Fiji in the early 1990s56,57 against the endemic 

Oceanian S. Typhi clade suggests transmission has not risen as a result of H58 expansion. Loss 

of population immunity is not consistent with the timescale and extent of increase in notified 

cases. Of scenarios we tentatively examine with this model, socio-epidemiological changes 

increasing transmission could fit with the timescale as could changes in disease reporting. 

Dunn and colleagues suggest that the increase in notification was a result in the change in 

laboratory detection following a scale-up in hospitals’ use of blood culture diagnostics in the 

2000s.47 This modelling analysis, in assuming a stable long-term disease equilibrium, implicitly 

accepts Dunn’s assessment, supported by serology consistent with an endemic transmission 

pattern.7 When fitted to declining transmission parameters from a historically higher baseline, 

examined models were less able to reproduce the data than under equilibrium assumptions. Pre-

2004 serum samples could be strongly informative to further analysis. The modelling 

framework we have developed may offer a mechanism for further investigation of these 

events. 

There are a number of limitations to our study. Limitations on the interpretation of serology 

are a key consideration, and are reviewed in more detail elsewhere in this thesis, centring on 

sensitivity and specificity of anti-Vi IgG and the fitted threshold for seropositivity used as an 

indicator of past infection and subsequent immunity.  Parameter estimates are best fit values 

but could have uncertainty quantified by likelihood profiling. Bayesian methods could 

alternatively be applied to parameter estimation. Our model considers typhoid transmission 

to occur as single time point events. This simplification does not exclude the possibility or 

probability that exposure to Typhi can occur over a prolonged period, with such occurrences 

plausibly associated with raising anti-Vi titres to observed levels. The carriage risk following 

an acute infectious episode was fixed across age groups; this could be varied, though would 

be expected to have only modest impact on dynamics. The reporting fraction adjustment for 

children could be varied further by age in line with a recent meta-regression analysis.3,31  

A further model extension would be to include seasonality through a varying β parameter. 

Typhoid incidence tracks rainfall in Fiji by approximately a two month lag,58 though the 

relative contribution to this of environmental factors or seasonally varying social mixing 

patterns and other seasonal factors is unclear, and is likely to have modest impact in long-run 

projections.  
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Much remains to be determined in the pathogenicity and immunogenicity of natural typhoid 

infection in informing its control; the interplay of human challenge studies, field 

epidemiology and modelling offer potential insights alongside new developments in 

surveillance, laboratory research and vaccine trials.44,59 Stool shedding of Typhi can occur in 

those who ingest Typhi but do not develop overt disease, though may not arise in the 

majority of such cases. Hornick and colleagues note this was seen at the ID50 of 107 bacilli, 

whilst low dose exposure in community settings might be considered in the range 103 to 105. 

Recent blood culture-PCR in the Oxford typhoid human challenge study tested positive for 6 

of 17 culture negative participants who were not diagnosed with typhoid, further indicating 

asymptomatic bloodstream infection occurs, as might lead to raised plasma anti-Vi IgG. Five 

of the six Oxford asymptomatic DNAaemic participants did not have S. Typhi detected in 

stool: this broadly supports our handling of an asymptomatic case compartment as non-

infectious whilst also have infectious cases potentially subclinical in their presentation. 

In efforts to understand the transmission of typhoid in Fiji, we have developed a 

parsimonious age structured model that incorporates ethnicity and inoculation dose-

dependency in its structure, reflecting some of the complexity of Fijian society and the 

pathology of Salmonella Typhi. Our modelling study, grounded in a sero-epidemiological and 

social contact survey, suggests the potential role of established and recently-recommended 

vaccines, whilst further supporting the use of effective WASH interventions in control of the 

persistent scourge of typhoid fever. 
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6.7 Supplementary material 
 

 

Supplementary Figure S6.1.  Time-dependent scaling parameter for declining-

incidence sensitivity analysis  
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Chapter 7. Discussion 
 

The aim of this thesis has been to examine the seroepidemiology of human Salmonella Typhi 

infection in Fiji and potential impacts of vaccination programmes or other public health 

interventions to reduce typhoid transmission and typhoid fever cases.  

This discussion chapter seeks to: 

 briefly restate the principal findings of this research project;  

 review strengths and limitations; 

 compare findings to the state of knowledge prior to the work; 

 to suggest implications of the research; and  

 to indicate possible research future directions. 

At the commencement of these studies, surveillance data indicated the overwhelming 

majority of cases were in iTaukei Fijians, most commonly those aged 15-34 years.1 There was 

limited data by which the extent of under-reporting could readily be assessed.2 Alongside 

universal demographic factors such as age and sex, a particular consideration for Fiji is the 

role of ethnicity in the epidemiology of health and disease,3 including for typhoid fever and 

other communicable diseases.  

The thesis papers are approximately sequential in development with prior papers informing 

the more recent. The following summarises the key findings of the papers, with those for the 

serosurvey, contact study and model described in relation to the aims presented in the 

introduction to the thesis. 

In chapter 2, the literature review,4 I identified that transmission models are relatively under-

utilised in typhoid control, particularly in economic evaluation, with little guide to relative 

cost-effectiveness of vaccination in place of or alongside with WASH. The particular relevance 

of the review to Fiji was in identifying model conceptualisations and the need for setting 

specific parameterisation. 

Chapter 3 covered the serological survey.5  This has the principal field research finding, which 

is that iTaukei and non-iTaukei Fijians have similar risk of developing raised IgG antibodies to 

the Vi antigen expressed by S. Typhi, and that seroprevalence increases with age. This is 

suggestive of endemic transmission, though also compatible with historically higher incidence 

in childhood cohorts.  
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Antibody decline towards baseline was determined in a patient cohort examined alongside 

the cross-sectional survey. Risk factor analysis suggests there may be possible roles for 

unimproved sanitation and settlement residency in antibody acquisition, whilst the study did 

not indicate different risks by sex, ethnicity, rurality or water sources. The implications of the 

serosurvey for the epidemiological model of Fiji is that there appears to be substantial un-

reported typhoid transmission in Fiji, affecting both major ethnic groups, which requires a 

mechanistic explanation. 

The geospatial paper6 in chapter 4 identifies rainfall, proximity to major rivers and creeks, and 

proximity to flood-prone areas as environmental risk factors for acquisition of anti-Vi IgG 

antibodies, after adjusting for age, self-reported vaccination status and home toilet type.   

In the social contact survey (chapter 5),7 I found that social mixing is assortative by ethnicity 

and age when assessed by mealtime contacts. These are not unexpected findings but provide 

quantitative estimates of daily contact rates. Similar to conversation-based contact studies in 

other countries, these were found to be highest in school-age children. Increasing number of 

age-adjusted contacts increases the odds ratio for being seropositive, driven by number of 

iTaukei contacts of iTaukei participants, with no evidence from other ethnicity-based 

contacts, after adjusting for age, sanitation and settlement residency.  

The transmission dynamic model (chapter 6) was designed to synthesise the findings from the 

prior studies. The model fitted the serology and case data well when fitted parameters 

included a substantially reduced force of infection for high-dose infection being passed to 

non-iTaukei Fijians, and there was high generation of homogeneously-distributed 

asymptomatic non-infectious cases per new infectious case. Surveillance reporting of 

infectious cases was estimated as one in five infectious adult cases and one in twelve 

infectious child cases. Vaccine scenarios suggested that of single dose routine programmes, 

school entry could be more effective than school leaver vaccination, reflecting age-contact 

transmission probabilities in the model. Modest reduction (10%) in per-case infectious 

transmission through effective WASH programmes offered substantial incidence reductions 

of around 25%, comparable to two-dose (school entry and exit) ViPS vaccination 

programmes. Potential benefits of conjugate vaccines were projected to be similar to more 

effective WASH programmes, with administration alongside other vaccines in the second year 

of life projected to offer approximately 50% incidence reduction, the most benefit of any 

single dose regimen.  

A strength of the research programme is the collection of field data specifically for the 

purpose of informing epidemiological understanding, to support modelled assessments of 
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vaccine impact.  Epidemiological fieldwork without a theoretical framework and data-free 

theoretical models are increasingly recognised as less productive than approaches utilising 

both.8,9 The absence of serology, imperfect is it might be, would have left parameter space 

much freer and greatly increased the difficulties in attempting to assess the extent of under-

reporting in Fiji, particularly given the important differences observed in case ethnicity. Social 

mixing data further strengthens the model in this regard. 

The research findings may be informative to local communicable disease control policy, 

though require caution in interpretation, not least for serology in this study, including the 

fitted threshold. This study represents an early endeavour in the use of anti-Vi IgG as a 

typhoid serosurveillance tool. The surveillance threshold fitted from convalescent case data is 

used as indicative of exposure and immunity but requires further development in assessing 

sensitivity and specificity, and thus the degree to which the derived threshold may under- or 

over-ascertain past infection. The decision to pursue an anti-Vi serosurvey was supported by 

a relatively modest body of research including immunological analysis,10 field research,11 and 

vaccine trials.12,13 Since the start of the study, there has been increased immunological 

support for Vi as a marker of natural protection14 including supportive finding on the role of 

modest Vi titres in protection from human challenge studies.15,16  The use in the serosurvey of 

purified pharmaceutical grade Vi for ELISA may contribute to reduced cross-reactivity and 

strengthen test validity relative to less refined Vi preparations.17 Recent findings from the 

Oxford human challenge studies suggest serum bactericidal activity (SBA) protects against 

severe disease but not infection18 – this  is not field data but nonetheless supports the use of 

Vi ELISA as a more suitable current tool for typhoid seroepidemiology.  

Further comparison with d-flagellin assays would have been welcome in triangulating 

findings. Re-examination with recently developed reference serum, even in the absence of 

agreed correlates of protection,19–21 and for typhoid toxin22 or other novel biomarkers are 

potential extensions to such seroepidemiological work.  We reached a limit in the number of 

confirmed typhoid patients from Colonial War Memorial, the national teaching hospital, that 

could feasibly be traced and recruited but a larger Fijian patient cohort prospectively 

identified and with longer follow-up could potentially inform population serology.  

An important consideration in seroepidemiology is that serology is not necessarily a marker 

of past or current disease. As suggested in the serology study and modelling study, a large 

proportion of typhoid cases are mild or asymptomatic. Those enrolled as patients may be a 

frailer subset (in the statistical hazard sense) of the general population and not 

representative of population immunity. There are potential differences in kinetics between 
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patients and those whose typhoid (mild or otherwise) goes untreated in the community. 

Clinical serology from Vietnam23 (with supporting evidence from the Oxford challenge 

study)24 suggest infection longer than two weeks may be necessary for sustained Vi response; 

in the Fijian patients, no antibody differences was seen when grouped by self-reported 

clinical duration. The antibody kinetics in seroconverted patients suggests a more rapid 

decline towards baseline than durations fitted in the model. Modelling typhoid in Fiji with 

short natural immunity resulted in very poor serological fit relative to multi-decade or lifelong 

immunity. It is possible that decline becomes asymptotic towards the threshold but a further 

explanation is asymptomatic boosting or prolonged exposure: unlike the Yale Asia model,25 

the Fiji model simplification does not capture boosting processes. As noted in the 

introduction, two further rounds of serum collection have been undertaken with Central 

Division participants for arboviral disease investigation. These additional survey rounds offer 

the possibility of examining true population typhoid antibody kinetics such as wane and 

boosting, by paired or cohort analysis of anti-Vi titres.  

International comparison with representative population serology from high and low 

incidence settings may offer the most informative means to examine typhoid natural 

immunity distributions. This work uses a dichotomised immunity state, in a conventional 

medico-epidemiological approach to simplification of biological processes for analytical 

purposes. What is suggested from synthesis of the literature on dose dependency in 

infection, inconclusive thresholds for correlates of immunity, and the serological study’s 

population distributions of antibody titre, is that typhoid immunity could or should be treated 

as a distribution accounting for protection to different inoculating doses. As noted in the 

model chapter, multiple dose-pathology responses could be developed; sensitivity analysis of 

thresholds and allocation to compartments could also be done. Some approaches to 

modelling vaccine immunity distributions alongside inoculation distributions have been 

suggested in recent analysis of simulated susceptible-infectious data by Gomes and 

colleagues.26 To really begin to examine immunological thresholds and distributions of 

natural anti-Vi protection, adaptations of the human challenge study could be done based on 

known baseline antibody titres of participants. Challenge studies in endemic areas would be a 

major undertaking and likely require sustained engagement with local research ethics 

committees.  

In terms of within-population risk factors, the mechanisms for the transmission of 

seropositivity are not necessarily the mechanisms by which disease is transmitted. This may 

particularly be the case if high dose and low dose are transmitted separately – for example, if 

municipal waterborne typhoid transmission is more likely to be of a low inoculum, as noted in 
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Glynn and Bradley’s study of historical outbreaks.27   Thus it is important to be very cautious 

in interpretation of findings from the serosurvey (including geospatial component) as to how 

these might apply to typhoid fever, the disease. A further consideration in this domain is that 

the mechanism by which the geospatially-determined water-based exposures might give rise 

to seropositivity is not necessarily ingestion of water. No variables for river exposure 

(bathing/swimming, walking through, cleaning clothes, cleaning pots) or drinking water 

sources were identified as associated with seropositivity in the main serosurvey paper. This 

may point towards the saturated physical environment as a conduit, consistent with other 

research in Fiji.28  

In the social mixing study, the association of seropositivity with age-adjusted inter-iTaukei 

contact rates is supportive of a hypothesis of socially-structured transmission being 

important to the spread of typhoid in Fiji, which is not synonymous with direct person-to-

person transmission but potentially reflects common exposure to indirect transmission within 

a social context, which may include contamination of food or surface water supplies, and 

contaminated fomites, in line with contemporaneous studies and historical reports of typhoid 

transmission. The age-assortative social contact data has highest rates in the school-aged, 

which steers our model towards accepting childhood transmission as important in typhoid, 

consistent with established theories of transmission in developing countries  of typhoid and 

non-typhoidal enteric bacterial infections.29,30 Other mixing matrices’ fit to data were less 

good when examined in the model.  

The last full year of available national surveillance data was 2014. Analysis with more recent 

data could also be informative. There was suggestion in simple linear regression of case data 

of a trend of an 11-cases per year decline from 2008 to 2014. This would be consistent both 

with an increased transmission coefficient () as a driver of the epidemic, and consistent with 

improved WASH interventions reducing  as part of outbreak response. These were premised 

on endemicity – models of declining transmission rates across decades from historical highs 

did not fit the data as well. Access to historical serum sets would support assessment of the 

mechanisms underpinning the rise in cases. 

The findings from this project have implications for public health practice, even with these 

limitations.  Whilst economic evaluation was left beyond the scope of the doctoral project, 

the model findings are informative to the relative potential contribution of vaccines and 

sanitation, and their sensitivity to factors such as the relative infectiousness of carriers. 

Whilst some policymakers may use these to signify the necessity of vaccination, the model is 
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intended to give an appreciation of levels of effective intervention necessary for disease 

control of different degrees though both vaccination and WASH.  

Of possible risk factors generated in the analysis of the serosurvey, unimproved sanitation 

systems are consistent with findings of disease association from recently completed case-

control and case-environmental analyses of Fiji’s Central Division, primarily implicating 

unimproved or damaged sewage systems, with attributable risk also from unwashed 

produce, intermittent water, surface water as a secondary drinking water source and the 

absence of handwashing with soap.31,32 Interestingly, these typhoid fever findings are 

consistent with systematic reviews33 on diarrhoeal disease (which, as a classification, excludes 

typhoid fever), rather than suggesting different predominant modes of transmission for 

Salmonella Typhi compared with enteric bacterial pathogens considered to have lower 

inoculating doses  such as Shigella spp. Collectively, the transmission model and these studies 

create a consistent picture of the importance of addressing sanitation and hygiene to reduce 

Salmonella Typhi transmission from infectious cases and carriers to protect those around 

them, water courses and food produce, in line with the F-diagram approach to sanitary 

engineering outlined in the introduction to this thesis, the historical literature,34–36 and Asia-

Pacific case control studies.37–40  

A policy consideration should be the cost and opportunity cost of establishing a long-term 

typhoid vaccination programme versus other interventions, particularly if baseline typhoid 

fever incidence may be falling. Unlike a vertical vaccination programme, WASH strengthening 

also contributes to control of other communicable diseases. Were vaccine campaigns to be 

considered for short term control, potentially as a stop-gap to improvements in WASH, our 

modelling suggests effective school based campaigns can result in substantial incidence 

reductions without the potential health service disruption of all-age vaccination drives. 

Consistent with the national narrative on citizenship and identity, the modelled analyses do 

not examine the impact of immunisation or targeted WASH interventions based on ethnic 

group.  

The age- and ethnic- structured modelling framework could be adapted for other public 

health threats in Fiji. A recent outbreak of the faecal-orally transmitted hepatitis A virus 

primarily affected Indo-Fijians in Western Division.41 Serological studies have shown markedly 

different viral hepatitis seroprevalences by ethnicity in Fiji42,43 and could be integrated into a 

dynamic, socially-structured model, potentially with serological testing of the 2013 samples.   

Direct application of the modelled vaccine effectiveness results to other settings, or specific 

comparison to results from other models,25,44 is limited by setting-specific epidemiology and 

model parameterisation other than in general terms described above, such as the likely 

relative effect of different vaccine characteristics and the interplay of WASH and vaccination. 

The project demonstrates that it is feasible to undertake serological data collection and use 

this to inform model projections that account for otherwise unobserved transmission and 
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immunity. Serologically informed typhoid modelling could readily be applied in other settings 

for vaccine impact estimation, such as those included in international typhoid surveillance 

programmes.45,46 The major Wellcome- and Gates- funded STRATAA study uses anti-Vi IgG 

ELISA for detection of seroconversion in household contacts of cases to determine secondary 

attack rates.47   

In terms of research unknowns, long-term carriage remains one of the most interesting 

characteristics of typhoid transmission. Carriage supports persistence of S. Typhi in low 

transmission settings and may make elimination more challenging.4 The literature review 

found that carriage prevalence or risk of carriage following acute illness was an important 

determinant of indirect vaccine protection in models combining lifelong carriage with or 

without a β modifier. A similar finding was observed in the Fiji model, with the β of carriers 

relative to cases having important influence on vaccine effectiveness, and no difference in fit 

observable across two orders of magnitude variation in carrier β. Despite the concept that Vi 

carriage can be determined by Vi serosurveillance, there was insufficient data in the field 

survey (and no known Fijian carriers from which to have a positive control set) to begin to 

determine a serological threshold suggestive of carriage, beyond the speculative observations 

in the field survey paper.  As noted in the introduction, historical efforts to use Vi serology for 

carrier detection have not been universally successful as a convenient alternative to repeat 

stool culture. 

A number of programmes could support the identification of carriers and the development of 

carriage serological thresholds, some of which were proposed for Fiji but not yet taken 

forward from the 2012 expert meeting. An anti-Vi screening programme for carriage was 

proposed to replace stool screening, on the grounds that case and peri-case stool screening is 

wasteful, though this would be inconsistent with recent UK guidelines which still give primacy 

to stool culture over serological methods.48 Undertaking these developments as research 

rather than a programme would seem appropriate. Serological testing of cholecystectomy 

patients alongside suitable gallbladder or gallstone culture could identify carriers and possible 

thresholds for screening and inform carrier seroprevalence from the national serosurvey. 

The social mixing survey develops this field of research in two dimensions – the use of meal-

based contact for enteric infectious disease modelling (rather than conversational contacts 

for respiratory diseases), and in enquiry about ethnicity. By quantifying mealtime social 

contacts, this study is one of the first social mixing studies specifically designed to inform 

transmission of faecal-orally transmitted pathogens, though it is important to note the intent 

of such data is to inform intensity of social contact as a proxy for risk rather than being 
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prescriptive about the mechanism.49 On this basis, the mixing matrices could readily have 

wider application in Fiji for addressing data gaps in epidemiological modelling of diseases 

such as scabies (personal communication, David Regan), again utilising the social intimacy of 

eating as a proxy for transmission risk.7,49 The contact survey has potential utility beyond Fiji, 

both as Pacific island mixing data, and in methodological development.  The study warrants 

further investigation and validation against a range of markers of infection for a range of 

enteric diseases and in other settings.  

Consistent with a broader health utility perspective, the serosurvey was designed for 

application across multiple diseases. Since undertaking this study, there has been a call for 

increased use of such serum banking for infectious disease investigation, endorsed by leading 

Anglo-American public health institutes.50 Establishing the Fiji serum bank has opened up a 

multiplicity of uses and contribution to communicable disease research beyond typhoid 

fever, most notably to date through the leptospirosis investigation led by Colleen Lau,51,52 but 

also arboviral disease, including dengue outbreaks and the emerging threat of Zika virus.  

A final point I had been pondering during my doctoral research was where the intersection 

might lie of these typhoid control investigations and my parallel research in Ebola vaccine 

field trials and novel trial designs for control of diseases of epidemic potential.53,54 A 

reanalysis by Mohammad Ali and colleagues of a cholera vaccine cluster randomised trial as a 

ring vaccination trial showed one possible approach.55 Another answer came from Kim 

Mullholland (personal communication): ring vaccination trials against typhoid, with the 

possibility of demonstration projects in Fiji or other Oceanian island states. Such studies, 

whether individually- or cluster-randomised, would be compatible with current WHO 

recommendations on typhoid vaccination in outbreak control,56 internationally declining 

typhoid incidence trends,57 and case response by environmental health teams in some low to 

moderate incidence settings.  The serial interval between cases makes this a plausible, if 

enormously challenging, means of examining vaccine efficacy and effectiveness and an 

intriguing parallel approach to ongoing large-scale cluster randomised trials of typhoid 

conjugate vaccines in Asia and Africa.58 The prospects for scientifically-informed typhoid fever 

control look increasingly promising. 
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Appendix A1. Informed consent and questionnaire 

 

Typhoid and leptospirosis in Fiji 
Research Consent form for adult and child participants 

Participant ID Number: FJT 
 
I/we have read and understood the information sheet. I/we understand that participation 
is voluntary and I/we can withdraw assent/consent at any point without giving a reason. 

I consent to the following:  (please tick yes or no to each question) Yes No 

1. 
A sample of my/my child's blood may be taken and used for typhoid 
and leptospirosis research. 

  

2. 
The answers I/we give to questions can be used for public health 
research, including typhoid and leptospirosis. 

  

3. 
The Ministry of Health, or researchers working with the Ministry, can 
contact me/us again about typhoid and leptospirosis research. 

  

4. My/my child's blood sample can be used for other health research. 
  

5. 
The Ministry of Health, or researchers working with the Ministry, can 
contact me/us about other health research. 

  

 

 

Name of participant: 

(please print) 

Age in years: 

 

Signed by participant if age 12+: Date (dd/mm/yyyy) 

Name of PARENT or CARER for child participants (age 17 or less):  

(please print) 

Signed by parent/carer: Date (dd/mm/yyyy) 

letter site person 
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If the participant/parent/carer does not speak English: 

Witnessed by:  
(please print name) 
Signed by witness: 
 

Date (dd/mm/yyyy) 

 

Participant ID FJT  Data entered  Re-entered  

checked 

Date today:  __ __ / __ __ / 20__ __ (dd/mm/yyyy) 

Day of the week (circle number): 1=Mon 2=Tue 3=Wed 4=Thu 5=Fri 6=Sat

 7=Sun 

Interviewer (circle) :  JC  IK  MT  LV    SR  AS     KR  CW 

 Other:_____________________  

How many homes did you have to visit before this one? ____ empty 

_____did not want to take part. 

Location 

Q1a. Location name (Village, Settlement, or Street): 

_________________________________________ 

Q1b. Community type:  1= Village (registered), 2= Village (unregistered Fijian 

settlement),   

3= Settlement (Indo-Fijian),  4= Settlement (Mixed) 5= Squatter, 

 6=Residential (private housing/flats),   

7=Residential (government/social housing) 8 = other: ___________  

Q1c. Geography:  1=urban,  2=peri-urban,  3=rural 

Q1d. Nursing Zone: ___________________________ Q1e. Medical Area:  

____________________________  

Q1f. Division (circle):  1= Northern,   2= Central,   3= Western,   4=Eastern  

Q1g. GPS coordinates of (circle):  1= front door of house,   2= community 

centroid, if not possible to visit house   

Q1h. South 0°.’ (circle) West / East 

°.’   
Q1i. GPS elevation: ________metres Q1j. Garmin  1 or 2 (circle)  & Waymark no 
 

Household occupants 

Q2. Please tell me the age and gender of each person who stayed in the household last night. 

(circle sex) 
No Age  Sex  No Age Sex  No Age Sex  No Age  Sex 

1  M F  6  M F  11  M F  16  M F 

Consent taken by research staff member: 
 (please print name) 
 
Signed by research staff member: 
 

Date (dd/mm/yyyy) 

letter site      person 
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2  M F  7  M F  12  M F  17  M F 

3  M F  8  M F  13  M F  18  M F 

4  M F  9  M F  14  M F  19  M F 

5  M F  10  M F  15  M F  20  M F 

Q2a. Random number from tables to select the participant (reselect if <1year old):  
Q2b. Record any participant number(s) selected but who could not be contacted: 

_______________ 

The selected participant  

Q3a. First name:_________________ Q3b.Family Name : _____________________ 

 Ask for initials if this is declined, or record “-2” if refused. 

Q4a. Age (from above) years Q4b. Date of birth :  __ __ / __ __ / __ __ 

__ __  (dd/mm/yyyy) 

Q5. Sex: (from above) 1= Male,   2= Female,   -2= refused. 

Q6. Were you born in Fiji?  1=yes (skip to Q7a), 0=no, -1=don’t know, -2=refused  

If no, don’t know, refused:  Q6a. Roughly how long have you lived in Fiji? 

____________years 

    Q6b. Where did you live before that: _________________ 

Q7a. How long have you lived in this village/settlement/town? _________years   

-3= all my life (skip to Q8) -1 =don’t know, -2=refused 

Q7b. What was the last place you lived before here? 

 Name of place: ___________________________________-1 d/k   -2=refused 

Q7c. Province/area/town ________________________________________________ -1 

d/k   -2refused 

Q7d. Division (circle): 1= Northern,   2= Central,   3= 

Western ,   4=Eastern,  5=outside Fiji: ________ 

Q7e. Which of the following best describes that place: 1=urban, 2=peri-

urban,  3=rural,  4=remote island 

Q7f. Community type: 1= Village (registered), 2= Fijian settlement 

(e.g. unregistered village),  

3= Settlement (Indo-Fijian),  4= Settlement (Mixed) 5= Squatter, 

 6=Residential (private housing/flats),  

6=Residential (government social housing) 7 = other__________ -1=don’t know,  -

2=refused 

Q8. What is your ethnicity?  

1 = Fijian / iTaukei / indigenous Fijian 2 = Indo-Fijian / Fijian of Indian Descent / 

Indian  

3 = European / Fijian of European Descent  4 = Chinese / Fijian of Chinese Descent  

5 = Melanesian/Polynesian/Micronesian/other Pacific island  

6 = Mixed 7=other  -1 = don’t know -2 = refused 

Q9. What is your 

religion?  
1 = Christian - Methodist 

5 = Christian - Anglican 8 = Muslim 0 = none 

2 = Christian - Catholic  6 = Christian - Other  9 = Sikh -1 = don’t 

know 
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3 = Christian - Assembly of 

God 

7 = Hindu 10 = other -2 = refused 

4 = Christian - 7th Day 

Adventist 

   

 

Q10. What is the highest level of school you have completed?  Either Class _____ or Form 

______ or:  

0= No formal schooling 1= Primary 2= Secondary 3= Technical / Vocational 

School 4=University/tertiary -1= don’t know -2= refused 

Work and Farming 

Q11a. What is your job title or job description, if any? 

_______________________________________  

Q11b. Do you mostly work:  1=indoors,  2=outdoors, or  3=a mix of both?   

 -1 = don’t know,  -2 = refused  -3 not applicable 

Q11c. Which of the following best describes your main job? (Suggest one based on above 

description) 

(The occupation that the participant spends the most time on. Circle one number only):

  

1 = pre-school child; 6 = manual labourer; 11= retired; 

2 = pupil/student; 7 = skilled manual worker; 12 = unemployed; 

3 = professional/office 

worker; 

8 = farming; 13 = other; 

4 = shop worker; 9 = fishing; -1 = don’t know; 

5 = Market/outdoor trader; 10 = housewife/househusband; -2 = refused. 
Q12. What is the total household income each week? (combined total of everyone who lives 

there)  

0= less than FJD100, 1=100 to 199, 2=200 to 299, 3=300 to 399,  

4 = 400 to 499, 5=500 to 999, 6=1000 or more.  -1 = don’t know,  -2 = 

refused 

Q13. If the main job is not farming: Have you done any part-time/casual farming in the last 

12 months? (not just growing vegetables in the yard or keeping a few animals) 1=yes, 

 0=no, (go to Q16)  -1=don’t 

know -2=refused 

Q14. If a farmer (main job or part-time/casual), which of the following do you farm? (tick all 

that apply) 

Q15. If farming: To go from home to where you mostly farm, is it:  1=uphill, 2= 

downhill, 3=up+down  or 0=on the same level?  

  

a Chickens  d Goats  g Vegetables/root crop  

b Pigs  e Cows  h Fruit  

c Sheep  f Sugar 

Cane 

 i Other:_______________  
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Travel and meeting people 

Q16. How often do you visit places outside your village/settlement/town? (not just for 

farming/fishing) 
Every 

day 

4 to 6 days 

per week 

1 to 3 days per 

week 

One a month or 

more, (but not once 

a week) 

Less than once a 

month, but not 

never 

Never 

(go to 

Q18) 

Don't 

know 

Refused 

5= 4= 3= 2= 1= 0= -1= -2= 

Q17a. Could you please name all the villages, settlements or towns you have visited in the 

last 7 days?  
(either for work or visiting friends and relative)  0= 

Visited no village, settlement or town.  -1= don’t know 

  

Name 

Division 

(circle) 

Community type Tick 

furthest 

away 
iTaukei 

Village 

Indo-

Fijian 

Settlement 

Town Other:  

1  N C W E      

2  N C W E      

3  N C W E      

4  N C W E      

5  N C W E      

6  N C W E      

7  N C W E      

8  N C W E      

9  N C W E      

10  N C W E      

If more than ten, please give ten examples, including the furthest away, and typical places 
visited. 

Q17b. If more than ten, roughly how many? ___________  
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I’d like to ask you about who you had meals with yesterday. If asked, this is because typhoid 

may be spread on food. 

Q18a. First, where did you eat lunch yesterday? 

Q18b. And where did you eat dinner yesterday? 
Lunch 

(X one 

answer 

only) 

 Dinner 

(X one 

answer only) 

Q19 

1 Home   
Ask: “how 

many people 

of each age 

also ate the 

same food?”  

2 Somebody else’s home   

3 
Buffet / lovo at church, village social 

gathering or similar 
  

4 
Workplace/school  – brought food from 

home/from somebody else’s home 
  

5 Workplace/school – cafeteria food   Ask: “how 

many friends, 

family or 

colleagues of 

different 

ages did you 

share a table 

with?”   

6 

Restaurant/cafe/food court/takeaway 

(takeaway or ate there, includes hotel 

restaurants) 
  

7 Outdoor food stall (takeaway or ate there).   

8 Bought from a walking food seller   

9 Didn’t eat lunch/dinner    
10 Other:________________________    
-1 Don’t know     
-2 Refuse to say    
 

Q19. I’d like you to think about how many people of different ages you shared food with, 

first at lunch, then at dinner. (The participant should not include him or herself.) 

 

(1) For people who ate at home, somebody else’s home, at a buffet, or brought food to work,  

ask “how many people of each age also ate the same food?”  

(food made in the same kitchen, shared at the meal, or from the same buffet) 

 

(2) For people who ate at a work cafeteria, from a roadside stall/street seller or  

a restaurant/food court, ask “how many friends, family or colleagues of different ages did 

you share a table with?”   

(or equivalent to a table if ate outdoors) 

 

Q19a. First lunch, starting with children under 5:  

- of these people, how many were iTaukei Fijian, Indo-Fijian, or other? 

 

Q19b. Then dinner, starting with children under 5:  

- of these people, how many were iTaukei Fijian, Indo-Fijian, or other? 

 

Q19c. And finally, how many of these people were the same at both lunch and dinner? 

- of these people, how many were iTaukei Fijian, Indo-Fijian, or other? 
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Go through each age group. Record exact numbers for numbers 0 through to 15. If the 

participant is concerned about getting it exactly right, tell them it is ok if they are a little bit 

out or can’t remember exactly.  

If more than 15, use these bands: 16-24, 25-49, 50-99, 100+.  Use also:-1=don’t know, -2 

= refused, -3 not applicable. 
Age: 0 to 4 5 to 14 15 to 34 35 to 54 55+ 

19a. 

Lunch 

 

 
Fjn 

 
Fjn 

 
Fjn 

 
Fjn 

 
Fjn 

Indo Indo Indo Indo Indo 

Othr Othr Othr Othr Othr 

19b. 

Dinner 

 

 
Fjn 

 
Fjn 

 
Fjn 

 
Fjn 

 
Fjn 

Indo Indo Indo Indo Indo 

Othr Othr Othr Othr Othr 

19c. 

Same 

people 

 
Fjn 

 
Fjn 

 
Fjn 

 
Fjn 

 
Fjn 

Indo Indo Indo Indo Indo 

Othr Othr Othr Othr Othr 

 

Contact with people 

Q20. No longer being asked 
 

Water and Sanitation 

Q21. How often do you drink 

the following? (circle 

number) 

Every 

day 

4 to 6 

days per 

week 

1 to 3 

days per 

week 

One a month or 

more, but not 

once a week 

Less than once a 

month, but not 

never 

Never Don't 

know 

Refused 

Water 

from 

a... 

a. Tap at home 5 4 3 2 1 0 -1 -2 

b. Tap somewhere 

else (e.g. village 
standpipe, cafe) 

5 4 3 2 1 0 -1 -2 

c. Well, pump or 

borehole 
5 4 3 2 1 0 -1 -2 

d. Rainwater 

container 
5 4 3 2 1 0 -1 -2 

e. River, stream, 

pond or lake 
5 4 3 2 1 0 -1 -2 

f. Juice made by a cafe or 

street stall (not carton juice) 
5 4 3 2 1 0 -1 -2 

g. Grog/Kava 5 4 3 2 1 0 -1 -2 

 

Q22. Do you treat your water in any way to make it safer to drink? (i.e. does anyone in the 

household treat the water, we are not asking if the water supplied to the 

household/participant is already treated) 

3=Yes - 

always 

2=Yes - usually 1=Yes, sometimes 0= no, never -1= don’t 

know 

-2 = 

refused 

(at least 95% 

of the time) 

(50% or more of 

the time but not 

95%), 

(less than 50% of 

the time but not 

5%) 

(5% or less of 

the time) (go to 

Q24) 

 

Q23. If yes, what do you usually do to the water to make it safer to drink? 
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Prompt “Anything else?”  (Record all that are mentioned, do not prompt specific 

methods) 
Boiling Use a water filter Other 

____________________ 
Add bleach/chlorine Solar disinfection Don't know 
Strain it through a cloth Let it stand Refused 
 

Q24, If the participant drinks grog/kava: The last time you had grog/kava, how many people 

did you drink it with? 

 (circle the number, do not include the participant in the total) 

Not 

app. 

no one 

else 

1 to 

4, 

5 to 9, 10 to 

14, 

15 to 

19, 

20 to 

24, 

25 to 

49, 

50+ Don’t 

know 

refused 

-3= 0=  1=  2=  3=  4=  5=  6 =  7= -1 =  -2 =  

 

Q25. Thinking about lunch and dinner yesterday, was soap and water available, if you had 

wanted to wash your hands before eating?  

Did you wash your hands with soap and water before eating? 

 

a. Lunch: soap & water available:   1=yes 0=no  -1= don’t know -2 = refused -

3=not applicable 

b. Lunch: washed hands with soap & water:   1=yes 0=no  -1= don’t 

know -2 = refused -3=not applicable 

 

c. Dinner: soap & water available:   1=yes 0=no  -1= don’t know -2 = refused -

3=not applicable 

d. Dinner: washed hands with soap & water:   1=yes 0=no  -1= don’t 

know -2 = refused -3=not applicable 

 

Q26. What sort of toilet do you have at home? (circle) 

 
not 

applicable 

Flush 

toilet 

Water 

seal/pour 
flush 

Pit 

with 
slab 

Pit 

without 
slab 

Compost 

toilet 

Bucket 

latrine 

Hanging 

latrine 

Field/ 

bush 

River / 

stream 
Sea 

don’t 

know 
refused 

Home -3 1* 2* 3 4 5 6 7 8 9 10 -1 -2 

 

*Q26a.  If flush/water seal/pour flush, where does it go to? 1=piped sewer system, 2=septic 

tank, 3=pit latrine, 4=elsewhere (street, yard. plot, open sewer, ditch, drainage way).  

-1= don’t know, -2=refused,  -3=not applicable 

 

Q27. Where is your home toilet located: 1=indoor, 2=detached, -1= don’t know, -2=refused, 

-3= not applicable. 

Q27a. Is it shared with any other households?  1=yes,  2=no, -1= don’t know, -2 refused, 

 

Q27b. Is there soap and water available to wash hands after going to the home toilet?  

 2=Yes, visually confirmed; 1=yes, but unable to check; 0=No,  -1= don’t know,

 -2=refused. 

Q27c. The last time you used your home toilet, did you wash your hands with soap and 

water afterwards? 

 1=yes,  2=no  -1= don’t know, -2 refused 

 

 

 

 

 

Q28. When you are at work/school, what sort of toilet do you have access to? 
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not 

applicable 

Flush 

toilet 

Water 
seal/ pour 

flush 

Pit 
with 

slab 

Pit 
without 

slab 

Bucket 

latrine 

Hanging 

latrine 

Field/ 

bush 

River / 

stream 
Sea 

don’t 

know 
refused 

a. Work 

Defecate (poo) 
-3 1 2 3 4 5 6 7 8 9 -1 -2 

b. Work 

Urinate (pee) 
-3 1 2 3 4 5 6 7 8 9 -1 -2 

Q28c. When at work/school, are there facilities for washing hands with soap and water after 

going to the toilet? 

 1=yes,  2=no -1= don’t know, -2 refused  -3= not applicable. 

Q28d. Last time you went to the toilet at work/school, did you wash your hands with soap 

and water afterwards? 

 1=yes,  2=no -1= don’t know, -2 refused  -3= not applicable. 

The house 

Q29. What is the house made of? 1=concrete/brick, 2=wood, 3=corrugated iron, 4=bure, 

5=bamboo, -1=don’t know,  

-2=refused. If it is made of more than one, record the main material (e.g. concrete 

with metal roof =1).  

Q30. What is the floor mostly made of? 1= earth/sand, 2=palm/bamboo, 3= wooden planks, 

4= polished wooden floor, 5=vinyl, 6=ceramic tile, 

7=cement, 8=carpet 

Q31. Is the floor raised at least one foot (30cm) from the ground?  

1=yes, 0=no, -1= don’t know, -2= refused 

If the home is on stilts on a hillside, decide based on the edge nearest the hillside. Answer 

yes only if all edges are at least one foot from the ground. An A4 piece of paper is one foot 

long. 

Q32, In your home, how many living rooms and bed rooms are there? _______ 
Do not count bathrooms, landings, porches, kitchens, storage rooms ; record -1 for don’t 
know, and -2 for refused. 

Q33. Does your home have tap water?  1=yes, 0=no,  -1= don’t know,  -2= refused 

Q33a. If yes, is the tap water treated by the government?  1=yes, 0=no,  -1= don’t 

know,  -2= refused 

Q34. Does your home have a working indoor shower, or a tap to wash yourself under?

 1=yes, 0=no,  -1= don’t know,  -2= refused 
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Waste disposal 

Q35. How is garbage / rubbish mainly disposed of from the house?  

Dumped:  1= roadside / field / bush 2 = river/stream/lake 3= sea 

Burnt:  4= incinerator,  5=bonfire 

Buried: 6 = Household pit with raised mounting and tight cover,  

7=household pit without these, 8 = communal pit,   9= Communal skip  

Collection service:  10= bin with tight lid 11= bin without tight lid  

 12= bags on roadside  13= bags on raised rack 

Other: 14=Composting 15=Recycling 16=Reuse  

 17= other _______________ 

 -1= don’t know,  -2= refused 

Exposure to water 

Q36. Is there a stream or river near your home?  1=yes, 0=no,  -1= don’t know, 

 -2= refused 

Near is within the village/settlement for residents of these, or 100m (a rugby/football 

pitch) for other households 

Q37a. Has your house been flooded in the last three years? By inland water such as river or 

stream, not by seawater. 

 1=yes, 0=no (skip to Q38),  -1= don’t know,  -2= refused 

Q37b. If yes, how many times?  1= One or two, 2= three to five, 3=more than five,

  

 -1= don’t know,  -2= refused 

Q38a. Has the land around your house been flooded in the last 3 years?   

 1=yes, 0=no,  -1= don’t know,  -2= refused 

Q38b. If yes, how many times?  1= One or two, 2= three to five, 3=more than five,

  -1= don’t know,  -2= refused 

Q39a. Have you ever been swimming, playing, or bathing in flood water?  

1=yes,  0=no,  -1= don’t know,  -2= refused 

Q39b. Or walking in flood water?  1=yes,  0=no,  -1= don’t know,  -2= refused 

 

Q40. How often do you do the following?  
 Every 

day 

4-6 days a 

week 

1-3 days a 

week 

One a month or 

more, but not once 

a week 

Less than once 

a month, but 

not never 

Never Don't 

know 

Refused 

a. Swim, play, bath in a river, 
stream, waterfall or lake? 

(not flood water, not the sea). 

5 4 3 2 1 0 -1 -2 

b. Walk through a river, stream, 
waterfall or lake? 

5 4 3 2 1 0 -1 -2 

c. Use river, stream, waterfall 

or lake water for washing 

clothes 

5 4 3 2 1 0 -1 -2 

d. Use river, stream, waterfall 

or lake water for washing 

dishes 

5 4 3 2 1 0 -1 -2 

e. Bath using an indoor 
shower/under an indoor tap? 

5 4 3 2 1 0 -1 -2 
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Typhoid and leptospirosis 

Q41. Had you heard of typhoid before this study?  1=yes, 0=no (ask Q42 

then skip to Q46), -1=d/k, -2=refused 

Q42. Have you ever been vaccinated against typhoid? It is NOT usually given in 

childhood. (Some people were vaccinated in 2010 after the cyclone.) 

 1=yes, 0=no, -1=don’t know, -2=refused. 42a. If yes, which year? 

_____________ 

Q43. Have you ever been diagnosed with typhoid by a doctor?   

1=yes, 0=no (skip to Q44) -1=don’t know (skip to Q44) -2=refused 
(skip to Q44) 

Q43a. If yes, roughly when did you get ill? Month (-1 don’t know) _________Year (-1 

don’t know) ________ 

Q43b. How or why do you think you got ill? (-1=don’t know);  

____________________________________________________________________ 

Q44. Has anyone in your household been diagnosed with typhoid?   

 1=yes, 0=no, (skip to Q45) -1=don’t know, (skip to Q45) -2=refused 

(skip to Q45) 

Q44a. If yes, roughly when did they become ill?   

(If more than one person, give the dates of illness of the first person to get ill, and the 

most recent)  

a. First/ only ill person Month (-1 don’t know) _________Year (-1 don’t know) 

___________ 

b. Most recent ill person -3= not applicable Month (-1 don’t know) ________ Year (-1 don’t 

know) __________ 

Q45. Thinking about friends, neighbours, colleagues and extended family in Fiji, how 

many people do you know who have had typhoid? 0= none, 1=one or two,  

2 = three to five, 3=six to ten,  4= eleven+, -1=don’t know, -2=refused 

 

Q46. Had you heard of leptospirosis (lepto) before this study?  1=yes,  

0=no (skip to Q49),  -1=don’t know,  -2=refused 

Q46a. If yes, Have you ever been diagnosed with leptospirosis by a doctor? 1=yes,  

0=no (skip to Q47),  -1=don’t know, -2=refused 

Q46b. If yes, roughly when did you get ill?   Month (-1 don’t know) _______Year (-1 

don’t know) _________ 

Q46c. how/why do you think you became ill? (-1=don’t know): 

_____________________________________________________________ 

Q47. Has anyone in your household been diagnosed with leptospirosis?  

1=yes, 0=no (skip to Q48) -1=don’t know(skip to Q48), 

 -2=refused(skip to Q48) 

Q47a. If yes, roughly when did they become ill?    

(If more than one person, give the dates of illness of the first person to get ill, and the 

most recent)  

a. First/ only ill person Month (-1 don’t know) ______Year (-1 don’t know)_______ 

b. Most recent ill person  -3= not applicable Month (-1 don’t know) ______ Year (-1 don’t 

know) _______ 
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Q48. Thinking about friends, neighbours, colleagues and extended family in Fiji, how 

many people do you know who have had leptospirosis? 0= none, 1=one or two,  

2 = three to five, 3=six to ten,  4=eleven+,   -1=don’t know, -2=refused 

Contact with animals 

Q49. Over the past three years, have you seen rats or mice… 

a. At or around your home?  1=yes, 0=no, -1=don’t know, -2=refused 

b. At or around your work/school?  -3=not applicable  1=yes, 0=no,  

-1=don’t know, -2=refused 

c. Have you been in physical contact with rats or mice in that time?  1=yes, 0=no, -

1=d/k -2=refused 

Q50. Over the past three years, have you seen mongooses… 

a. At or around your home?  1=yes, 0=no, -1=don’t know, -2=refused 

b. At or around your work/school?  -3=not applicable 1=yes, 0=no, -1=don’t 

know, -2=refused 

c. Have you been in physical contact with mongooses in that time?  1=yes, 0=no, -

1=d/k -2=refused 

Q51. Over the past three years, have you been bitten by ticks or fleas?  

1=yes, 0=no, -1=don’t know, -2=refused 
(not bed bugs, which usually bite in a line of small dots at night, or mosquitoes. Ticks or fleas are often carried by 

furry mammals) 

Local animals and vegetables 

Q52. Please tell me which of the following animals or vegetables, are found locally, if any?  

Select all that apply (mark with a cross). We are not asking about other types. 
  

In garden / at 

home? 
(If applicable) 

In village/ 

settlement/ slum? 
(if applicable) 

Animals kept 

in a pen / 
tied up? 

Direction from house to the nearest 

penned/tied-up animals or to the 

fruit/vegetables 

Uphill  Level Downhill  

a Chickens       

b Pigs       

c Sheep       

d Goats       

e Cows       

f Horses       

g Dogs       

h Cats       

i Sugar Cane       

j Vegetables/ 

root crop 

      

k Fruit       

 

Vinaka vaka levu!       Thanks for taking part in this study. 
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Q53. Could we please take a phone number in case we have further questions? 

__________________________ 

 

Q54. Do you have any other comments? 

 
Remember to get GPS coordinates. Can soap be checked easily? Record any other important 

notes overleaf. 
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Appendix A2. Evaluating Typhoid Vaccine Effectiveness in 

Travelers' Vaccination. CH Watson. J Travel Med. 2015;22:76-77 
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Evaluating typhoid vaccine effectiveness in travelers 
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Conall H. Watson, MRPharmS MFPH 

Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical 

Medicine, London, United Kingdom 

conall.watson@lshtm.ac.uk 

 

Typhoid fever exists somewhere in the borderlands of the neglected tropical diseases. Its 

history in Europe and North America, and market for vaccination of travelers means typhoid 

is not entirely in the pharmaceutical public health wilderness. Travel immunisation 

recommendations however are based on results of efficacy trials performed in typhoid-prone 

areas, rather than on evidence of direct effectiveness in those journeying from low-risk 

settings. Two recent epidemiological studies address the efficacy in travelers,1,2 one of which 

is in  this edition of JTM. Here, Karen Wagner and colleagues used the detailed enteric fever 

surveillance records of the English public health services to compare typhoid Vi-

polysaccharide (ViPS) vaccine history amongst typhoid and paratyphoid cases. They 

estimated that vaccine effectiveness against typhoid was 65% over three years in travelers, 

after multivariable adjustment, consistent with efficacy trials.  

Their approach, using the indirect cohort design or ‘Broome method’, first developed to 

examine pneumococcal vaccine efficacy across different serotypes,3 is well-suited to the 

question. Paratyphoid cases are suitable controls for typhoid because the geographies in 

which they arise and routes of acquisition are similar. 

Crucially, ViPS vaccine does not protect against paratyphoid: for unbiased estimates of 

typhoid vaccine effectiveness it is necessary to have equal probability of paratyphoid fever 

notification in ViPS-vaccinated and unvaccinated groups.5 There is as yet no licensed vaccine 

against S. Paratyphi, though a number are in development,6 while Ty21a oral typhoid 

vaccines, which have possible cross-protection with Salmonella Paratyphi A and B,7  are 

uncommonly prescribed in the UK and do not feature in the analysis. Similar indirect cohort 

studies of forthcoming typhoid Vi-conjugate vaccines may be possible if there is an interval 

between widespread adoption of these and paratyphoid vaccines, or with detailed vaccine 

history-taking. 

The suitability of paratyphoid controls bears further consideration: if the likelihood of pre-

travel vaccination was different between the cohorts who ultimately end up as paratyphoid 

and typhoid cases then this could also bias estimates.8  For example, travelers visiting friends 

and relatives may be less likely to seek advice or be vaccinated against typhoid than 

holidaymakers,9 and they may also have different Salmonella enterica serovar exposure.  
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Case-control studies in urban Asian settings have suggested different risk factors for the two 

pathogens. In Jakarta, Indonesia, typhoid risk factors were characterised as “within the 

household”: recent typhoid cases, shared plates, and the absence of soap or toilets.10 

Paratyphoid was associated with extra-household factors:  eating street food or recent 

flooding. In Kathmandu, Nepal, a similar categorisation might be inferred:  street-food 

consumption and migration were associated with paratyphoid fever, in contrast with typhoid 

for which risk factors were poor water and low income.11  

So there might be some differences in enteric fever case cohorts in terms of backpackers and 

sunseekers eating out, and travelers staying with family and friends. This seems borne out to 

a modest extent in this study, with tourists making a slightly higher proportion of the 

paratyphoid group, which also has a higher mean age, though there was minimal difference 

in effect size after adjustment for age group, sex, country of birth and ethnicity. 

Particular strengths of Wagner’s paper are the comprehensive breakdown by traveler 

subgroup and by time, and the validation of vaccine histories by cross-checking a subset of 

enteric fever notifications with the patients’ primary care records. One subgroup finding of 

interest is the possibility that vaccine efficacy may be reduced for travelers of white ethnicity, 

though low numbers make estimates imprecise and no significant difference was described. 

While genetic differences in typhoid susceptibility have been demonstrated elsewhere,12 it 

would be premature to suggest this arises in UK travelers. Given the comprehensiveness of 

enteric fever surveillance in England, confirmation or refutation may be possible as more 

data accumulate. Further years’ data could also determine if reduced-antigen Typhim ViPS 

batches, withdrawn by Sanofi Pasteur MSD from the UK, show impaired efficacy with time. It 

is reassuring that the first year of protection shows no difference from full-potency batches. 

A similar indirect cohort study using paratyphoid controls was also completed recently by the 

US Centers for Disease Control and Prevention. Due to missing data, this assessed efficacy 

across both ViPS and Ty21a vaccines, and had less complete vaccine history ascertainment 

than in England. CDC found 80% vaccine effectiveness, higher than that in trials, which they 

ascribe to less intense exposure amongst American travelers compared with residents 

endemic-area studies, both in ingested dose and time at risk.1 High infectious doses of S. 

Typhi can overcome vaccine-derived immunity13  (S. Paratyphi is thought to require higher 

infectious doses than S. Typhi, with food a multiplier, contributing to the differential 

epidemiology10,11), while in one Australian study, all enteric fever cases had been abroad for 

at least three weeks.14 
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As well as measuring vaccine effectiveness within their own travelers, the two effectiveness 

studies provide ecological indicators of the effect of vaccine coverage on typhoid cases 

averted, adding to previous reports.15  In the US, where just 8% of the notional cohort was 

vaccinated, this ratio was around four typhoid cases to each paratyphoid case, while in 

England, where 29% of studied enteric fever cases had been vaccinated, the case ratio was 

closer to 1:1.   

Some of the difference in uptake may be due to typhoid vaccination being offered free-of-

charge to travelers on the English National Health Service, as a public health measure 

intended to provide indirect protection to the families and communities of travelers, as well 

as direct protection to the vaccinees. The limited vaccine uptake amongst English travelers at 

risk of typhoid suggests that, on its own, removing financial barriers to access is not sufficient 

for all such voyagers to receive pre-departure vaccination, with opportunistic pre-travel 

advice from family physicians being one option suggested for improving uptake amongst 

travelers of south Asian ethnicity.9  It also serves to remind us that while we await the arrival 

of paratyphoid vaccines and Vi-conjugate vaccines, the success of these interventions 

depends not just on their efficacy, but on the ability of public health systems to deliver 

vaccines to people who need them, whether residents of endemic areas or their visitors. 
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Abstract 

Leptospirosis is an important zoonotic disease in the Pacific Islands. In Fiji, two successive 

cyclones and severe flooding in 2012 resulted in outbreaks with 525 reported cases and 10% 

case-fatality. We conducted a cross-sectional seroprevalence study and used an eco-

epidemiological approach to characterize the risk factors and drivers for human leptospirosis 

infection in Fiji, and aimed to provide an evidence base for improving the effectiveness of 

public health mitigation and intervention strategies. Antibodies indicative of previous or 

recent infection were found in 19.4% of 2152 participants (82 communities on the 3 main 

islands). Questionnaires and geographic information systems data were used to assess 

variables related to demographics, individual behaviour, contact with animals, 

socioeconomics, living conditions, land use, and the natural environment. On multivariable 

logistic regression analysis, variables associated with the presence of Leptospira antibodies 

included male gender (OR 1.55), iTaukei ethnicity (OR 3.51), living in villages (OR 1.64), lack of 

treated water at home (OR 1.52), working outdoors (1.64), rural areas (OR 1.43), high poverty 

rate (OR 1.74), living <100m from a major river (OR 1.41), pigs in the community (OR 1.54), 

cattle density in the district (OR 1.04 per head/sqkm), and maximum rainfall in the wettest 

month (OR 1.003 per mm). Risk factors and drivers for human leptospirosis infection in Fiji 

are complex and multifactorial, with environmental factors playing crucial roles. With global 

climate change, severe weather and flooding are expected to intensify in the South Pacific. 

Population growth invariably leads to more intensive livestock farming; and urbanization in 

developing countries is often associated with urban and peri-urban slums where diseases of 

poverty proliferate. Climate change, flooding, population growth, urbanization, poverty and 

agricultural intensification are important drivers of zoonotic disease transmission; these 

factors may independently, or potentially synergistically, lead to enhanced leptospirosis 

transmission in Fiji and other similar settings.  
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Author summary 

Leptospirosis is a bacterial infection transmitted from animals to humans, and many 

outbreaks are associated with flooding. Globally, leptospirosis is responsible for at least 

500,000 cases of severe illness each year, and many deaths.  The bacteria are excreted in the 

urine of infected animals; humans can become infected through direct contact with animals 

or through contaminated water and soil. In Fiji, two successive cyclones and severe flooding 

in 2012 resulted in 525 cases and 52 deaths. We conducted this study to improve our 

understanding of the factors that increase the risk of leptospirosis transmission, so that 

public health control measures can be improved.  Our study found that infection risk is 

related to many factors including individual demographics and behaviour, contact with 

animals, living conditions, poverty, and flooding risk. With global climate change, flooding is 

expected to become a bigger problem in the South Pacific. Population growth invariably leads 

to more intensive livestock farming; and urbanization in developing countries is often 

associated with slums with high risk of infectious diseases. Climate change, flooding, 

population growth, urbanization, poverty and livestock farming are important factors for 

leptospirosis transmission; these factors may combine to increase the risk of leptospirosis in 

Fiji in the future.  
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A3.1 Introduction  
 

Leptospirosis is an emerging infectious disease worldwide, with particularly high incidence 

reported in the Pacific Islands [1,2]. Humans are infected through direct contact with infected 

animals, or through contact with water or soil that has been contaminated by urine of 

infected animals. Disease transmission is strongly driven by environmental factors including 

high rainfall, flooding, natural disasters, population growth, urbanisation, and poor sanitation 

and hygiene [2-4]. In addition, infection risk depends on individual behaviour (e.g. swimming 

in fresh water, working outdoors), and contact with animals including livestock, rodents, pets, 

& wildlife [2,4]. Risk factors for infections and drivers of outbreaks depend on interactions 

between humans, animals, and the environment, and vary significantly between locations 

based on environmental, cultural, and socio-demographic factors [4].  Transmission dynamics 

are therefore highly complex variable, and likely to evolve with global environmental change 

of both natural and anthropogenic environments [2,3]. 

In Pacific island nations, important risk factors for human leptospirosis include outdoor 

activities, tropical climate, flooding secondary to extreme weather events, and exposure to 

livestock [5-8]. Subsistence livestock are commonly kept in backyards, and veterinary 

expertise is generally limited. In some Pacific Islands, rapid population growth and 

urbanization exacerbate problems with sanitation, access to clean water, and waste 

management. Most islands have limited human or financial resources for the management 

and mitigation of the health impacts of natural disasters and climate change [9,10]. In Fiji, 

leptospirosis was identified as one of the four priority climate-sensitive diseases of major 

public health concern [11]. A recent systematic review of the global morbidity and mortality 

of leptospirosis identified tropical islands as particularly high-risk settings [2]. Apart from the 

tropical climate and high frequency of extreme weather events [3], factors that could 

contribute to the high risk of leptospirosis on tropical islands include the low biodiversity and 

delicate ecosystems that make islands vulnerable to invasive species such as rodents [12]; the 

outdoor lifestyle and associated intense exposure to the environment; and close contact with 

subsistence livestock animals [2,4].  

Climate change is projected to increase the severity of extreme weather events including 

increased precipitation and flooding in the Pacific Islands [10], and such events have been 

associated with increased leptospirosis transmission and outbreaks around the world [3,7,13-

16].  In 2012, two successive tropical depressions caused severe flooding and resulted in two 

outbreaks of leptospirosis in Fiji, with 525 reported cases and 52 deaths (10% case-fatality) 

(Fiji Ministry of Health and Medical Services [MHMS]). Cases were defined as positive 
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reactions to Leptospira ELISA IgM (Panbio, Brisbane, Australia); this laboratory test was only 

available at the national reference laboratory, and it was likely that reported cases were an 

underestimate of the true scale of the outbreaks.  In comparison, previous studies reported a 

total of 576 cases during an 8-year period from 2000-2007 [17], and 487 cases during a 13-

year period from 1969-1981 [18].  These studies identified a higher risk of infection in males, 

indigenous Fijians (iTaukei), young adults (aged 15 to 45 years), rural dwellers and abattoir 

workers; increase in reported cases in the rainy months and after a cyclone in 2001; and 

geographic variation in incidence.  

Following the outbreaks in 2012, the Fiji MHMS and the World Health Organization convened 

a leptospirosis expert consultation to review the epidemiology of leptospirosis in Fiji and 

recommend priorities for control of endemic and epidemic disease. A key conclusion of the 

expert consultation was that significant knowledge gaps in the current epidemiology of 

leptospirosis in Fiji limited effective prevention and control. The study described in this paper 

was identified as one of several important steps to address the knowledge gaps. This study 

uses an eco-epidemiological approach and framework [19] to characterize the epidemiology 

and risk factors for human leptospirosis infection in Fiji, and aimed to provide an evidence 

base for improving the effectiveness and efficiency of public health mitigation and 

intervention strategies. Our findings would also be relevant to other countries with similar 

environments, particularly in the South Pacific. 

 

A3.2 Methods 
 

A3.2.1 Study location and population  
The Republic of the Fiji Islands is an archipelago of 322 islands with a population of 837,217 in 

2007; indigenous Fijians (iTaukei) and Indo-Fijians (Fijians of Indian descent) account for 57% 

and 35% [20] of the population respectively. Fiji is considered a ‘small island developing state’ 

by the United Nations [21] with a per capita GDP of US$4,712 [22].  The main island of Viti 

Levu has a landmass of 10,349 square kilometers and is home to >70% of the population.  

Vanua Levu is the second largest island in both population and land area, followed by 

Taveuni. The largest urban centre is the Greater Suva Area (population ~ 180,000) on the 

southeast coast of Viti Levu. The largest administrative units in geographical size are the 

Divisions (Central, Western, Northern, and Eastern) followed by Provinces (14 in total), 

Tikinas (86 in total), and Enumeration Areas (smallest unit for population census that typically 

include 80 to 120 households).  Nursing zones are the smallest administrative unit of the 
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MHMS; they are under the care of a single nursing station and form a contiguous network 

across the Fijian Islands. Communities are residential clusters defined by MHMS and used for 

administrative purposes. The four main community types in Fiji are urban residential areas, 

villages, Indo-Fijian settlements, and mixed Indo-Fijian/iTaukei settlements. 

A3.2.2. Seroprevalence study and sampling design 
Field data were collected from September to December 2013 (January to March being the 

wettest months), and included the Central Division (on the eastern side of Viti Levu), the 

Western Division (on the western side of Viti Levu), and the Northern Division (the islands of 

Vanua Levu and Taveuni).  The Eastern Division, with a population of ~40,000 spread across 

multiple small islands groups, was not included in the study because of logistical reasons.  

Field data were collected for a sero-epidemiological study of typhoid as well as the 

leptospirosis study described here. 

We conducted a cross-sectional seroprevalence study, with a four-stage sampling design. An 

overview of the sampling plan is shown in Figure A3.1. In the first stage, both population-

proportionate sampling and purposeful sampling approaches were used. The former was 

used to select 28 nursing zones from the Central Division, 21 from the Western Division, 12 

from the Northern Division and 4 from the Ba Province which lies within the Western 

Division. Due to high incidence of reported leptospirosis and post-flood outbreaks in 2012, 

the latter sampling approach was used to select 6 more nursing zones from the Ba Province. 

Similar to Ba Province, Taveuni Island (part of the Northern Division) was oversampled 

because of a high incidence of typhoid in 2008-2009. Consequently, 11 additional nursing 

zones were selected from this region, resulting in 82 zones in total being selected from the 

five regions in the first stage of sampling.  At the second stage of sampling, one community 

was randomly selected from each of the 82 nursing zones. Headmen, health workers and 

other community leaders were consulted to seek agreement to participate in the study; no 

community leaders declined participation. At the third stage of sampling, 25 households were 

randomly selected from each community using health census records, if available, or using 

the World Health Organization’s Expanded Programme on Immunization (EPI) sampling 

method. For the fourth and final stage of sampling, household members (defined as a person 

who stayed at the house the previous night) were enumerated and one selected at random 

for inclusion, except in Ba subdivision where up to three randomly selected household 

members were included. If a selected household member was absent but returning later that 

day, the survey team would await their return or made a repeat visit.  Wholly absent 

household members were substituted from within the household.  Empty households were 

substituted by selecting the nearest house to the right of the front door.  The above sampling 
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strategy aimed to include 25 households in each of 82 communities, with up to three 

participants per household in Ba, and one participant per households in other areas. We 

therefore aimed to recruit a total of 2050 to 2250 participants.   

 

Figure A3.1.  Overview of sampling strategy used in 2015 field study  

 

Participants were eligible for inclusion if they were aged 12 months or older. Exclusion 

criteria included clotting disorders or medical anticoagulation, severe underlying medical 

conditions, significant acute illness, and fear of needles. 

The communities included in the study represented the general population and different 

environments in Fiji (urban, peri-urban, rural), with higher sampling density in Ba and 

Taveuni. The study included a total of 82 clusters, with 28 in Central Division, 10 in Ba, 21 in 

other parts of the Western Division, 12 in Taveuni, and 11 in Vanua Levu.  These areas will be 

referred to as the five ‘regions’ in this paper. 

An overview of data sources and statistical methods is shown in figure A3.2. 
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. Figure A3.2.  Overview of data sources and statistical methods  

 

A3.2.3 Informed consent and ethics approvals  
Ethics approvals were granted by the Fiji National Research Ethics Review Committee (2013 

03), the Human Research Ethics Committee of The University of Queensland (2014000008) 

and the London School of Hygiene & Tropical Medicine (6344). Support was sought and 

obtained from divisional and sub-divisional Ministry of Health officers for community visits. 

To ensure that research activities were culturally acceptable and local customs respected, 

community visits were conducted with field teams that included multilingual local Fijians. The 

study was explained to the heads of each of the randomly selected households, or another 

competent adult, and permission sought to include the household in the study. Written or 

thumb-printed informed consent was obtained from adult participants. The ethics 

committees specifically approved the use of thumbprint informed consent in illiterate 

participants. Parental/guardian consent and informed assent was obtained for child 

participants. 
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A3.2.4 Data collection during field study 
The following were collected from each participant: 

1. Venous blood samples, collected by trained phlebotomists under sterile conditions 

(5-8mL depending on the age of the participant).  

2. Questionnaire data, using standard questionnaires administered by field research 

assistants, and conducted in English or other local languages depending on each 

participant’s preference.  Questions related to demographics, income, occupation, 

recreational activities, household environment, contact with animals, and other 

potential risk factors for leptospirosis.  

3. Geographic Positioning System (GPS) coordinates of the place of residence, using 

handheld GPS devices.  

A3.2.5 Environmental, census, socio-demographic and livestock data 
Environmental data on hydrology and roads were obtained from the Fiji Ministry of Lands and 

Mineral Resources [23]; and soils and land use/cover data from Fiji Ministry of Agriculture 

[24].  Climate (temperature and rainfall) and elevation data were obtained from the Landcare 

Research Institute [25].  Data on educational attainment, household construction, 

employment, ethnicity, and other socio-demographic variables were obtained from the 2007 

Fiji National Census [20], and data on poverty rates from the 2011 World Bank Report [26]. 

Livestock data were provided by the Fiji Ministry of Agriculture’s 2009 National Agricultural 

Census (unpublished data).  All geospatial data were georeferenced to the Fiji Map Grid 1986 

coordinate system.  Table A3.1 provides a summary of the environmental, census, socio-

demographic and livestock data used in the study.  The five geographic regions used in this 

study and examples of the geo-referenced data are shown in Figure A3.3.  

Household GPS coordinates from the study were projected on to the Fiji Map Grid 1986 

coordinate system.  Attributes from the geospatial predictor layers were linked to each 

household location by intersecting points through polygons for vector GIS data, and sampling 

the raster GIS data in a similar fashion. As a result, GIS attributes for each predictor layer 

were obtained for each household location.  Attributes for a community were obtained by 

first calculating the location of the median centre of sampled households, followed by an 

approach similar to that which was carried out for individual households.  All GIS data 

preparation and analysis was performed using ArcGIS v10.1 (Environmental Systems Research 

Institute, Redlands, CA). 
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Maps were drawn to present seroprevalence at each community; household-level results 

were not mapped in order to protect the identity of participants. Locations of communities 

were mapped to their median centre, calculated as the location nearest to all sampled 

households in the community while minimizing the effects of outliers.  

All GIS data preparation and analysis was performed using ArcGIS v10.1 (Environmental 

Systems Research Institute, Redlands, CA).  

 

Figure A3.3. Fiji geography, and examples of environmental and census data  

 a) Divisions and ‘regions’ included in the study, major rivers; b) altitude; c) rainfall; d) total 

cattle density; e) poverty rate; f) proportion of households with metered (treated) water at 

home. See Table A3.1 for data sources. 
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Table A3.1. Summary of environmental, census, socio-demograhpic and livestock data used  

Data Source Variables examined Description & Resolution 

Hydrology Fiji Ministry of Lands and 

Mineral Resources. Digital 

data from FLIS (Fiji Land 

Information System).  Original 

1:50K topographic maps [23].  

Distance to rivers, major, minor 

creeks. 

Euclidean distance to rivers, 

major, minor creeks.   

25 m raster data. 

Roads Fiji Ministry of Lands and 

Resources. Digital data from 

FLIS (Fiji Land Information 

System).  Original 1:50K 

topographic maps. 

Road density. Number of roads per sq km 

within 1 km radius.   

25 m raster data. 

Soils Fiji Ministry of Agriculture.  

1980/85 National Soil Survey 

[24].  

Soils of major and secondary 

floodplains, and depressions. 

Soil units and distance from 

soil units.   

25 m raster data. 

Land 

use/cover 

Ministry of Agriculture.  Digital 

data from Secretariat of the 

Pacific (SPC).  Circa 2010. 

Multiple land use/cover types. Visual interpretation of 

satellite imagery.  

25 m raster data. 

Climate Landcare Research Institute 

[25]. 

Annual, maximum, minimum, 

and average temperature and 

rainfall 

Spatially interpolated climate 

data meteorological station 

data from 1971-2000.  

100 m raster data. 

Elevation Landcare Research Institute 

[3]. 

Altitude and slope Elevation derived from 20 m 

contours.   

25 m raster data. 

Census Fiji National Census 2007 [20]. Multiple measures of education 

attainment, house construction, 

employment, ethnicity, and 

other sociodemographic factors. 

Census variables available at 

the Enumeration Area level 

(~80-120 households).  Vector 

count data converted to 

proportions. 

Economic 

status 

World Bank (2011) report 

[26]. 

Poverty rate (% of population 

below poverty line) and poverty 

gap (how far on average. people 

are from the poverty line) 

Poverty rates estimated using 

small area estimation method.  

Vector data at the Tikina level. 

Livestock Fiji Ministry of Agriculture. 

Unpublished data from the 

2009 Fiji Agricultural Census. 

Number of farms and farm 

animals by species: cattle, 

commercial beef, dairy, 

subsistence beef, etc. 

Density per sq km calculated by 

Tikina (not available for all 

Tikinas). 
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A3.2.6 Stratification of independent variables 
Independent variables were stratified according to the ecological level at which they could 

potentially influence the risk of leptospirosis transmission and infection.  Individual-level data 

relate to risk factors that are specific to individual demographics or behaviour.  Household-

level and community-level data include risk factors that are common to all inhabitants of a 

household and community respectively.  

 Individual-level data. Potential risk factors for leptospirosis were assessed using 

questionnaire-based interviews, including demographics, occupation, recreational 

activities, contact with animals, education, and knowledge about leptospirosis. 

 Household-level data.  Information on household income, house construction, access 

to utilities (toilets, water, sewage, electricity), and the presence of animals and crops 

around the home were obtained through questionnaires.  In addition, data on 

environmental attributes (including rainfall, temperature, elevation, land cover, soil 

type, and distance to rivers) at household locations were extracted or calculated 

using geographic information systems (GIS) as described above.   

 Community-level data. Community type, urban/rural settings, and the presence of 

animal species in each community were ascertained through questionnaires. Census 

and agricultural data were extracted or calculated using the geospatial databases 

described in Table A3.1. Data were available at the enumeration area resolution (~80-

120 households) for a variety of socioeconomic and demographic measures, including 

the proportions of households with metered water, toilets, electricity, and sewage 

services; population ethnicity, level of educational attainment, and reliance on 

subsistence farming as the main source of income. At the Tikina level, data were 

available on World Bank estimates of poverty measures, and census of animal 

populations conducted by the Fiji Ministry of Agriculture.  

 

A3.2.7 Maps 
Maps were produced to show the locations of communities that participated in the field 

study, and the observed community-level seroprevalence in 2013.  Although all household 

GPS locations were recorded, only community-level seroprevalence were depicted on maps 

to protect the identity of participants.  
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A3.2.8 Serological analysis 
Blood samples were processed in Fiji, and frozen sera transported to Australia, for serological 

analysis.  Microscopic agglutination tests (MAT) were used to detect anti-Leptospira 

antibodies, and determine the putative serogroups associated with infections. The MAT is the 

reference serological test recommended by the WHO and the International Committee on 

Systematic Bacteriology (Subcommittee on the Taxonomy of Leptospira) [27,28]. Serological 

analyses were conducted at the WHO/FAO/OIE Collaborating Centre for Reference & 

Research on Leptospirosis in Brisbane, Australia.  

Based on the laboratory’s knowledge of the epidemiology of leptospiral serovars in the South 

Pacific, 21 pathogenic serovars (see Appendix) were selected for the MAT panel for this 

study, and samples were tested at dilutions from 1:50 to 1:3200.  The 21-serovar panel was 

used to test a random selection of ~10% of total samples to determine the most common 

serogroups responsible for infections in humans. In addition, the 21-serovar panel was to test 

199 Leptospira ELISA-positive samples collected from patients with suspected clinical 

leptospirosis in Fiji in 2012 and 2013 to ensure that the most common serogroups to identify 

the most important serogroups associated with clinical infections.  Based on the MAT results 

from the two sets of sera, six serovars were chosen for the final panel used to test the 

remaining samples from this study (A3.S1 Appendix): Leptospira interrogans serovars Pohnpei 

(serogroup Australis), Australis (serogroup Australis), Canicola (serogroup Canicola), 

Copenhageni (serogroup Icterohaemorrhagiae), Hardjo (serogroup Sejroe), and and 

Leptospira borgpetersenii serovar Ballum (serogroup Ballum). 

The MATs assay is expensive and time-consuming, and the described strategy to limit the 

number of serovars included in the panel resulted in reduced project costs. Considering that 

one dominant serovar was identified in the preliminary tests, it was determined that the 

smaller MAT panel was unlikely to have significant impact on the overall epidemiological 

findings. MAT titres of ≥1:50 were considered reactive or seropositive, and indicative of 

recent or past infection.  For samples that reacted to multiple serovars within a serogroup, 

the serovar associated with the highest titre was considered to be the reacting serovar.  

Samples that reacted to serovars in more than one serogroup were recorded as reacting to 

multiple serovars. Although serogroups are no longer used in the taxonomic classification of 

serovars, they remain useful for laboratory purposes and epidemiological comparisons. 
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A3.2.9 Statistical analysis 
An overview of the statistical analyses is shown in Figure A3.2. The outcome measure used 

was seropositive reactions to any of the six serovars included in the final MAT panel. Firstly, 

crude associations between the independent variables and the outcome measure were 

obtained by univariable logistic regression. Independent variables associated with the 

outcome by a likelihood ratio test (LRT) p-value of <0.2 were then subjected to a stepwise 

backward elimination process (p<0.05) to select the final set of independent variables for the 

multivariable logistic regression models. In addition, the possible presence of effect 

modification in the multivariable modelling was investigated using the LRT. This was assessed 

using interaction terms, which consisted of all independent variables found to be significant 

in the univariable analysis. Interaction terms were added separately to the analyses to 

determine their joint effect on the outcome measure.  Multilevel hierarchical modelling was 

used to take into account the clustering of participants, and allowed for correlation of 

observations by region (n=5), community (n=82), and household (up to 3 participants per 

household in Ba) as random effects. Intra-cluster correlation coefficients (ICCs) with 

corresponding 95% confidence intervals were obtained from final multivariable models. 

Biological plausibility and collinearity between variables were taken into account when 

selecting the variables to be retained in the final models. For example, if we observed strong 

collinearity between poverty rate and absence of electricity at home, poverty rate would be 

chosen for the final model because of more direct relationship to exposure risks.  

Two multivariable models were built: 

Model A:  Used independent variables where data could be ascertained by questioning an 

individual, and included primarily individual-level variables, but also some household-level 

and community-level variables. Model A was designed to assess the risk of infection for an 

individual, e.g. for producing predictive risk charts to graphically depict the combined effects 

of variables in determining overall seroprevalence.  The charts are designed for use in clinical 

settings, and are similar to cardiovascular risk charts used to predict the risk of cardiac events 

based on combinations of risk factors such as blood pressure, diabetes, smoking, and 

cholesterol levels. 

Model B: Used independent variables derived from geospatial and other national databases 

described in Table A3.1, without using the field data collected in this study. Model B included 

household-level and community-level variables only, and was designed to assess the risk of 

infection at geographic locations, e.g. estimating community-level seroprevalence, identifying 

hotspots and producing predictive risk maps. 
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Independent variables found to be statistically significant on multivariable regression 

analyses were reported. Adjusted odds ratios (OR) with 95% confidence intervals obtained 

from regression coefficients were used to quantify associations between the independent 

and outcome variables. In addition, univariate results of variables associated with animal 

exposure and contact were reported. Statistical significance was considered at p < 0.05 and 

two-sided. Data analysis was performed using STATA 13 (StataCorp, 2013). Model fit was 

assessed using the Hosmer-Lemeshow test [29], while relative predictive performance was 

undertaken using the area under the receiver operating curve (AUC) was calculated for each 

model and compared for statistical differences. An AUC of 0.7 was deemed to indicate an 

adequate predictive ability of the model. Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) were reported for the final models. 

 

A3.3 Results  
 

A3.3.1 Study population 
A total of 2152 participants from 1922 households in 82 communities on the three main 

islands of Fiji were included in the study.  The age of participants ranged from 1 to 90 years 

(mean 33.6, SD 19.8), and 985 (45.8%) were males.  The age and sex distribution of 

participants are shown in Figure A3.4.  

 

Figure A3.4. Seroprevalence by age group and gender.  

Seroprevalence was defined as the percentage of participants with reactive MAT ( ≥ 1:50) to 

at least one of the 6 serovars used in the final panel.  Blue=male. Red=female.
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The study included 662 participants from the Central Division (28 communities), 453 from Ba 

(10 communities), 520 from other parts of the Western Division (21 communities), 261 from 

Taveuni (12 communities), and 256 from Vanua Levu (12 communities) (Table A3.2). 

 

Table A3.2. Leptospira seroprevalence by age, gender, ethnicity, community types, and region 
Variables No of 

participants  

Reactive 

MATs* 

Sero-prevalence 

(%) 

 

95% CI 

Total sampled  2152 417 19.4% 17.7 – 21.1% 

Gender Male 985 234 23.8% 21.1 – 26.5% 

 Female 1160 182 15.7% 13.6 – 17.9% 

Age groups 

(years) 

0 – 9 256 21 8.2% 5.1 – 12.3% 

 10 – 19 362 69 19.1% 15.1 – 23.5% 

 20 – 29 387 101 26.1% 21.8 – 30.8% 

 30 – 39 340 61 17.9% 14.0 – 22.4% 

 40 – 49 279 63 22.6% 17.8 – 27.9% 

 50 – 59 263 50 19.0% 14.5 – 24.3% 

 ≥ 60 263 52 19.8% 15.1 – 25.1% 

Ethnicity Indo-Fijian 459 34 7.4% 5.2 – 10.2% 

 iTaukei 1651 374 22.7% 20.7 – 24.7% 

 Other 39 8 20.5% 9.3 – 36.5% 

Community type Private residential 502 44 8.8% 6.4 – 11.6% 

 Settlement  

(Indo-Fijian) 

103 18 17.5% 10.7 – 26.2% 

 Settlement  

(mixed ethnicity) 

511 91 17.8% 14.6 – 21.4% 

 Village 1036 264 25.5% 22.9 – 28.3% 

Urban/Rural Urban 579 64 11.1% 8.6 – 13.9% 

 Peri-urban 287 44 15.3% 11.4 – 20.0% 

 Rural 1286 309 24.0% 21.7 – 26.5% 

Region Central Division 662 107 16.2% 13.4 – 19.2% 

 Western Division 

– Ba  

453 82 18.1% 14.7 – 22.0% 

 Western Division – 

Other 

520 94 18.1% 14.9 – 21.7% 

 Northern Division – 

Taveuni 

261 59 22.6% 17.7 – 28.2% 

 Northern Division – 

Vanua Levu 

256 75 29.3% 23.8 – 35.3% 

*Reactive MAT defined at titre of ≥1:50 for one or more serovars used in the 6-serovar panel 
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3.3.2 Seroprevalence and serovars 
Details of the 21 serovars included in the screening panel and the seroprevalence of the 

initial 198 randomly selected samples are shown in A3.S1 Appendix, together with the six 

serovars included in the final MAT panel which accounted for 86.7% of reactive tests: 

Leptospira interrogans serovars Pohnpei, Australis, Canicola, Copenhageni, Hardjo, and and 

Leptospira borgpetersenii serovar Ballum. Using the 6-serovar panel, the overall 

seroprevalence was 19.4% (95% CI  17.7% - 21.1%), with 417 participants having reactive 

MATs to at least one serovar.  One predominant serovar, Pohnpei, accounted for 351 (84.2%; 

95% CI 80.3% - 87.5%) of reactive MATs. A total of 63 participants had MAT titres of ≥1:400 

(47 for serovar Pohnpei, and 16 for other serovars), the cutoff used by our laboratory to 

indicate an acute infection. The distribution of MAT titres for Pohnpei and other serovars is 

shown in Figure A3.5.  

 

Figure A3.5. Distribution of MAT titres for serovar Pohnpei (blue) and other 

serovars (red); using the final panel of 6 serovars.  
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Table A3.2 shows that there were significant differences in seroprevalence by age, gender, 

ethnicity, community types, and region. Community-level seroprevalence ranged from 0% to 

60%, and are shown on the maps in Figures A3.6a-d. Variations in seropositive reactions to 

each serovar by age groups and region of residence are shown in Figures A3.7a&b 

respectively.  

 

 

 

Figure A3.6. Community-level seroprevalence at the 82 communities included in 

the study 

 a) prevalence varied from 0% to 60%; b) enlargement of the Suva area in eastern Viti Levu; c) 

enlargement of Taveuni and eastern Vanua Levu; and d) enlargement of northwestern Viti 

Levu including Ba. 
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Figure A3.7. Percentage of positive MAT reactions associated with each of the 6 

serovars included in the final panel  by: a) age groups, and b) regions.  

 Positve MAT reactions defined as titre of  ≥ 1:50. 
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A3.3.3 Risk factor analysis and multivariable models 
A total of 118 independent variables were assessed on univariate analysis: 75 variables 

obtained from questionnaires, and 43 derived using GIS from the sources described in Table 

A3.1. Independent variables included 31 individual-level, 38 household-level, and 49 

community-level risk factors described above. A3.S2 Appendix provides a list of the 

independent variables assessed at the univariate level. Variables that were statistically 

significant on univariate analyses were considered for the multivariable models, and included 

19 individual-level, 21 household-level, and 25 community-level risk factors. Due to statistical 

significance not be reached, no interaction effect was included in the multivariable modelling. 

Multivariable Model A (using variables where data could be ascertained by questioning an 

individual) included five variables that were independently associated with the presence of 

Leptospira antibodies, with an AUC of 0.7 (Table A3.3) including: male gender (OR 1.55 

compared to females), iTaukei ethnicity (OR 3.51 compared to Indo-Fijians), living in 

settlements and villages (OR 2.13 and 1.64 respectively compared to urban residential areas), 

not having metered water at home (OR 1.52), and working outdoors (OR 1.64 compared to 

working indoors). Of the 434 participants who worked outdoors, 378 (87%) were full- or part-

time farmers, indicating that outdoor work in Fiji is predominantly related to farming. 

Multivariable Model B (using only variables derived from geospatial and other national 

databases) included six variables that were independently associated with the presence of 

Leptospira antibodies, with an AUC of 0.7 (Table A3.4) including: living in rural areas (OR 1.43 

compared to living in urban or peri-urban areas), poverty rate ≥ 40% (OR 1.74), living <100m 

from a river or major creek (OR 1.41), presence of pigs in the community (OR 1.54), total 

cattle density in the Tikina (OR 1.04 per head of cattle per square km), and high maximum 

rainfall in the wettest month (OR 1.003 per mm of rain). Total cattle density (includes both 

commercial and subsistence livestock) ranged from 0.11 to 31.48 head of cattle per square 

km (mean 8.96, SD 5.31), and maximum rainfall in the wettest month ranged from 275 to 

789mm (mean 375.02, SD 56.94). A similar multivariable model using total dairy farm density 

instead of total cattle density performed better than the final model (results not shown), but 

data on dairy farm density were only available for 57 of the 82 (69.5%) communities included 

in our study, and this variable was therefore not used in the final Model B. 
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Table A3.3. Variables significantly associated with positive MAT for Leptospira on univariable 

and multivariable analysis – Model A^ (individual-level variables) 
Variables No of 

subjects  

Reactive 

MAT* 

Sero-

prevalence 

(%) 

Univariable 

Odds Ratio 

(95% CI) 

Adjusted 

Odds Ratio 

(95% CI) 

p 

value# 

 

Total sampled  2152 417 19.4%    

Gender Female 1160 182 15.7% 1 1  

 Male 985 234 23.8% 1.67  

(1.35–2.08) 

1.55  

(1.16–2.08) 

0.003 

Ethnic group Indo-Fijian 459 34 7.4% 1 1  

 iTaukei 1651 374 22.7% 3.66  

(2.53–5.29) 

3.51  

(2.23–5.54) 

<0.001 

 Other 39 8 20.5% 3.23  

(1.38–7.56) 

2.32  

(0.82–6.58) 

0.114 

Community 

type 

Urban 

residential 

502 44 8.8% 1 1  

 Settlement  614 109 17.8% 2.25  

(1.55–3.26) 

2.13  

(1.41–3.21) 

<0.001 

 Village 1036 264 25.5% 3.56  

(2.54–5.00) 

1.64  

(1.08–2.51) 

0.021 

Metered water 

available at 

home 

Yes 1412 221 15.7% 1 1  

 No 720 189 26.3% 1.92  

(1.54–2.39) 

1.52  

(1.14–2.03) 

0.004 

Work location Indoors 832 106 12.7% 1 1  

 Mixed 

indoors/ 

outdoors 

639 123 19.2% 1.63  

(1.23–2.17) 

1.65  

(1.23–2.20) 

0.001 

 Outdoors 434 119 27.4% 2.59  

(1.93–3.47) 

1.64  

(1.15–2.34) 

0.006 

^ Model goodness of fit: AIC 1675.9, BIC 1731.3, df 10. 

*Reactive MAT defined at titre of ≥1:50 for one or more serovars used in the 6-serovar panel 

# p value for adjusted odds ratios, multivariable model  
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Table A3.4. Variables significantly associated with positive MAT for Leptospira on univariable 

and multivariable analyses – Model B^ (environmental and census variables) 
Variables No of 

subjects  

Reactive 

MAT* 

Sero-

prevalence 

(%) 

Univariable  

Odds Ratio 

(95% CI) 

Adjusted 

Odds Ratio 

(95% CI) 

p 

value# 

 

Urban/Rural Urban/ Peri-

urban 

866 108 12.5% 1 1  

 Rural 1286 309 24.0% 2.22  

(1.75–2.82) 

1.43  

(1.07–1.91) 

0.016 

Poverty rate < 40% 1277 187 14.6% 1 1  

 ≥ 40% 875 230 26.3% 2.08  

(1.67–2.58) 

1.74  

(1.31–2.31) 

<0.001 

Distance 

between 

home and 

river or major 

creek 

> 100m 1590 279 17.6% 1 1  

 ≤ 100m 456 115 25.2% 1.58  

(1.24 –2.03) 

1.41  

(1.09–1.83) 

0.009 

Presence of 

pigs in 

community 

No 1587 266 16.8% 1 1  

 Yes 561 150 26.7% 1.81  

(1.44–2.28) 

1.54  

(1.21–1.98) 

0.001 

  

Mean (Standard deviation) 

   

Total cattle 

density in 

Tikina§ (per 

head of cattle 

per sq km) 

Seronegative 

subjects 

8.86 (5.18)    

Seropositive 

subjects 

9.38 (5.83) 1.02  

(1.00–1.04) 

1.04  

(1.02–1.06) 

<0.001 

Maximum 

rainfall in 

wettest 

month (per 

mm) 

Seronegative 

subjects 

372.83 (50.05)    

Seropositive 

subjects 

384.18 (79.01) 1.003  

(1.001–

1.005) 

1.003  

(1.001–

1.005) 

0.002 

^Model goodness of fit: AIC 1924.3, BIC 1963.6, df 7. 

*Reactive MAT defined at titre of ≥1:50 for one or more serovars used in the 6-serovar panel 

# p value for adjusted odds ratios, multivariable model 

§ Includes both commercial and subsistence cattle  
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Collection of biological samples from animals was outside of the scope of this study, but 

study questionnaires included detailed information about contact with animals (rodents, 

mongoose, pets, and livestock) at home and the presence of animals in the community. A 

number of animal-related exposures were significantly associated with the presence of 

Leptospira antibodies on univariable analysis (Table A3.5).  The presence of rats, mice, and 

mongoose around the home was not significantly associated with seroprevalence, but higher 

infection rates were found in participants who reported physical contact with rats or mice 

(OR 1.58) and mongoose (OR 1.81).  Table A3.5 shows that many Fijians have livestock 

animals at home and in the community. The presence of each livestock species was 

associated with a higher infection rates on univariable analysis, but only the presence of pigs 

in the community was significant on multivariable analysis, and included in Model B. 

Table A3.5. Associations between positive MAT for Leptospira and animal exposure at home 

and in the community  
Questions related to animal exposure 

and contact  

Number of 

subjects who 

answered 

‘yes’ 

% of subjects 

who answered 

‘yes’ 

Univariable Odds 

Ratio  

(95% CI) 

p value 

Seen rats or mice at or around your 

home 
1844 85.9% 1.16 (0.84 –1.59) 0.371 

Been in physical contact with rats or 

mice 
323 15.3% 1.58 (1.20–2.09) 0.001 

Seen mongooses at or around your 

home 
1655 77.1% 1.08 (0.83–1.39) 0.574 

Been in physical contact with 

mongooses 
135 6.5% 1.81 (1.23–2.68) 0.003 

Pigs at your home or in your garden 230 10.7% 1.55 (1.23–2.12) 0.007 

Pigs in your community 561 26.1% 1.81 (1.44–2.28) 0.000 

Cows at your home or in your garden 284 13.2% 1.53 (1.15–2.05) 0.004 

Cows in your community 481 22.4% 1.52 (1.19–1.93) 0.001 

Horses at your home or in your garden 200 9.3% 1.53 (1.09–2.14) 0.013 

Horses in your community 377 17.6% 1.55 (1.19–2.01) 0.001 

Are there goats at your home or in your 

garden? 
107 5.0% 1.08 (0.67–1.75) 0.749 

Goats in your community 242 11.3% 1.47 (1.08–2.01) 0.015 

Chickens at your home or in your garden 431 20.1% 1.21 (0.93–1.57) 0.152 

Chickens in your community 819 38.1% 1.39 (1.12–1.72) 0.003 

Dogs at your home or in your garden 645 30.0% 1.00 (0.79–1.26) 0.992 

Dogs in your community 998 46.5% 1.25 (1.01–1.55) 0.041 

Cats at your home or in your garden 355 16.5% 0.78 (0.58–1.06) 0.115 

Cats in your community 830 38.6% 1.38 (1.11–1.72) 0.003 
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Two multilevel hierarchical models were built to take into account spatial correlation of data: 

i) defining region and community as random effects, using the entire dataset, and ii) defining 

community and household as random effects, using Ba data only. The results of multilevel 

models were not statistically different to the results of multivariable Model A (chi2 = 0.01, p = 

0.99) or multivariable Model B (chi2 = 0.02, p = 0.99), and therefore not reported here 

because coefficient estimates were very similar to the reported models. 

 

A3.3.4 Seroprevalence estimation chart using Model A 
Figure A3.8 shows a seroprevalence estimation chart that incorporates individual-level 

variables to show the combined effects of multiple independent risk factors on the 

prevalence of infection. Estimated seroprevalence were based on the five variables used in 

Model A. For example, the chart shows a range of seroprevalence from 2.0% for female Indo-

Fijians who live in urban residential areas, have metered water at home, and work indoors; to 

34.2% for male iTaukei who live in villages, do not have metered water and home, and work 

outdoors. It is uncommon for Indo-Fijians to live in villages or for iTaukei to live in Indo-Fijian 

settlements, and results were therefore not shown for these scenarios. 

 

Figure A3.8. Seroprevalence estimation chart based on Model A, a multivariable 

logistic regression model of individual -level variables for a) females and b) 

males.  

The chart shows the combined effects of independent risk on the estimated prevalence of 

leptospirosis infection. Seroprevalence was defined as as the percentage of participants with 

reactive MAT ( ≥ 1:50) to at least one of the 6 serovars in the final panel.   

 

Work	location Work	location Predicted	

Community	type Indoors Mixed Outdoors Indoors Mixed Outdoors seroprevalence

Indo-Fijian Urban	residential 2.0 3.2 3.1 2.9 4.7 4.7 0	-	4.9%

Village 5	-	9.9%

Female Mixed	Ethnic	Settlmt 3.9 6.2 6.1 5.8 9.0 9.1 10	-	19.9%

Indo-Fijian	Settlmt 8.0 12.4 12.3 11.5 17.4 17.6 20	-	29.9%

≥	30%

iTaukei Urban	residential 7.8 12.2 12.0 11.3 17.3 17.1 Unlikely	scenario

Village 12.1 18.4 18.1 17.1 25.3 25.0

Mixed	Ethnic	Settlmt 14.6 21.9 21.6 20.4 29.7 29.3

Indo-Fijian	Settlmt

Work	location Work	location

Community	type Indoors Mixed Outdoors Indoors Mixed Outdoors

Indo-Fijian Urban	residential 3.1 4.9 4.8 4.5 7.2 7.1

Village

Male Mixed	Ethnic	Settlmt 6.0 9.4 9.3 8.7 13.5 13.3

Indo-Fijian	Settlmt 11.9 18.2 17.9 16.9 25.0 24.7

iTaukei Urban	residential 11.7 17.9 17.6 16.6 24.6 24.3

Village 17.7 26.1 25.7 24.4 34.6 34.2

Mixed	Ethnic	Settlmt 21.1 30.5 30.1 28.7 39.7 39.4

Indo-Fijian	Settlmt

	Have	metered	water	at	home No	metered	water	at	home

	Have	metered	water	at	home No	metered	water	at	home
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A3.4 Discussion  
 

Our study identified a high risk of human leptospirosis infection in Fiji, with an overall 

seroprevalence of 19.4% using a 6-serovar MAT panel. One dominant serovar, Pohnpei, was 

associated with 84.2% of reactive MATs. The serovar was originally isolated from rodents and 

pigs during an animal leptospirosis study in the island of Pohnpei in the Federated States of 

Micronesia [30], and has been found to be an important cause of human infections [31].  

Seroprevalence varied significantly between the five regions in our study, and ranged from 

16.2% in the Central Division to 29.3% in Vanua Levu in the Northern Division. Community-

level seroprevalence also varied significantly from 0% to 60% in the 82 communities included 

in our study. These findings indicate marked geographic variation in infection risk in Fiji and 

the presence of hotspots where disease transmission is more intense.   

Globally, reported leptospirosis seroprevalence vary significantly between and within 

countries, based on environmental settings, behavioural risk factors, and socio-

demographics; our results corroborate these findings. To put the Fiji results into a global 

context, examples of seroprevalence reported from known high risk settings [2,4] such as 

urban slums, tropical islands, and flood risk areas include 15.4% in an urban slum in Brazil 

[32], 37% of healthy adult males in the Seychelles [33], 18.8% in the Mekong delta in Vietnam 

[34], and 23.9% and 38.2% in flood-prone areas in Laos and Bangladesh respectively [35,36]. 

As found in Fiji, small-scale variations in seroprevalence within countries and differences 

between occupational groups have been reported. In American Samoa (a group of remote 

islands in the south Pacific), a community-based study reported an overall seroprevalence of 

15.5% [8] and significant variation between islands with different environments, and 

between areas with different population density [37]. In Peru, seroprevalence varied from 

28.0% in the Amazonian city of Iquitos and 16.5% in the surrounding villages (wet tropics), to 

0.7% in a desert shantytown near Lima [38]. In the Andaman Islands, a study of high-risk 

populations found seroprevalence of 62.5% in agricultural workers, 39.4% in sewage workers, 

37.5% in animal handlers, and 30.0% in butchers [39]. In contrast, a study of healthy blood 

donors in an area of high leptospirosis incidence in northern Queensland in Australia found a 

seroprevalence of only 1.4% [40,41].  

Our study found that individual-level factors were important predictors of leptospirosis 

infection risk in Fiji. Model A shows that gender, ethnicity, community type, availability of 

water at home, and work location were independently associated with the presence of 

Leptospira antibodies.  Higher infection rates in males corroborates findings in the majority of 

leptospirosis studies around the world, and is likely to be associated with higher frequency of 
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outdoor activities as well as higher risk occupational and recreational exposures. Reasons for 

the marked difference in seroprevalence between the two main ethnic groups in Fiji are 

unclear, but could be related to differences in genetic susceptibility or behaviours that were 

not elucidated by our questionnaire, e.g. differences in animal husbandry or slaughtering 

practices related to religion or culture. Further studies are required to explain the disparate 

risk between ethnic groups. Seroprevalence in villages was significantly higher than in urban 

residential areas or settlements, and is likely the result of more intimate contact with the 

natural environment and domestic animals. In our study, working outdoors was associated 

with a higher risk of infection, and the majority of outdoor work in Fiji involves farming. 

Agriculture is an important part of Fiji’s economy, and apart from the livestock industry, there 

is commercial farming of a range of crops include sugarcane, coconut, copra, and a wide 

variety of fruits and vegetables. Occupational exposure in the agricultural industry is 

therefore likely to be an important source of leptospirosis infection in Fiji. 

Of note, three of the predictors included in our final multivariable models were related to 

water: the availability of metered (treated) water at home (Model A), distance between the 

home and the closest river or major creek (Model B), and maximum rainfall in the wettest 

month (Model B).  Considering that Leptospira can survive for weeks to months in fresh 

water, and are efficiently carried and disseminated by water (e.g. flooding, flowing 

downstream in rivers), the findings were not unexpected. Lack of metered water at home and 

proximity to rivers are likely to be associated with higher levels of contact with untreated 

freshwater, e.g. using rivers for bathing, cleaning, swimming, and recreational activities.  

Furthermore, poor access to water at home is generally associated with poverty (discussed 

below), and also influences personal hygiene, e.g. the ability to clean and wash after working 

outdoors, or after contact with mud, contaminated water, or animals. Two of the water-

related predictors (distance to river or major creek and maximum rainfall in the wettest 

month) are also proxy measures of flooding risk. As seen with the post-flood leptospirosis 

outbreaks in 2012, flooding is an important driver of transmission in Fiji, as it is in many parts 

of the world.  

Two of the predictors in Model B relate to livestock exposure: total cattle density in the Tikina 

and presence of pigs in the community. Data on cattle density in Tikinas includes both 

commercial and subsistence farming, and varied from < 1 to over 30 heads of cattle per 

square km. Infection risk could be related to direct occupational contact with cattle, or 

through more general contamination of the environment (especially rivers) with cattle urine. 

As shown in Table A3.5, many households in Fiji keep subsistence livestock. Backyard 

piggeries are commonly found in communities in Fiji and other Pacific Islands, and are usually 
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small pens with less than 10 pigs.  The pens are often built on the edge of rivers and streams 

to allow convenient drainage of waste, but unfortunately also lead to contamination of 

freshwater at that community as well as further downstream.  In American Samoa, similar 

backyard piggeries have been associated with the risk of human leptospirosis infection [8,42]. 

Dairy farmers are known to be at high risk for leptospirosis in many parts of the world 

because of close contact with cattle, and exposure to urine during milking.  In our study, high 

density of dairy farms was strongly associated with infection risk, but was not included as a 

variable in the final model because data were only available for ~70% of the Tikinas in our 

study.  As more data on dairy farms become available, associations with leptospirosis risk 

could be further explored and model performance potentially improved. Commercial dairy 

and beef farming could potentially intensify in the future with population growth, and 

increase the risk of leptospirosis.   

Model B also shows that leptospirosis is a disease of poverty in Fiji and disproportionately 

affects the poorest.  Leptospirosis has been associated with poverty in diverse settings 

around the world, including Brazilian and Indian urban slums [32,43,44], Peruvian Amazon 

[38], and areas of poor socioeconomic status in the USA and Europe [45,46].  Furthermore, 

the combination of poverty, livestock keeping, and global climate change are important 

drivers of zoonotic diseases transmission [47]. In our study, participants living in communities 

with high poverty rates (defined as ≥40% of households in the community) had almost twice 

the infection rate compared to other communities, independent of the other predictors in 

Model B. As discussed above, poor access to metered (treated) water at home was associated 

with a higher risk of infection for many reasons, and is also a proxy measure of 

socioeconomic status.   

Although serovar Pohnpei was associated for 84.2% of reactive MATs, there were differences 

in serovar distribution by age and by region of residence, suggesting that the relative 

importance of animal species in disease transmission varies between subgroups. Variation in 

risk factors between age groups likely relates to age-specific behaviours, e.g. young children 

spend more time playing around the home, and have closer contact with pets and soil; 

teenagers have more frequent recreational freshwater contact from swimming in rivers and 

waterfalls; and adults have more intense contact with livestock through occupational 

exposure and managing animals at home. Variation in risk factors between regions likely 

relates to differences in environmental settings, with proportionately greater urbanization in 

the Central division, and more farming in the other regions. For example, rodents could be 

more important in transmission cycles in urban and peri-urban areas, and livestock more 

important in rural areas.   
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Many of the risk factors and environmental drivers identified in our study provide significant 

cause for concern about future risk of leptospirosis in Fiji, as well as other Pacific Islands with 

similar environments.  Population growth is typically associated with agricultural 

intensification, leading to increase in livestock numbers (both commercial and subsistence) 

and occupational exposure.  With global climate change, extreme weather events and 

flooding are predicted to become more frequent and intense in the Pacific Islands.  Rapid 

population growth in developing countries is often associated with urban and peri-urban 

slums where diseases of poverty proliferate.  Although our study found that leptospirosis 

seroprevalence was lower in urban areas, poverty rate was a significant risk factor 

independent of urban or rural settings.  Climate change, flooding, population growth, 

urbanization, and agricultural intensification may independently, or potentially 

synergistically, lead to enhanced leptospirosis transmission in Fiji [3].  

The findings should be considered in light of the study’s limitations.  Limitations of the MAT 

have been well documented; the test is considered to be serogroup rather than serovar 

specific, cross-reactions occur between serovars within a serogroup, and complex paradoxical 

reactions could occur in persons who have had previous infections [28].  Despite these 

limitations, the MAT is considered the gold standard test for identifying putative serogroups 

and serovars when isolates are not available [27]. Isolates of leptospires would be required to 

definitively confirm the serovars circulating in Fiji. Due to budgetary reasons, our study used a 

6- rather than 21-serovar MAT panel to test the majority of samples. If the larger panel was 

used, additional less-common serovars may have been detected.  However, the 6 serovars 

selected included the most reactive serovars when 198 randomly selected samples from this 

study were tested against the full 21- serovar panel; the 6 serovars selected accounted for 

86.7% of the reactive samples, and one dominant serovar (Pohnpei) accounted for 65.9% of 

reactive samples. The reduced MAT panel size could have underestimated the overall 

seroprevalence by a factor of 0.13 compared to a 21-serovar panel, but unlikely to have 

significantly influenced the overall epidemiological patterns reported here because one 

serovar dominated the reactive MATs, and our data analyses in this paper were not stratified 

by serovars. 

Our study measured antibodies to Leptospira to identify evidence of prior infection. However, 

many leptospirosis infections do not result in any apparent illness and are of no clinical 

significance. The severity of clinical disease depends on many factors including pathogen 

virulence and the individual’s immune status, comorbidities, and age [48].  Serovar Pohnpei, 

the serovar associated with 84.2% of MAT-reactive cases, has been reported as an important 

cause of overt clinical disease in the Federated States of Micronesia [31], suggesting the 
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findings in this study are applicable to not only infection but also clinical illness. However, 

there are currently no available data on the proportion of serovar Pohnpei infections that 

result in clinical disease or severe complications.  

Future studies could further improve our understanding of leptospirosis transmission in Fiji 

by examining serovar-specific risk factors; identifying the most important exposures in 

different subgroups such as age groups, gender, ethnic groups, and community types; 

determining the relative importance of livestock, rodents, pets and wildlife in transmitting 

leptospirosis to humans; and developing models to determine transmission (causal) pathways 

rather than just epidemiological links. For environmental and census variables, we used data 

at the place of residence, but infections could also have occurred at work or elsewhere. 

Future studies that focus specifically on work-related activities would provide more insight 

into the importance of occupational exposures in Fiji.  The performances of models were 

partly determined by the accuracy of available environmental, census, and livestock data, and 

models could be updated and improved as more data become available.  Models based on 

environmental factors, such as Model B, could be used to produce predictive risk maps for 

the whole of Fiji. 

In summary, our study found that risk factors and drivers for human leptospirosis infection in 

Fiji are complex and multifactorial, and include climate, the natural environment, livestock 

(both subsistence and commercial), living conditions, socioeconomic status, demographics 

and individual behaviour.  Some of these factors corroborate findings previously reported in 

other settings (e.g. male gender, working outdoors), but other factors appear to be specific to 

the cultural and environmental settings in Fiji, including ethnicity and presence of pigs in 

communities.  By using an integrated eco-epidemiological approach and including a wide 

range of data sources in our analyses, we were able to quantify the relative importance of 

risk factors at different ecological scales.  At the individual level, gender, ethnicity, and work 

location were strongly associated with infection risk.  At the community level, important 

predictors of risk included rural setting, community type, poor access to clean water, close 

proximity to rivers, high rainfall in the wettest month, high poverty rate, presence of pigs, 

and high cattle density. From a wider perspective, significant spatial variations in risk and the 

ability to predict risk based only on environmental and census variables indicate that 

environmental factors play a crucial role in driving leptospirosis transmission in Fiji.   

The above findings provide an important evidence base to guide the focus of public health 

and environmental health interventions at individual, community, and national levels.  Health 

promotion activities and educational materials should be designed to reach the highest risk 
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groups including males, farmers, and iTaukei. Public health and environmental health 

interventions should target the highest risk communities (villages, rural areas, those in 

hotspots and high-risk regions), and include advice on proper management of livestock, 

avoiding contact with floodwaters, and minimizing flooding risk (e.g. adequate garbage 

disposal to reduce the risk of flooding from blocked streams and drains).  At high risk times, 

e.g. post-flooding, communities should also be reminded about the risk of leptospirosis, 

protective measures, and the importance of seeking early medical care if unwell.  In smaller 

communities in Fiji, where laboratory diagnostic tests are often not available, the predictive 

risk chart shown in Figure A3.8 could assist clinicians with determining the likelihood (pre-test 

probability) of leptospirosis infection based on a combination of individual-level variables. 

Broader environmental factors (both natural and anthropogenic) play a major role in 

leptospirosis transmission in Fiji, most of which are beyond the immediate control of 

individuals or small communities. Effective environmental health management at the public 

health and national level will therefore be crucial for the sustainable control of leptospirosis 

in Fiji and other countries with similar environmental and socio-demographic settings. 
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A3.6 Supporting Information 
 

A3.S1 Appendix. Initial 21 pathogenic serovars included in the microscopic agglutination test 

(MAT) panels, and the six serovars chosen for the final MAT panel. 

Species Serogroup Serovar 

198 randomly selected 
samples from this 

study#:  
% of seropositive 

reactions associated 
with each serovar 

199 Leptospira ELISA-
positive samples*: 
% of seropositive* 

reactions associated 
with each serovar 

Used in 
final 

6-serovar 
panel 

Interrogans Australis Australis 7.3% 1.5%  

Interrogans Australis Pohnpei 65.9% 51.5%  

Interrogans Autumnalis Autumnalis    

Borgpetersenii Ballum Ballum 3.7% 6.1%  

Interrogans Bataviae Bataviae    

Interrogans Canicola Canicola 4.9% 10.6%  

Weilii Celledoni Celledoni  4.5%  

Kirshneri Cynopteri Cynopteri 1.2%   

Interrogans Djasiman Djasiman    

Interrogans Grippotyphosa Grippotyphosa    

Interrogans Hebdomadis Hebdomadis    

Interrogans Icterohaemorrhagiae Copenhageni 4.9% 21.2%  

Borgpetersenii Javanica Javanica    

Borgpetersenii Mini Mini 3.7%   

Noguchii Panama Panama 7.3%   

Interrogans Pomona Pomona    

Interrogans Pyrogenes Pyrogenes  1.5%  

Santarosai Shermani Shermani    

Weilii Sarmin Sarmin 1.2%   

Interrogans Sejroe Hardjo  3.0%  

Borgpetersenii Tarassovi Tarassovi    

TOTAL   100% 100%  
# Overall, 32.3% of samples reacted to at least one of the 21 serovars used in the MAT panel; 17.7% 
with MAT titre of 1:50, 9.1% 1:100; 9.1% 1:200; 5.1% 1:400; 0.5% 1:800.  

*Leptospira ELISA-positive samples from patients with suspected clinical leptospirosis from April 

2012 to November 2013 (spanning both epidemic and endemic periods).  Samples were 
systematically selected from a total of 570 samples collected during this period; selection process 
was designed to maximise the probability of identifying the most common serogroups from all 
Divisions (geographic spread) and over the entire time period (temporal spread).  Overall, 33.2% of 
samples reacted to at least one of the 21 serovars used in the MAT panel; 4.5% with MAT titre of 
1:50; 10.5% 1:100; 5.5% 1:200; 7.0% 1:400; 4.0% 1:800; 1.0% 1:1600; 0.5% 1:6400. 
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A3.S2 Appendix. Independent variables stratified by data source and scale of ecological 

influence. 

 Data source 

Scale of 
ecological 
influence 

Questionnaires Derived using geographic information 
systems (GIS) 

Individual-
level 

Age 
Sex 
Country of birth 
Ethnicity 
Religion 
Highest school level completed 
Occupation 
Farming – none, part-time, full-time 
If farmer, type(s) of animal(s) 
Relative altitudes of home and farm 
Availability of soap & water at lunch 
Wash hands with soap & water after lunch 
Availability of soap & water at dinner 
Wash hands with soap & water after dinner 
Type of toilet at school or work 
Availability of soap & water at school or work 
Wash hands with soap & water after toilet at school 
or work 
Swimming, playing, or bathing in flood water 
Walking in flood water 
Contact with freshwater – recreation, walking, 
washing clothes, washing dishes 
Sighting rats or mice at home 
Physical contact with rats or mice  
Sighting mongoose at home 
Physical contact with mongoose 
Bitten by ticks or fleas 
Heard of leptospirosis before this study 
Diagnosed with leptospirosis 
Contacts (family, friends, colleagues) diagnosed 
with leptospirosis 
 

 

Household-
level 

Number of household members 
Household income 
Source(s) of drinking water 
Method(s) used to treat drinking water 
Availability of tap water in house 
Supply of government treated water to house 
Indoor shower or tap for washing 
Type of toilet at home (if any) 
Location of home toilet 
Sharing home toilet with other households 
Availability of soap & water at home toilet 
Wash hands with soap & water after using home 
toilet 
House construction material 
Floor construction material 
Floor raised at least 30cm above ground  
Number of rooms in house 
Garbage disposal method 
Stream or river near home (in community, or within 
100m) 
Flooding at home  
Flooding of land around home 
Presence of animal species at home 
Grow crops, fruits, vegetables at home 
 

Distance to rivers or major creeks 
Elevation above sea level 
Slope 
Road density 
Rainfall (multiple measures including 
maximum, minimum, average) 
Temperature (multiple measures 
including maximum, minimum, 
average) 
Land use 
Soil type 
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Community-
level 

Community type 
Urban rural classification 
Presence of animal species in community 
Grow crops, fruit, vegetables in community 

Educational attainment 
House construction 
Sources of income (subsistence, 
salaried) 
Ethnicity 
Water supply 
Electricity 
Toilets 
Population density 
Population growth 
Poverty rate 
Poverty gap 
Commercial beef – numbers of animals 
and farms 
Commercial dairy – numbers of 
animals and farms 
Subsistence beef – numbers of animals 
and farms 
Subsistence dairy – numbers of 
animals and farms 
Total cattle – numbers of animals and 
farms 
Pigs – numbers of animals and farms 
Goats – numbers of animals and farms 
Horses – numbers of animals and 
farms 
Sheep – numbers of animals and farms 
Poultry – numbers of animals and 
farms 
Duck – numbers of animals and farms 

 

 

 

 

 

 

 

 


