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Abstract

Objective

Linkage of longitudinal administrative data for mothers and babies supports research and
service evaluation in several populations around the world. We established a linked
mother-baby cohort using pseudonymised, population-level data for England.

Design and Setting

Retrospective linkage study using electronic hospital records of mothers and babies admit-
ted to NHS hospitals in England, captured in Hospital Episode Statistics between April
2001 and March 2013.

Results

Of 672,955 baby records in 2012/13, 280,470 (42%) linked deterministically to a maternal
record using hospital, GP practice, maternal age, birthweight, gestation, birth order and
sex. A further 380,164 (56%) records linked using probabilistic methods incorporating addi-
tional variables that could differ between mother/baby records (admission dates, ethnicity,
3/4-character postcode district) or that include missing values (delivery variables). The
false-match rate was estimated at 0.15% using synthetic data. Data quality improved over
time: for 2001/02, 91% of baby records were linked (holding the estimated false-match rate
at 0.15%). The linked cohort was representative of national distributions of gender, gesta-
tion, birth weight and maternal age, and captured approximately 97% of births in England.

Conclusion

Probabilistic linkage of maternal and baby healthcare characteristics offers an efficient way
to enrich maternity data, improve data quality, and create longitudinal cohorts for research
and service evaluation. This approach could be extended to linkage of other datasets that
have non-disclosive characteristics in common.
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Introduction

Linkage of administrative or electronic health records for mothers and babies has the potential
to provide a population-level resource to support research and service evaluation. Such linked
data are increasingly used in populations around the world, including Scotland, Canada, Aus-
tralia, the US and the Netherlands amongst others.[1-4] Linkage of primary care electronic
health records for mothers and babies has been attempted for small populations in England

[5, 6] and linkage of prospective maternity and children’s health services datasets on a larger
scale is being developed by the Health and Social Care Information Centre (HSCIC).[7] How-
ever, routine linkage of maternal and baby records in existing administrative hospital data does
not currently exist in England.

The large sample size and representativeness of linked administrative hospital data offer a
cost-effective alternative to traditional cohort studies for studying childhood outcomes, provid-
ing valuable information on maternal morbidity prior to birth and maternal risk-factors for
adverse birth outcomes.[8-12] Whilst existing birth cohort studies across Europe and the US
have provided important information on short- and long-term outcomes,[13] they are associated
with major costs, are subject to limited numbers for assessing rare conditions, suffer from selec-
tivity in follow-up, and find it difficult to recruit due to increasing participant burden.[14] These
limitations provide an imperative for finding alternative approaches using existing data sources.
Linked data on a population-level could be used instead for service evaluation and to answer a
range of research questions relating to the relationship between pre- and postnatal maternal risk-
factors, adverse birth outcomes and healthcare use throughout the course of childhood.[15]

Barriers to linkage between maternal and baby healthcare records in England include uncer-
tainty about the quality of data that are collected primarily for administrative purposes, and
the availability and completeness of personal identifiers required for linkage.[15-18] We devel-
oped methods for establishing a mother-baby cohort using linkage of a standard, pseudony-
mised extract of administrative hospital data for England. Our objective was to evaluate the
success of mother-baby linkage in the absence of direct personal identifiers, using non-disclo-
sive clinical variables (e.g. dates and delivery information) and demographic variables (e.g. eth-
nicity and GP practice code). We provide generalisable methods and guidance for combining
information on individuals with healthcare characteristics in common.

Materials and Methods
Ethics statement

The study is exempt from UK NREC approval because it involved the analysis of an existing
dataset of anonymous data for service evaluation. Approvals for the use of HES data were
obtained as part of the standard Hospitals Episode Statistics approval process. Hospital Episode
Statistics were made available by NHS Digital.

The steps required to create a linked cohort are outlined in the following sections: 1) Under-
standing the data source; 2) Identifying birth and delivery records; 3) Data preparation; 4)
Data linkage; 5) Internal and external validity.

1) Understanding the data source. Data were extracted from Hospital Episode Statistics
(HES). HES is an administrative database holding detailed information for all admissions to
NHS hospitals in England, and has been collected since 1989, primarily for financial purposes.
HES data are made available to researchers with appropriate permissions, in a pseudonymised
form (i.e. without personal identifiers) from the HSCIC. Data are divided into financial years,
and structured as ‘episodes’ of care, within which a patient is under the care of one consultant.
Each admission may comprise multiple episodes; episodes relating to the same individual are
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assigned the same pseudonymous ID (HESID) by the data provider, allowing researchers to
track patient admissions over time without accessing any personal identifiers. HESID is
assigned using a deterministic rule-based algorithm based on NHS number, local patient iden-
tifier, sex, date of birth and postcode.[19]

HES records contain clinical diagnoses (coded using the International Statistical Classifica-
tion of Diseases and Related Health Problems 10th Revision: ICD-10[20]), procedures (coded
using the Office of Population Censuses and Surveys Classification of Surgical Operations and
Procedures 4 revision: OPCS), and Healthcare Resource Groups (HRGs: http://www.hscic.
gov.uk/hrg). Standard HES extracts also include sex, month and year of birth and ethnic cate-
gory (UK census 18 categories). Geographical information includes organisational code (NHS
Trust or Primary Care Trust), registered GP practice code, residential postcode district (first
3-4 postcode characters; each postcode district contains an average 9500 UK households) and
Index of Multiple Deprivation (IMD, derived from postcode).[21-23]

In addition to the main HES record, delivery episodes for mothers and birth episodes for
babies include additional fields called the ‘baby’ (or ‘maternity’) tail.[21] The baby tail contains
information on delivery, including gestational age, birth weight and mode of delivery. For mul-
tiple births, each delivery record can hold up to 9 baby tails (up to 6 prior to 2002). The baby
tail should contain the same information on both maternal and baby records, but is sometimes
incomplete.[15] There is no routine linkage of maternal and baby records within HES: the
maternal NHS number is not available on the baby record or vice versa.

2) Identifying delivery and birth records. All records relating to birth and delivery epi-
sodes for babies and mothers between April 2001 and March 2013 were extracted from HES.
Birth episodes can be identified in a number of ways within HES.[15, 18] For this study, mater-
nal (delivery) records were identified by the presence of ICD-10 codes Z37-Z38 (outcome of
delivery, liveborn infant), OPCS codes R14-R27 (delivery procedures), or two or more valid
baby tail fields (excluding numpreg, numbaby, neocare and well_baby). Baby (birth) records
were identified by the presence of ICD-10 codes Z37-Z38, HRG codes N01-NO5 (neonates) or
HES fields relating to episode type, method of admission, age at start of episode and level of
neonatal care. Ectopic pregnancies, terminations and duplicate episodes were excluded. Full
descriptions of the code lists are provided in Tables A and B in S1 Appendix.

Maternal records with the same HESID but with episodes <169 days (24 weeks) apart were
treated as duplicates (except for multiple births). Baby records with the same HESID, episode
start date, start age, postcode district, birth order and birth weight were treated as duplicates.
Information on duplicate records was combined and a single record retained. Where multiple
births were recorded on the same maternal record, separate delivery records were created for
each birth to facilitate linkage with distinct birth records.

The algorithm for assigning HESIDs to multiple episodes of care for the same individual
can introduce errors.[24] Where the same HESID was assigned to multiple individuals, records
were dropped, as it was not possible to identify the correct record. Where the same individual
was assigned multiple HESIDs (i.e. multiple HESIDs for the same episode start date, age, hospi-
tal, GP practice, ethnicity, month-year of birth and baby tail fields), records were treated as
duplicates and a log was kept of the relevant HESIDs (to facilitate linkage with subsequent epi-
sodes of care).

Birth outcomes were identified from clinical information in either baby or maternal records.
Multiple births were identified by ICD-10 codes (Z372-Z377 or Z383-Z7388), or HES fields ‘bir-
ordr’ (birth order) and ‘numbaby’ (number of babies). Preterm births were identified using
‘gestat’ (gestational age) or ICD-10 codes P072, O60 or P590. Still births were identified using
three categories of codes: ‘dismeth’ (discharge method), ‘birstat’ (birth status) and ICD-10
diagnosis (see Table C in S1 Appendix for the full code list description).

PLOS ONE | DOI:10.1371/journal.pone.0164667 October 20, 2016 3/18


http://www.hscic.gov.uk/hrg
http://www.hscic.gov.uk/hrg

@° PLOS | ONE

Mother-Baby Data Linkage

3) Data preparation. Since postcode is not always completed for birth episodes in HES,
postcode was imputed using subsequent episode records up to one year after the birth episode.
Where ‘sexbaby’ was not completed for baby records, ‘sex’ as recorded on the main HES record
was used.

We hypothesised that any coding errors could occur simultaneously in corresponding
maternal and baby records (i.e. if data were input to both records through the same system),
and so only minimum data cleaning was applied prior to linkage.[25] Generic values for “not
known” or “not applicable” were set to missing. All string variables were trimmed to remove
blank characters and instances of “&”, “-"etc were removed (see Table A in S2 Appendix).

4) Data linkage. Data linkage methods. There are two main approaches for linking data:
deterministic and probabilistic. Deterministic linkage (or rule-based matching) typically
requires exact or approximate agreement on a set of common identifiers (e.g. sex, postcode and
date of birth). Exact deterministic matching generally achieves few false-matches (where rec-
ords belonging to different individuals are linked), as it is unlikely that two individuals share
the same set of identifiers. However, requiring exact agreement on identifiers can result in low
match rates, as any errors or missing values can prevent a match (resulting in missed-matches,
where records belonging to the same individual remain unlinked). Deterministic methods can
also incorporate approximate matching, e.g. on month and year of birth, phonetic codes or
string comparators for names, or dates within a particular timeframe.

Probabilistic linkage is based on deriving a match weight that represents the likelihood of
records belonging to the same individual, given the agreement or disagreement on a set of com-
mon identifiers.[26] This approach accounts for the discriminative value of each identifier, i.e.
agreement on postcode district would contribute more evidence of a match than agreement on
sex. Calculation of the match weight depends on the estimation of two conditional
probabilities:

o M-probability: the probability that an identifier agrees given records belong to the same
individual

o U-probability: the probability that an identifier agrees given records belong to different
individuals

The u-probability can be approximated by the probability of chance agreement. For exam-
ple, the probability of chance agreement on sex is %. The probability of chance agreement on
month of birth is 1/12, and so on. M-probabilities represent the error rate in a particular identi-
fier, and are typically estimated during the linkage process, and updated as more links are
made. For example, if sex was miscoded in 5% of record pairs, the m-probability would be 0.95.
Frequency-based weights can also be derived, which allows agreement on more rare values to
contribute a higher weight.

The overall match weight is derived by calculating the ratio log,(m/u) for each identifier,
and summing across all identifiers. Record pairs with agreement on multiple identifiers will
have large positive match weights; record pairs with disagreement on most identifiers will have
negative match weights.

Probabilistic linkage requires cut-off weights to be chosen for classifying record pairs as
links or non-links, consequently determining the rates of missed-matches and false-matches.
Typically, two thresholds are chosen, and record pairs with weights falling between the thresh-
olds are subjected to further manual review. However, manual review processes can be both
subjective and prohibitively time-consuming for large datasets, and often depend on having
access to detailed identifying information. An alternative method is to set an optimal error rate
(e.g. maximum allowed false-match rate) and to evaluate error rates for a range of threshold
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values. Estimation of linkage error rates at each potential threshold requires that the true
match status is known, and is typically performed using a subset of gold-standard data (e.g.
manual review of a sample of records) or by generating synthetic data with similar characteris-
tics to the original data.[27]

Data linkage methods in this study. In this study, we firstly used exact deterministic linkage
to bring together maternal and baby records, and supplemented this approach with probabilis-
tic linkage of remaining unlinked records (Table 1). To reduce the number of comparison
pairs, an initial blocking strategy was employed: mother and baby records were only considered
as possible matches if they had been admitted to the same hospital and record pairs with
implausible dates were not considered (baby discharged prior to the mother’s admission or
mother discharged prior to the baby’s admission). This blocking strategy was subsequently
relaxed to capture mothers and babies in different hospitals or where episode dates differed.

Deterministic links were identified as records agreeing exactly on GP practice, maternal age,
birth weight, gestation, birth order and sex. Our approach allowed for missing values, as long
as at least three of the agreeing variables were complete, and there were no disagreeing values
on any variable.

For our probabilistic approach, we used frequency-based match weights since the probabil-
ity of agreement on a particular variable may vary according to the value of that variable. Fre-
quency weights were derived for each value of gestational age, delivery place (intended), status
of person conducting delivery, postcode district (first letter) and ethnic category). For example,
this allowed for a higher chance of agreement on a gestational age of 40 weeks (a common
value) than 26 weeks (a rare value). Episode start and end dates for mothers and babies could
also genuinely be different, e.g. if the mother was admitted the day before delivery. Therefore
for dates, match weights were calculated depending on the difference in the number of days (0,
1,2,3,4,5,6,7,8-14 and 14+ days). Records with dates a small number of days apart would
therefore have higher match weights than those that were more than a week apart.

In our study;, initial estimates for the m-probabilities were obtained using the deterministi-
cally-linked records. U-probabilities were obtained from pairwise comparisons of a random
sample of 5000 unlinked records (i.e. 25,000,000 comparisons). Estimates were then iteratively
updated using the probabilistically-linked records according to the following steps:

1. Initial match weights were assigned to all record pairs

2. Record pairs were manually reviewed and non-links were removed

3. M-probabilities were re-estimated based on the remaining record pairs

4. New match weights were assigned to all record pairs

5. The process was repeated until match weights stabilised (three iterations in this study)

There is no gold-standard for linkage of maternal and baby records in HES, and even if it
were possible to access personal identifiers, maternal and baby HES records do not share a
unique identifier. Therefore, linkage quality was evaluated by testing the algorithm and esti-
mating the match rate and false-match rate on synthetic data. Full details of the synthetic data
approach are provided in S3 Appendix; in brief, 100 synthetic datasets with similar identifier
error rates and missing values to HES were created, where the true match-status was known;
after applying the linkage algorithm to each synthetic dataset, false-match rates were estimated.

Completeness of HES fields is known to have improved over time.[15] Therefore, we com-
pared linkage rates for 2001/02 and 2012/13. In order to evaluate the relative contribution to
linkage success of more sensitive linkage variables (postcode district and GP practice), we
repeated the linkage process excluding these variables.
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Table 1. Completeness of potential linkage variables in maternal and baby HES records for 2012/13.

Potential linkage variable % Complete % Complete Deterministic Probabilistic % agreement in
(baby extract) (maternal linkage linkage deterministically-linked
extract) records’
Main HES Provider code— 3 procode3 100.0 100.0 X X -
record character
Code of GP practice gpprac 93.0 99.6 X X -
Ethnic category ethnos 92.1 92.6 X* 77.35
Postcode district of postdist 18.0 (38.6)° 98.5 X* 97.18
patient residence
Date episode started epistart 100.0 100.0 X* 60.66
Date episode ended epiend 100.0 100.0 X* 89.99
Estimated delivery date® | opdte / 99.4 99.5 X* 99.95
epistart
Baby’s age in days neodur 99.5
Baby/ Sex of baby (or Sex in sexbaby 99.9 88.3 X X -
Maternity baby main HES record)
tail Birth order birordr 84.6 90.8 X X -
Birth weight birweit 85.4 89.0 X X -
Length of gestation gestat 81.7 85.4 X X* -
Mother’s age at delivery | matage 85.3 85.1 X X -
First antenatal anasdate 80.9 85.2 X* 99.89
assessment date
Gestational period in anagest 74.6 73.9 X 99.92
weeks at first antenatal
assessment
Delivery place (actual) delplac 87.6 89.1 X 99.93
Delivery place delinten 86.3 88.2 X* 99.22
(intended)
Delivery method delmeth 88.1 88.9 X 99.80
Method to induce labour | delonset 87.4 89.4 X 99.99
Anaesthetic given delprean 53.9 54.1 X 99.99
during labour or delivery
Anaesthetic given post | delposan 26.1 26.8 X 100.00
labour or delivery
Status of person delstat 85.4 86.9 X* 98.24
conducting delivery
Resuscitation method biresus 76.5 81.5 X 99.99
Birth status birstat 85.1 88.8 X 99.99
Number of previous numpreg 0.01 71.9 -
pregnancies
Delivery place change delchang 8.1 7.7 -
reason
Antenatal days of stay antedur 86.6 85.2 -
Postnatal days of stay postdur 86.9 85.2 -
Neonatal level of care neocare 66.6 99.9 -
Well baby flag well_baby 100.00 100.0 -
Number of babies numbaby 86.9 91.0 -

*Frequency-based probabilistic weights were used for these variables, allowing weights to vary according to the frequency of data values or the distance
between dates

" Where fields were complete in both maternity and baby extract;

2 Estimated delivery date derived from date of relevant OPCS procedure code (mother) or episode start date (baby);

3 Completeness rose to 38.6% when postcode district was imputed from subsequent admission records

doi:10.1371/journal.pone.0164667.t001
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5) Internal and external validity. We firstly compared values of gestational age and birth
weight with published reference values and set to missing values falling more than 3 standard
deviations from the average.[28] We then assessed internal validity of maternal and baby rec-
ords by checking consistency of three rare but important birth outcomes (still births, multiple
births and preterm births). Linked maternal-baby records that were discordant on these out-
comes were resolved using corroborating information in HES (additional ICD-10 diagnosis
codes, the presence of multiple maternity tails, or subsequent admission records).

The representativeness of the linked cohort was evaluated by comparing distributions of key
birth characteristics and outcomes with national published data (compiled on birth registra-
tions) from the Office for National Statistics (ONS). Differences were identified using chi” tests
for categorical data, t-tests for normal data and the Mann-Whitney U test for skewed data.

Results

1) Understanding the data source and 2) Identifying delivery and birth
records

The number of records in the baby extract rose from 553,094 in 2001/02 to 672,955 in 2012/13.
Fig 1 describes the cohort extraction in detail for 2012/13. HESID assignment errors occurred
in <0.01% of maternal records and in up to 0.8% of baby records (Table B in S2 Appendix
shows numbers for each year). Completeness of most linkage variables increased over time (Fig
A in S2 Appendix).

3) Data preparation and 4) Data linkage

Assessment of completeness of clinical and demographic information common to both baby
and maternal records showed that fields were generally more well completed for maternity rec-
ords than baby records (Table 1). Missing postcode was a particular problem for baby records.
A number of common variables were not considered for linkage due to missing or non-infor-
mative values. For example in maternity records, the Well baby flag always contained the value
“N” and the neonatal level of care was almost always “Not applicable”. In baby records, antena-
tal days of stay was always 0.

For the 2012/13 cohort, 280,237/672,955 baby records (42%) were deterministically linked
to a mother. In the deterministically-linked records, agreement on other baby tail variables
(those not used in the deterministic linkage) was high (Table 1).

For probabilistic linkage, final match weights for each linkage variable are provided in
Table 2. To choose a threshold, estimates of sensitivity and specificity were derived for com-
bined match weights between 5 and 30, averaged over the 100 synthetic datasets (Fig 2). A
threshold of 20 was chosen, for which the false-match rate was estimated as 0.15% in the syn-
thetic data. Probabilistic linkage with this threshold resulted in linkage of a further 380,164
baby records (56%). A total of 660,401 baby records (98%) were therefore linked using deter-
ministic and probabilistic linkage combined.

Accuracy of linkage variables improved over time: more of the baby records with complete
values for all deterministic linkage variables matched exactly to a maternal record in 2012/13
than in 2001/02 (78% versus 73%, Table 3). This implies that in 2001/02, at least one variable
contained an error in 27% of records, compared with 22% in 2012/13. Linkage of data from
2001/02 had slightly inferior results: 91% of records could be linked whilst retaining the same
estimated false-match rate of 0.15%. The highest match rate that could be achieved was 94%,
with an associated estimated false-match rate of 1.2%.
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784,486 records
identified by ICD, HRG or HES?

78% HES+ICD;
12% HES only;
9% HES+HRG;

1% other combinations

Exclusions (n):
Unfinished episode (5926)

Adult record (3108)
Termination (35)
Non-NHS/UK provider (1)

Duplicates removed (n)
Exact duplicates (1303)

Duplicates with >1 HESID (1306)

Dropped HESID errors
100 HESIDs shared by >1 baby

Baby
extract

Episodes subsequent/prior to birth (99,752)

Maternity
extract

768,082 records
identified by ICD, OPCS or HRG!

673,159 met maternity criteria
90% ICD+OPCS+HES;
9% ICD+OPCS only;
1% other combinations

Exclusions (n):
Unfinished episode (1)
Infant record (7)
Age>50 (73)
Termination (356)
Non-delivery episode (43)

Duplicates removed (n)
Exact duplicates (799)

Episodes subsequent/prior to birth (8171)
Delivery episodes within 168 days (966)
Duplicates with >1 HESID (20)
Non-delivery episode (43)

Dropped HESID errors
49 HESIDs shared by >1 mother

662,770 maternity records
(671,436 delivery records)

672,955 baby records

Fig 1. Extract flow-diagram for delivery and birth episodes captured in HES for 2012/13.
doi:10.1371/journal.pone.0164667.g001

Some variables were more important than others for linkage (Fig 3). Variables contributing
most to the probabilistic linkage (i.e. having highest match weights) were GP practice, postcode
district and estimated delivery date (Fig 3, Table 2). Excluding these variables form the linkage
process had a detrimental effect: only 80% of baby records could be linked whilst accepting an
estimated false-match rate of 0.15%; the highest match rate that could be achieved whilst
excluding these variables was 94%, with a corresponding estimated false-match rate of 7%.

It was not possible to link the remaining 2% of baby records, even through manual review of
available data. Inspection of the unlinked baby records identified that the main reason for a
lack of linkage was missing values: 7452/12,654 (59%) of unlinked records had no baby tail
fields compared with 62,157/660,401 (9%) of linked records. Another possible explanation for
unlinked baby records is that the mother’s record was not present in the maternal extract (e.g.
due to home births where the baby was subsequently admitted but the mother was not). In
addition to having more missing values, unlinked records were more likely to be still births,
lower gestational age, lower birth weights, younger maternal age, more deprived and non-
white but less likely to be multiple births, caesarean sections, or from pregnancies where the
first antenatal assessment was before 20 weeks (Table 4).

5) Internal and external validity

Inspection of the linked cohort in terms of gestational age and birthweight distributions identi-
fied coding issues specific to individual hospital providers. For example, one hospital coded
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Table 2. Probabilistic match weights.

Linkage variable HES field name Match weight
Agreement Disagreement

Sex sexbaby 0.95 -3.99
GP practice code gpprac 11.68 -3.07
Maternal age matage 4.38 -7.40
Birthweight birweit 8.18 -8.00
Gestational age* bestat* 2.80 -1.74
Birth order Birordr 0.04 -7.29
Estimated delivery date* dobbaby* 8.48 -10.68
First antenatal assessment date® anasdate™ 8.37 -3.18
Gestation period in weeks at first antenatal assessment anagest 3.1 -2.09
Delivery method delmeth 1.33 -4.21
Delivery place (actual) delplac 0.94 -1.38
Delivery place (intended)* delinten* 5.51 -3.50
Method to induce labour delonset 1.12 -3.20
Anaesthetic given during labour or delivery delprean 1.77 -4.99
Anaesthetic given post labour or delivery delposan 1.11 -9.22
Status of person conducting delivery* delstat* 4.40 -4.77
Birth status birstat 0.14 -6.10
Resuscitation method biresus 0.68 -8.55
Ethnic category* ethnos* 4.26 -1.01
Postcode district of patient residence* postdist* 10.47 -5.32
Date episode started™ epistart” 7.79 -1.89
Date episode ended* epiend” 8.29 -0.79

*Average of frequency-based weights presented.
*Weights presented for date differences of 0 (same day) or 7 days apart.

doi:10.1371/journal.pone.0164667.t002

gestational age in days rather than weeks (e.g. 280 days rather than 40 weeks). As gestational
age was truncated at two digits, this meant that the majority of babies within this hospital
appeared to be born preterm with unfeasibly large birthweight (Fig 4). Similarly, birthweight
was truncated at 2 or 3 digits for a small number of records, indicating weights recorded as
kilograms rather than grams.

Internal validity

Preterm birth. Gestational age was available for 546,083/660,401 (83%) linked baby rec-
ords and 567,699/660,401 (86%) linked maternal records for 2012/13. Completeness of gesta-
tional age increased to 92% when using information from either record. Gestational age was
discordant on 4% of linked baby-maternal records, and the majority of these (71%) differed by
1 or 2 weeks only. For discordant records, the value in the maternal record seemed to be more
accurate (based on birth weight for gestational age). Only 4 records had an ICD-10 code for
preterm birth but a gestational age >37 weeks.

Multiple births. Multiple birth status was discordant in 1860/660,401 (0.3%) record pairs,
suggesting missing or inaccurate records. For 617 pairs, there was evidence of a multiple birth
in the maternal record but not in the baby record. For 1243 pairs, there was evidence of multi-
ple birth in the baby record, but only one maternal record.
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Fig 2. Estimated false-match rate and sensitivity for a range of threshold weights, based on synthetic data.
doi:10.1371/journal.pone.0164667.9002

Still births. Still birth status was discordant in 1232/660,401 (0.2%) record pairs. For 1165
pairs, still birth was recorded in the maternal record but not the baby record. For 67 pairs, still-
birth was recorded in the baby record but not the maternal record. Discordant records were
resolved by checking the baby’s length of stay: if length of stay was >1 day, still births were
reclassified as live births. The majority of these errors were related to multiple births: maternal
records with ICD10 code Z373 (Twins, one liveborn and one stillborn) or birth status in the
maternity record baby tail.

External validity

The linked birth cohort captured 660,401 births for 2012/13 (equating to 97% of total births in
English hospitals according to the ONS) and was representative of national data in terms of
distributions of gender (51.3% males in both data sources), gestational age, birth weight and
maternal age (Fig 5). Although babies with adverse outcomes (lower gestational age, lower
birth weight etc) were less likely to be linked, the absolute number of records that failed to link
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Table 3. Probability of achieving a deterministic link according to completeness of baby records. The final row shows an increase in accuracy of var-
iables over time: in 2001/02, deterministic links were found for 73.0% of baby records with complete values on all linkage variables compared with 77.5% in
2012/13.

Completeness of deterministic linkage variables 2001/02 2012/13
GP Maternal | Birth | Gestation | Birth | Sex | % ofall % % of all % of all % % of all
practice age weight order | of baby deterministically deterministic = baby deterministically deterministic
baby | records linked links records linked links
0.0 0.0 0.0 0.0 0.0 0.0
v 1.1 0.0 0.0 1.2 5.0 0.1
v v 0.0 0.0 0.0 0.0 6.2 0.0
v v 0.0 0.0 0.0 0.0 20.0 0.0
v v v 0.0 0.0 0.0 0.1 4.0 0.0
v v 0.0 0.0 0.0 0.0 0.0 0.0
4 4 v 0.1 0.0 0.0 0.0 8.8 0.0
v v v v 1.2 0.2 0.0 0.0 3.9 0.0
v v 0.0 0.0 0.0 0.0 33.3 0.0
v v v 0.0 1.0 0.0 0.0 39.1 0.0
v v v 0.0 0.0 0.0 0.0 100.0 0.0
v v v 0.0 0.0 0.0 0.0 0.0 0.0
v v v v 0.1 0.1 0.0 0.0 58.1 0.1
v v v v 0.1 0.4 0.0 0.1 62.1 0.1
v v v 4 0.0 0.0 0.0 0.0 0.0 0.0
v v v v 0.0 0.0 0.0 0.0 100.0 0.0
v v v v 4 4.3 2.9 0.3 1.0 64.1 1.5
v 0.0 0.0 0.0 0.0 6.8 0.0
v v 9.3 0.0 0.0 31.1 4.4 3.1
v v 0.0 0.0 0.0 0.0 0.0 0.0
v v v 0.3 0.0 0.0 0.4 2.4 0.0
v v v 1.4 0.0 0.0 1.5 3.1 0.1
v v v 0.0 0.0 0.0 0.0 0.0 0.0
v v v v 0.1 3.2 0.0 1.7 2.7 0.1
v v 0.0 0.0 0.0 0.0 0.0 0.0
v v v 0.9 0.0 0.0 0.3 6.1 0.0
v v v 0.0 0.0 0.0 0.0 0.0 0.0
v v 4 v 2.4 0.0 0.0 0.2 2.2 0.0
v v v v 0.0 0.0 0.0 0.4 4.3 0.0
v v v v 0.0 0.0 0.0 0.0 0.0 0.0
v 4 v v v 18.0 6.5 2.8 2.3 7.4 0.4
v v v 0.0 0.0 0.0 0.8 60.8 1.1
v v v 0.0 0.0 0.0 0.0 100.0 0.0
v v v v 0.0 63.8 0.0 0.8 65.0 1.1
v v v 0.0 0.0 0.0 0.0 100.0 0.0
v v v v 0.0 0.0 0.0 0.0 50.9 0.0
v v v v 0.0 14.3 0.0 0.0 57.1 0.0
v v v v v 2.2 1.7 0.1 4.1 63.5 5.8
v v v v 0.0 0.0 0.0 0.0 44.4 0.0
v v v v 0.0 0.0 0.0 0.0 60.0 0.0
v v v v v 4.0 6.6 0.6 9.5 69.8 14.7
v v v v 0.0 0.0 0.0 0.0 0.0 0.0
v v v v v 2.6 0.0 0.0 0.0 0.0 0.0
(Continued)
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Table 3. (Continued)

Completeness of deterministic linkage variables 2001/02 2012/13
GP Maternal | Birth | Gestation | Birth | Sex | % ofall % % of all % of all % % of all
practice age weight order | of baby deterministically deterministic baby deterministically deterministic
baby | records linked links records linked links
v v v v 0.0 71.4 0.0 0.0 73.3 0.0
v v v v v 51.8 77.5 96.1 44.4 73.0 71.7

doi:10.1371/journal.pone.0164667.t003

from these groups was low. Overall, there were no differences in any of the key characteristics

or birth outcomes between ONS data and the linked cohort: still birth rates were 0.49% (ONS)
and 0.54% (linked cohort); multiple birth rates were 3.17% (ONS) and 3.09% (linked cohort);

preterm birth rates were 7.09% (ONS) and 7.29% (linked cohort).

Discussion
Main findings

Our study demonstrates the feasibility of linking maternal and baby healthcare characteristics
using a range of clinical and demographic variables captured in pseudonymised hospital data.
We demonstrate a linkage approach that can be used to enhance information health on elec-
tronic health records but that does not require the release of any personal identifiers and there-
fore preserves existing levels of confidentiality within the data. Triangulating outcomes
recorded in different hospital records can help improve data quality. Our methods are generali-
sable to linkage of administrative data in other contexts, where all available information can be
combined into “indirect” identifiers for linkage.[29]

The main limitation of linking administrative or electronic healthcare data is the imperfect
nature of data collected for reasons other than research.[30] Compared with data collection in
a busy healthcare environment, research studies often have more capacity for quality control,

GP practice
Postcode district
Estimated delivery date A
First antenatal assessment
Episode end 10

Birth weight U D
Episode start
Delivery place (intention) T 6 E
Status of person conducting delivery 1

Maternal age S F
Ethnic group ‘

Gestation at first antenatal visit R i ' G
Gestational age

Anaesthetic during delivery
Method of delivery
Method to induce labour
Anaesthetic post-delivery
Sex 0 ]
Delivery place N K
Resuscitation method M L

Birth status

Number of babies
= Agreement Disagreement

<= hIpIo@2IrazE"Tammo @

Birth order

Fig 3. Contribution of each linking variable to overall match weight. Agreement = positive contribution
(solid line), disagreement = negative contribution (dashed line). The higher the value, the more information
the linkage variable provides.

doi:10.1371/journal.pone.0164667.9003
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Table 4. Comparison of linked and unlinked baby record characteristics for 2012/13. Missing values are excluded from all categories.

Linked N = 660,401 % 98% Unlinked N = 12,654 % 2% p-value
Missing all baby tail fields 62157 9.4 7452 58.9 <0.001
Maternal age (years) Mean 29.3 29.6 0.003
<=18 11452 2.6 103 2.9
19-24 87116 20.0 793 22.0
25-29 120943 27.7 1036 28.8
30-34 129398 29.7 898 24.9
35-39 68916 15.8 519 14.4
>=40 18008 4.1 252 7.0
IMD quintile* Most deprived 9269 19.7 1107 22.2 <0.001
2 9410 20.0 970 19.5
3 9388 20.0 1000 20.1
4 9380 20.0 1012 20.3
Least deprived 9491 20.2 894 17.9
Ethnicity White 457181 75.2 7855 71.0 <0.001
Mixed 29234 4.8 693 6.3
Asian 68588 11.3 1219 11.0
Black 32410 5.3 735 6.6
Other 20299 3.3 567 5.1
Gestational age (weeks) Median 40 39 <0.001
<=27 5674 1.0 174 4.4
28-<32 6591 1.2 84 2.1
32-<37 31872 5.8 348 8.8
37-<42 478042 87.5 3229 81.3
>=42 23881 4.4 137 3.4
Birth weight (g) Mean 3342 3106 <0.001
<1000 2837 0.5 159 3.4
1000-1499 3516 0.6 116 2.5
1500-2499 33021 5.8 498 10.6
2500-3999 465984 81.7 3513 74.6
>=4000 64710 11.4 425 9.0
First antenatal assessment <20 weeks 443262 88.8 2508 86.7 <0.001
Caesarean section 146077 24.8 787 17.1 <0.001
Still birth 2752 0.4 285 2.3 <0.001
Multiple birth 20436 3.1 352 2.8 0.041

*IMD = Index of Multiple Deprivation

doi:10.1371/journal.pone.0164667.t004

for example a birth cohort study or rolling survey is likely to be more complete due to more
opportunities for validation, and a greater level of importance given to the accuracy of variables
collected.[30] Furthermore, discordance within and between maternal and baby records in our
study indicates that there remains uncertainty in coding of some conditions or events. How-
ever, our study also demonstrates that linkage can be used to generate high quality data,
through triangulating outcomes coded in different hospital records, and improving ascertain-
ment of outcomes by combining information from different sources.

We also demonstrate that validation of data quality using external sources (such as national
birth registration data from ONS) can support the use of these data for specific purposes but
also helps to highlight where limitations in the data lie. For example in this linked dataset,
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Fig 4. Distribution of birth weight by week of gestation in baby records. Vertical lines show 3 standard deviations from the average; values above the
upper limit are likely to have been miscoded as days (rather than weeks) of gestation, truncated to 2 digits.

doi:10.1371/journal.pone.0164667.9g004

there remained some uncertainty about coding of still births within multiple birth pregnancies.
The implications of any uncertainty or inconsistencies in coding or potential selection bias
need to be carefully considered in light of the proposed use for the data. Quality of linked data
should be carefully reported, e.g. by comparing characteristics of linked and unlinked records
to identify potential sources of bias, so that researchers and policy makers can assess the rele-
vance of the resulting data for their purposes.[30-32]

Errors occurring during linkage (missed-matches and false matches) can result in substan-
tially biased results: false-matches can bias associations towards the null and missed-matches
can lead to selection bias.[31, 33] Our evaluation of linkage quality supports evidence from
other studies showing differing data quality between subgroups, as more babies at extremes of
birth weight and gestational age remained unlinked.[33] However, probabilistic linkage pro-
duced a large sample of linked records (660,401: 97% of babies born in 2012/13) and compari-
sons with published data indicated that the linked data were nationally representative in terms
of key birth characteristics and outcomes. Although there is no gold-standard for evaluating
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Fig 5. Representativeness of linked HES cohort in terms of maternal age, birth weight and
gestational age. Dark shade = HES, light shade = Office for National Statistics.

doi:10.1371/journal.pone.0164667.9g005

linkage quality for HES, and it was not possible to access personal identifiers to perform
detailed manual review, synthetic data provide a convenient method for estimating false-match
rates. The estimated false-match rate of 0.15% was unlikely to introduce any substantial bias
into the linked data. Where this is not the case, statistical methods such as imputation can be
considered to account for bias due to linkage error.[31, 34, 35]

In exploiting individual-level data for public benefit, data providers and data users have a
responsibility both to ensure that confidential information is protected, and that the data are as
accurate as possible. There is a growing body of literature on data confidentiality, some of
which argues that individual-level data can never be truly anonymous, depending on external
information available to individuals accessing that data.[36] However, there are a number of
safeguards in place to protect against inadvertent misuse of data, and restrict the ability of any
individual to purposefully behave in a way that jeopardizes data security. Firstly researchers
have a responsibility to use data for bona fide purposes only, and there are legal sanctions
where data are used inappropriately or without due care. Data access approval processes
require that researchers be regularly trained in information governance, to avoid any accidental
data breaches. Secondly, secure physical locations (known as safe havens or safe pods) have
been established for the processing and linkage of personal data, and are characterised by strict
access arrangements, secure data transfer processes, restricted network and/or internet access,
and tight disclosure control procedures.[36] Whilst using direct personal identifiers for this
study could have helped achieve the highest level of accuracy in the resulting data, restricting
the release of personal identifiers provides further protection against outsiders with malicious
intent. In the context of current information governance and data protection regulations in the
UK, researchers can very rarely access personal identifiers and more innovative linkage meth-
ods, such as those used in our study, are required.
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Although our study only combined information for mothers and babies relating to the same
admission (the delivery / birth episode), the longitudinal nature of HES allows admissions for
the same individual to be linked over time. This means that in addition to enriching maternity
data, this linkage provides an opportunity for evaluating how pre- and postnatal maternal med-
ical histories (that are solely captured in maternal records) influence infant and childhood out-
comes.[37] Such data are particularly useful for investigating the effect of exposures during
pregnancy on outcomes throughout childhood, and could be enhanced further through linkage
to different sources of data such as primary care and education. Linkage of retrospective elec-
tronic healthcare data can be useful for resolving data quality issues, and could be used to sup-
plement evidence from cohort studies and prospective data collection such as the HSCIC
maternity and children’s dataset. Ultimately, these data will improve our understanding of
maternal risk factors for childhood outcomes, e.g. for assessing the effects of prenatal exposure
to drugs or maternal mental health.[38, 39] Given appropriate safeguards, linked maternal-
baby data could be made available as a resource for service evaluation and research, to comple-
ment linkage of prospective maternity and child health datasets in the UK.

Conclusions

Probabilistic linkage of maternal and baby healthcare characteristics offers an efficient way to
enrich maternity data, improve data quality, and create longitudinal cohorts for research and ser-
vice evaluation, without the use of direct patient identifiers. Combining information from multi-
ple sources can help to address data quality issues in electronic health data, and the approaches
described here could be extended to other administrative data sources. Linked maternal-baby
hospital records in England provide a nationally representative resource for service evaluation
and research on the impact of maternal risk-factors and interventions on outcomes in childhood.
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