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Abstract

Background: Variable selection is an important step in building a multivariate regression model for which several methods
and statistical packages are available. A comprehensive approach for variable selection in complex multivariate regression
analyses within HIV cohorts is explored by utilizing both epidemiological and biostatistical procedures.

Methods: Three different methods for variable selection were illustrated in a study comparing survival time between
subjects in the Department of Defense’s National History Study and the Atlanta Veterans Affairs Medical Center’s HIV Atlanta
VA Cohort Study. The first two methods were stepwise selection procedures, based either on significance tests (Score test),
or on information theory (Akaike Information Criterion), while the third method employed a Bayesian argument (Bayesian
Model Averaging).

Results: All three methods resulted in a similar parsimonious survival model. Three of the covariates previously used in the
multivariate model were not included in the final model suggested by the three approaches. When comparing the
parsimonious model to the previously published model, there was evidence of less variance in the main survival estimates.

Conclusions: The variable selection approaches considered in this study allowed building a model based on significance
tests, on an information criterion, and on averaging models using their posterior probabilities. A parsimonious model that
balanced these three approaches was found to provide a better fit than the previously reported model.
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Introduction

The methods commonly used in selecting variables for

multivariate models can be overshadowed with objective statistical

tests while others, in contrast, grant several subjective decisions to

the researcher. There are risks associated with methods that rely

too heavily on either objectivity or subjectivity. Most notably for

the latter is the concept of researcher bias, which is a process in

which the researcher influences the results of an analysis by forcing

certain variables into or out of regression models typically based

upon associations found in previous studies or logic determined by

causal pathways [1]. For example, statistical tools, such as stepwise

regression and collinearity diagnostics, could suggest a variable be

dropped from further analysis in a multivariate model, but the

researcher may decide to ignore the suggestion and force the

variable into the model. Researcher bias has the ability to impact

the accuracy and precision of conclusions output from data

analyses.

Conversely, some variable selection processes allow for very

little, if any, influence on which variables are kept in or dropped

from multivariate analyses. Such processes include using statistical

significance tests (e.g., Wald) in a stepwise fashion [2,3], in which

variables are selected and/or deleted from an analysis using a pre-

specified significance level (p-value). In essence, the researcher

inputs all variables of interest (which may already have some

associated researcher bias) into a statistical software program, and

runs a stepwise selection process. As a result, the computer

program outputs a model that only includes variables that are

statistically significant at the pre-specified significance level. There

are many theoretical reasons why this approach may perform

poorly in selecting potential confounders [4–10]. In this case, some
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subjective influence over which variables are selected may be

preferred.

While some researchers may opt to utilize only one method in

their analyses, there seems to be an underutilized complementary

nature between objective statistics and subjective decisions when

determining which multivariate model is the best representation of

the data. It has been shown that there exists an inverse relationship

between having too many or too few variables in a model; while

the former results in high variance or uncertainty, the latter results

in more bias [11], or equivalently, inflated Type II error versus

inflated Type I error. Thus, a simplistic and parsimonious model

that fits the data well is preferred.

In this investigation, data were made available by both the

Department of Defense (DoD) and the Department of Veterans

Affairs (VA) in order to further examine a multivariate model (the

‘‘full’’ model) that has previously been published [12]. The goal of

the present analysis was to compare time to all-cause mortality and

clinical outcomes associated with HIV treatment and care between

patients from the HIV Atlanta VA Cohort Study (HAVACS) and

the US Military HIV Natural History Study (NHS) cohort,

adjusted for possible confounders. Here we detail how using a

mixture of commonly used hypothesis-testing statistics concur-

rently with information-theory approaches for model building can

facilitate the detection of a preferred, parsimonious model.

Alternatively, a Bayesian approach that combines several possible

models is also described and compared to the other two

approaches.

Methods

Ethics Statement
The NHS cohort has been approved by the Institutional Review

Board (IRB) centrally (Uniformed Services University of the

Health Sciences, Bethesda, MD) and at each participating center

(Walter Reed National Military Medical Center, Bethesda, MD;

Naval Medical Center, Portsmouth, VA; San Antonio Military

Medical Center, TX; Naval Medical Center, San Diego, CA; and

Tripler Army Medical Center, Honolulu, HI). Written consent

was obtained from each patient. The HAVACS cohort has been

approved by Emory University’s IRB and the Atlanta VA Medical

Center Research and Development Committee. The HAVACS

cohort does not require patients’ written consent as it has an IRB-

approved waiver of consent.

Study Participants
Data were collected from two cohorts: the HAVACS and the

NHS. The NHS has enrolled over 5000 beneficiaries since 1986

into a prospective, multicenter observational study of HIV-

infected active duty military personnel and other military

beneficiaries living with HIV. The NHS cohort characteristics

have been previously described [13]. The HAVACS includes all

HIV-positive veterans seen for care at the Atlanta VA Medical

Center since 1982 (n.3900). The cohort characteristics of

HAVACS have been previously described [14]. Data are

prospectively collected for both cohorts and are used for clinical

care and research purposes.

Patients in both cohorts were eligible for inclusion in this

analysis if they had an HIV diagnosis and began highly active

antiretroviral therapy (HAART) treatment between January 1,

1996 and June 30, 2010. A total of 1199 NHS patients and 1065

HAVACS patients were followed from their recorded HAART

initiation (HI) date through all-cause mortality or the date of last

data entry. Separate internal analyses have determined that only

43 of the total .3900 HAVACS patients were in the NHS cohort,

so the effect of any overlap between the patients examined in this

analysis is negligible.

Variable Definitions
A HAART regimen was defined as the use of three or more

antiretroviral medications, one of which has to be a protease

inhibitor (PI), a non-nucleoside reverse transcriptase inhibitor

(NNRTI), an integrase inhibitor, or an entry inhibitor. A

participant’s HI date was the date of the first HAART regimen

that lasted greater than one month, utilizing an intention to treat

format. Information regarding the participant’s age at HI, sex,

race, year of HIV diagnosis, time from HIV diagnosis to HI, viral

load and CD4 count at HI (within three months prior to HAART

start date), history of chronic hepatitis B and C co-infection, and

previous AIDS-defining illness (ADI) excluding CD4,200, and

previous ARV use (mono or dual NRTI) were also analyzed.

There were no time-updated variables utilized in these analyses.

Statistical Analysis for Full Model
Potential covariates were selected based on previous literature

regarding influences on survival of patients living with HIV in the

presence of HAART [15]. Causal diagrams guided by literature

were also drawn to ensure all selected variables would, in theory,

reduce bias rather than induce bias in the analysis [10,16]. The

covariates were then screened using bivariate analyses and

dropped from further inclusion in multivariate models if their

crude association’s p-value with the outcomes were greater than

0.5. Using an epidemiological modeling approach [16,17], all the

remaining variables and their interactions with the study’s

exposure were combined in a multivariate model (the ‘‘global’’

model) and assessed for collinearity. Using the concept of

hierarchically well-formulated models [16], the interaction terms

were first assessed for elimination from the model using a

likelihood ratio test for significance. The non-interaction, con-

founding terms were then assessed utilizing the change-in-estimate

approach [4–7,9,10]. This approach is similar to a backwards

selection procedure, and a variable was kept in the multivariate

model if its exclusion resulted in an ‘‘important’’ change to the

main exposure variable’s coefficient estimate. A 10% change cut-

off was deemed ‘‘important’’ in this analysis. Covariates that

remained after these procedures were utilized throughout all

analyses.

Kaplan-Meier curves and Cox proportional hazards models

were fitted to investigate time from HI to all-cause mortality by

cohort. Specific to survival analysis, the proportional hazards (PH)

assumptions were gauged for each covariate utilizing a consensus

of three different approaches: graphical, goodness of fit, and

extended Cox modeling [17,18]. All covariates of interest satisfied

the PH assumption. Thus, we can assume that the model including

all remaining covariates (the previously published ‘‘full’’ model), or

any subset of covariates, fit the data [19].

Statistical Analysis for Parsimonious Model
The Score test [20] is an hypothesis-testing statistic that is

similar to commonly used likelihood ratio tests and Wald tests. All

three are equivalent in large samples [21]. The Score statistic is

less computational (requiring only evaluations under the null), and

can be used as the basis for eliminating or including variables in

such models. It is important to note that only nested models can be

compared under this approach.

The Akaike Information Criterion (AIC) provides a practical

and versatile way to identify a parsimonious model from a set of

competing final models, by adding a penalty term proportional to

the number of parameters in the model. This penalty term guards

Variable Selection in HIV Cohort Analyses
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against overfitting. The AIC procedure yields an objective

mathematical tool to determine parsimony in model construction

and is free of subjective judgments [22]. Based on a penalized

likelihood, the AIC allows comparison of non-nested models as

well. Its benefits have been extensively described, particularly in

the context of ecological and genetic study designs [23–28];

however, AIC procedures are applicable to other research topics,

such as survival of patients living with HIV [29]. The AIC value

was manipulated into two other related statistics; Akaike weights

(wi) and evidence ratios (ER) [30]. An Akaike weight is found by

taking the proportion of the exponentiated AIC differences

between model i and the model with the smallest AIC value to

the sum of all these differences in all K subset models:

wi~
exp ({(AICi{ min (AIC))=2)

PK

k~1

exp ({(AICi{ min (AIC))=2)

ð1Þ

The resulting value indicates the probability that the chosen i

model is the best to represent that data among the whole set of K

candidate models (those that were used when calculating the

denominator in equation 1 above).

Evidence ratios are a small extension to Akaike weights – it

directly compares the weights of two models i and j:

ER~
wj

wi

ð2Þ

The yielded value depicts the likelihood that model j is better or

worse than model i to best represent the data given the two models

selected.

An important remark regarding the previous approaches is that

they are two-step procedures: first select a model (variable

selection), and second perform statistical tests given (conditional

on) the selected model being correct. This approach underesti-

mates the variability in the data, by ignoring the uncertainty in the

selected models. Moreover, in practice, two models can fit the data

Figure 1. Comparing Subset Models to a Full Model in Order to Detect a Potential Parsimonious Model. Top panel title: AIC Weights
and Evidence Ratios for Stepwise Selections of Covariates Into a Full Model, Based on AIC Values. Bottom panel title: Score and AIC Values for
Stepwise Selections of Covariates Into a Full Model, Based on Score Values. Note: Areas shaded to the right of the circle-dotted line denotes variables
that were included in the full model but deemed unnecessary for a parsimonious model.
doi:10.1371/journal.pone.0087352.g001
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equally well but provide different estimated effect sizes [31].

Bayesian model averaging addresses these issues in a Bayesian

context. Several models are considered, and the posterior

distribution of the quantity of interest is the average of the

posterior distributions under each model considered, weighted by

their posterior model probabilities [32]. More specifically, given

the data D, the posterior distribution of the parameter of interest b
is given by

P(bjD)~
XK

i~1

P(bjMi,D).P(MijD) ð3Þ

Where M1,…MK are the models considered, and P(Mi|D) is the

posterior probability of the model Mi given the data.

In a survival data context, several Cox models M1,…MK are

fitted, and b is the hazard ratio of interest [33]. The best K models

in terms of the Bayesian information criterion (BIC) are selected

using an efficient leaps and bound algorithm [34], and the

posterior hazard ratio is estimated. One can also estimate a

conditional posterior hazard ratio (HR), conditional on that

particular covariate be included in all K models considered. The

conditional HRs for each variable are obtained after averaging the

posterior HRs only for the models containing that particular

variable, and therefore are more likely to have nonzero HRs, while

the unconditional HRs are obtained by averaging over all top K

selected models. The result is that unconditional HRs are expected

to be closer to zero than conditional HRs. We emphasize the

conditional approach to Bayesian model averaging because it

strikes a balance between an unconditional approach and stepwise

selection – it averages over the posterior models that include the

particular variable, allowing for the other variables to be included

or not in the model.

Analyses were conducted with SAS 9.2 (SAS, Cary, NC, USA)

and R (R Development Core Team (2008). R: A language and

environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria). SAS and R code can be found as

Figure S1.

Results

Hypothesis-Testing Approach
Twelve covariates were initially selected from the databases to

be included in the modeling process. These potential confounders

were selected due to their influences on the survival of patients

living with HIV in the presence of ARV therapy [35]. After

bivariate analyses, one variable, year of HIV diagnosis, was

dropped. The global model was constructed to include the 11

remaining covariates and their interactions with the main

exposure variable, which denotes the cohort of each patient. After

collinearity assessments and backwards elimination processes, all

interaction terms were dropped from the list of potential

covariates. The change-in-estimate procedure detected subset

models; however, none of these models performed better than a

model including all remaining covariates with regards to the

precision of the exposure’s effect. Thus, the full model included

only 12 covariates, one of which was the main exposure.

Information-Theory Approach
Instead of halting the variable selection process, Score tests and

AIC comparisons were then implemented on the full model to

determine if a better fitting and more parsimonious model existed.

All 12 variables were cumulatively added to a multivariate model

in two fashions: by the largest incremental change in AIC value

and by the largest incremental change in Score statistic. Both of

these statistics detected the existence of a parsimonious model; in

fact, the same parsimonious model was found using both methods

to add covariates to the model (Figure 1).

Akaike weights and ERs were computed for each subset model

and found that a parsimonious model that did not include race,

time from HIV diagnosis to HI, and previous ADI was 10.9 times

more likely than the full model to be the best model to represent

the data, given the chosen set of subset models. The Score tests

similarly suggested that this parsimonious model was the best

model.

The full model controlling for all 12 covariates concluded that

patients in NHS were 57% less likely to die during follow-up

compared to patients in HAVACS (HR 0.43, 95% CI 0.27, 0.70;

p = 0.0005). However, the parsimonious model that dropped race,

previous ADI, and time from HIV diagnosis to HI, concluded that

NHS patients were 58% less likely to die during follow-up

compared to patients in HAVACS (HR 0.42, 95% CI 0.27, 0.65;

p = 0.0001). The minimal change in the main effect estimate

between the models can be attributed to the lack of information

the three variables (race, previous ADI, and time from HIV

diagnosis to HI) brought to the full model. In fact, after exploring

the distributions of these three variables, there was evidence for a

lack of racial diversity in the HAVACS cohort (78.8% were

African-American/Black), a lack of previous ADI events in the

NHS cohort (3.4%), and there were similar time periods between

HIV diagnosis and HI in the entire sample (median: 4.7 months in

the NHS; 5.0 months in the HAVACS, p = 0.6774).

Bayesian Model Averaging Approach
The model with the highest approximate posterior probability

was a model including cohort, age, CD4, and hepatitis C. This

model represented only 11.3% of the total posterior probability,

while the top five models had a cumulative posterior probability of

42.2%, indicating a moderately high model uncertainty. Figure 2

Figure 2. Models Considered by Bayesian Model Averaging, in
Order of Posterior Probability. Variables Positively (Negatively)
Associated With Outcome are in Grey (Black).
doi:10.1371/journal.pone.0087352.g002
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depicts the top 44 models (columns) in terms of their posterior

probability that were used for model averaging (K = 44). Variables

(rows) positively correlated with the outcome appear in black,

while those negatively correlated with the outcome appear in grey.

Column width for each column (model) is proportional to the

posterior probability of that model.

Table 1 also presents the posterior hazard ratios and the

conditional hazard ratios, conditional on the corresponding

variable being included in the model. The posterior probability

is the probability that the corresponding variable is correlated with

the outcome. There is close agreement between the AIC-based

variable selection approach and the Bayesian model averaging.

The variables race, time from HIV diagnosis to HI, and previous

ADI were dropped from the parsimonious model and similarly

had low posterior probabilities (4.3%, 3.2%, and 3.4%, respec-

tively). The only discrepancy is the variable initial HAART

regimen, which was not dropped in the AIC approach, but has a

zero posterior probability under the Bayesian approach. It is of

note that within the AIC approach, the difference in AIC values

for a model including initial HAART regimen and one without the

variable was merely 0.46 (1773.57 vs. 1774.04, respectively).

Regarding the selected variables, a general remark is that the

confidence intervals in the parsimonious model are usually tighter,

due to decreased uncertainty introduced by the excluded variables.

The effects of hepatitis B and C and previous ARV use appear

more impactful in the AIC-based approach relative to the

Bayesian approach (HR 1.86, 1.63, and 1.33 versus HR 1.33,

1.24, and 1.08, respectively). Interestingly, the two approaches

give very similar results conditional on the variables being included

in the model. Thus, the biostatistical tools used in these analyses

detected problematic variables and removed them to form a better

fitting model that collinearity tests alone could not identify.

Otherwise, the conclusions that the full model suggests are similar

to those of the parsimonious model, thus confirming the AIC’s

detection of a model that results in minimal information loss.

Table 1. Comparison of All-Cause Mortality Cox Regression Models Between NHS and HAVACS Patients Based on Three
Approaches: Hypothesis-Testing, Information-Theory, And Bayesian Model Averaging, 1996 – 2010, n = 1,727.

Hypothesis-testing Information-theory Bayesian model averaging

"Full" model "Parsimonious" model Posterior Conditional posterior

Covariate HR 95% CI HR 95% CI
Selected
(%) HR 95% CI HR 95% CI

Cohort, NHS vs. HAVACS 0.43 0.27, 0.70 0.42 0.27, 0.65 100.0% 0.39 0.25, 0.61 0.38 0.25, 0.61

Demographics

Age at HAART initiation 1.06 1.04, 1.08 1.06 1.04, 1.08 100.0% 1.06 1.04, 1.08 1.06 1.04, 1.08

Sex, female vs. male 2.64 0.64, 10.80 2.58 0.63, 10.55 14.1% 1.14 0.50, 2.64 2.60 0.64, 10.59

Race, AA vs. other 1.20 0.80, 1.79 – 4.3% 1.00 0.91, 1.11 1.16 0.79, 1.74

Medical history (prior to HAART
initiation)

HIV diagnosis to HAART initiation 1.00 0.99, 1.01 – 3.2% 1.00 1.00, 1.00 1.00 0.99, 1.01

Viral load at HAART initiation,
log copies/mL

9.8%

,2.60 0.46 0.19, 1.15 0.47 0.19, 1.15 0.93 0.55, 1.57 0.46 0.08, 2.87

2.60–3.99 1.46 0.91, 2.33 1.46 0.91, 2.33 1.04 1.01, 1.36 1.48 0.27, 8.25

$4.00 ref ref ref ref

CD4 at HAART initiation, cells/mL 85.0%

,200 1.28 0.79, 2.07 1.30 0.82, 2.06 1.36 0.84, 2.20 1.43 0.45, 4.60

200–349 0.60 0.34, 1.03 0.61 0.35, 1.05 0.69 0.38, 1.24 0.64 0.19, 2.26

$350 ref ref ref ref

Previous AIDS-defining illnessa 0.95 0.62, 1.43 – 3.4% 1.00 0.92, 1.08 0.92 0.61, 1.39

Chronic hepatitis B co-infection 1.89 1.10, 3.25 1.86 1.09, 3.20 44.5% 1.33 0.65, 2.73 1.90 1.10, 3.26

Hepatitis C co-infection 1.60 1.08, 2.38 1.63 1.12, 2.39 49.0% 1.24 0.75, 2.06 1.55 1.06, 3.26

Previous antiretroviral use 1.40 0.95, 2.07 1.33 0.93, 1.92 23.6% 1.08 0.78, 1.49 1.38 0.96, 1.98

Initial HAART regimen 0.0%

Non-nucleoside reverse transcriptase
inhibitor

ref ref

Boosted protease inhibitor 1.78 1.10, 2.86 1.74 1.08, 2.81

Unboosted protease inhibitor 1.28 0.86, 1.90 1.29 0.87, 1.91

Other 0.72 0.25, 2.01 0.71 0.25, 1.99

Abbreviations: AA - African -American/Black ; AIDS – acquired immune deficiency syndrome; CD4 – cluster of differentiation 4; CI – confidence interval; HAART - Highly
Active Antiretroviral Therapy; HAVACS - HIV Atlanta VA Cohort Study; HR – hazard ratio; NHS - US Military HIV Natural History Study; ref – referent group.
Notes: Bold hazard ratios and 95% confidence intervals are significant at the P,0.05 level.
a1993 definition, exclusive of CD4,200.
doi:10.1371/journal.pone.0087352.t001
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Discussion

The AIC has been reported to be a better tool in the field of

model selection than traditional hypothesis-testing [22,28]. In

certain instances, stepwise variable selection based on hypothesis-

testing may lead to different final models, depending on the order

the variables are considered (e.g., forward, backward). The

information-theoretic approach utilized by the AIC statistic often

yields consistent results and does not depend on the order of which

variables are selected [19,28,36]. In this example, an information-

theoretic approach was balanced with a limited use of hypothesis-

testing, which resulted in a parsimonious model that was nearly 11

times more likely than the full model to be the best choice. The

utilization of AIC values or Score tests resulted in the same

parsimonious model, which suggests that any additional explora-

tion for a better-fitting model to only traditional hypothesis-testing

may result in less variance in its estimates. The variables dropped

from the full model to create the parsimonious model were chosen

to be included in the initial multivariate analyses due to their cited

influences on the survival of patients living with HIV while on

HAART; nevertheless, due to the unique characteristics of the

cohorts used in this analysis, they did not necessarily need to be

controlled for in a model. Furthermore, the excluded variables

were already being controlled for indirectly; in particular, previous

AIDS diagnosis was partly captured by the CD4 count at HAART

initiation variable (i.e., AIDS is usually associated with lower

CD4).

Stepwise methods, such as the AIC approach used in this

analysis, are two-stage procedures. First, a model that shows

evidence of fit is selected, and then, conditional on this model

being correct, one estimates the hazard ratios associated with the

variables selected, and significance tests are performed. The

Bayesian approach provides an alternative paradigm in which

several models are considered at the same time, and the posterior

parameters are simply weighted averages of the estimates from

each model, with weights given by the posterior probability of each

model given the data. One benefit of this approach is that it

provides a coherent framework for distinguishing between lack of

power to detect a significant effect, and a lack of correlation

between the covariate and the outcome [33].

These analyses emphasize that while no single model is perfect,

some are more useful than others. Similarly, these analyses suggest

that only using the common hypothesis-testing methods could

result in a model including variables that introduce excessive

variance in the estimates. The goal is to have an expansive and

rich ‘‘toolbox’’ of methods than can guide a researcher to a more

useful model. When multiple approaches lead to the same or

similar results, the conclusion is considerably strengthened and

ultimately variance is diminished. The statistical tools used in this

analysis are also applicable to other regression-type models.

Further research should be employed on alternative datasets and

data types to explore situations in which this multiple-approach

method does not result in the same or similar final models as well

as models aiming to make accurate predictions of an outcome.

Conclusions

Given the advent of methodological developments and the

availability of statistical software, exploring several options for

variable selection may prove beneficial when building complex

multivariate models. Our analyses demonstrated such an amal-

gamation that resulted in a better-fitting, parsimonious multivar-

iate model than what would have been reported by utilizing only

one approach. We propose the usage of the same or similar robust,

multi-approach methodology in an attempt to detect a preferred

parsimonious model in other analyses.
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