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Assessing within-woman changes in mammographic density: a comparison of fully- versus semi-automated area-

based approaches
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Abstract

Background: Mammographic density (MD) varies throughout a woman’s life. We compared the performance of a
fully-automated (ImagelJ-based) method to the observer-dependent Cumulus approach in the assessment of within-

woman changes in MD over time.

Methods: MD was assessed in annual pre-diagnostic films (from age 40 to early 50s) from 313 breast cancer cases
and 452 matched controls using Cumulus (left medio-lateral-oblique (MLO) readings) and the ImagelJ-based method
(mean left-right MLO readings). Linear mixed models were used to compare within-woman changes in MD among
controls. Associations between individual-specific MD trajectories and breast cancer were examined using

conditional logistic regression.

Results: The age-related trajectories predicted by Cumulus and the Imagel-based method were similar for all MD
measures, except that the Imagel-based method yielded slightly higher (by 2.54%, 95% Cl: 2.07%, 3.00%) estimates
for percent MD. For both methods, the yearly rate of change in percent MD was twice faster after menopause than
before, and higher BMI was associated with lower mean percent MD, but not associated with rate of change. Both

methods yielded similar associations of individual-specific MD trajectories with breast cancer risk.

Conclusions: The Imagel-based method is a valid fully-automated alternative to Cumulus for measuring within-

woman changes in MD in digitised films.

The Age Trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN24647151.

Keywords: mammographic density, breast density, breast cancer, pre-menopausal
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Introduction

High mammographic density (MD), which represents a high amount of radio-dense fibroglandular tissue in the
breast, is not only associated with an increased breast cancer (BC) risk, independently of other known risk factors
[1], but it also affects the sensitivity of mammographic screening [2]. MD varies throughout a woman'’s life being
influenced by factors such as age, parity, menopausal status and hormonal interventions (e.g. hormone therapy (HT)
and tamoxifen). Thus, it is conceivable that the rate of change in MD over a woman'’s lifetime, or at critical periods,
may be more relevant to risk than MD measured at any single point. Results from previous studies [3-9] have been
conflicting, however, some studies [5,7] showed that within-woman changes in MD over time do not convey any
additional risk information beyond that provided by a single measurement, while others [3,4,6,8,9] were consistent
with changes being independently associated with risk. But, with the exception of a small study [4], they all relied on
qualitative (e.g. Wolfe patterns [3] or BI-RADS [8]) or semi-automated approaches, i.e. Cumulus [5-7,9] to capture
within-woman longitudinal changes in MD, all of which are reader-dependent. Reader variability might have
introduced noise in the measurement of within-woman changes in MD, thus, leading to an attenuation of their
association with risk. Furthermore, small within-woman changes cannot be captured when using the broad Wolfe or

BI-RADS categories.

The semi-automated interactive thresholding technique, on which the Cumulus software is based, is currently
considered the “gold standard” approach to measure MD [1]. Cumulus measurements of between-women MD
differences have been shown to have a high between- and within-reader reliability [10], and to be consistently
associated with subsequent BC risk [1]. However, the validity of this method to capture within-woman changes in
MD, which are of a smaller magnitude than between-women differences, is unknown. The ImagelJ-based method is a
fully-automated method which attempts to mimic Cumulus, and whose performance to detect between-women
differences in MD has been recently shown to be comparable to that of Cumulus [11,12]. The aim of this study was
to compare the performance of this fully-automated method to that of the reader-dependent Cumulus approach in
the assessment of within-woman changes in MD. We compared the performance of the Imagel-based method to
that of the “gold-standard” Cumulus in terms of the degree to which they were able to capture: (i) tracking of MD
with age; and (ii) within-woman changes in MD among controls and their determinants; and (iii) association of

within-woman changes in PD with BC risk.
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Materials and Methods

Study design

A nested case-control study of BC in relation to pre-diagnostic MD was undertaken within the Age Trial, a trial of the
efficacy of annual mammographic screening at age 40-48 [13,14]. About 54,000 women from the general population
aged 40-41 years and resident in the catchment areas of 23 National Health Service (NHS) breast screening centres in
Britain were randomized between 1991 and 1996 to the intervention arm of the trial and invited to attend annual
screening with analogue mammography. The first screening round included both cranio-caudal (CC) and medio-
lateral oblique (MLO) views of each breast; subsequent rounds included only the MLO view. From age 50 years
onwards women joined the national breast screening programme and were invited for mammography every 3 years.
BC cases among the study population have been ascertained through linkage to the NHS health registers for cancer
incidence and mortality since the start of the trial. Women in the intervention arm who were diagnosed with BC
between 1993 and 2005, and at least one year after their first negative screen, were eligible for the present study
(n=442). For each case, up to six eligible controls were initially randomly selected among women in the intervention
arm who had not been diagnosed with BC at the time of the case’s diagnosis. Controls were matched to the cases on
screening centre, date of birth (+ 3 months), date of the first pre-diagnostic screen (+ 3 months), and subsequent
screens (+ 4 months). For 89 (28.4%) cases, no controls were available and therefore the matching was performed

only on the first three criteria.

Eligible cases and controls were contacted (for cases after obtaining consent from their general practitioners) and
asked to provide written consent for their mammograms to be accessed, and to complete a questionnaire on
anthropometric and reproductive variables, and history of breast cancer in first degree relatives. Analogue films
were retrieved from relevant NHS screening centres and digitized using a high-quality Array 2959 laser digitiser
(Array Corporation Europe, Netherlands). In all, 76% of eligible cases and 80% of eligible controls completed the
guestionnaire and gave consent for accessing their mammograms; films could be retrieved for 93% of consented
cases and 89% of consented controls. The first two matched control women for whom both questionnaire data and

films were available were included in the present study.

The study was approved by the UK NHS South-East Multi-Centre Research Ethics Committee (05/MREC01/77).

MD assessment
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MD assessment was performed on MLO images (the only view performed on every screening round). For cases, only
MLO images taken at least one year prior to BC diagnosis were included. For controls, all MLO images up to the time
of diagnosis of the corresponding matched case were read as they were all eligible for control-only analyses;
however, only those taken one year prior to the date of diagnosis of the corresponding case were included in case-

control analyses (see below).

MD readings using the Cumulus software (version 3, University of Toronto, Toronto, Ontario, Canada) are labour-
intensive and were therefore performed only on the left MLO image. This image was preferred because MD values
from left and right breasts are highly correlated [10], and the pectoral muscle was less likely to be superimposed on
the top of the breast on left images. Images were read in batches of about 250-300 digitized images. All images from
a given case-control set were included in the same batch, with images from the same woman ordered randomly.
Each batch of images was read by one of three observers, blind to the woman’s characteristics and her case-control
status. Each observer used Cumulus to delimit the breast area and select a gray-scale threshold to differentiate
dense and non-dense tissues, with the software then automatically estimating breast area (in cm?), dense area (in
cm?), and percent density (PD). Non-dense area was derived by subtracting the dense area from the breast area.
Within- and between-reader reliability was estimated by including a random 10% sample of all eligible images as
duplicates in each batch; the independent readings provided by these duplicates revealed high within- and between-
batch reliability in PD (>0.90 for both for each one of the three observers [12]) Within-observer reliability was >93%

for each one of the three readers and between-observer reliability was >0.82 for all pairs of readers.

The Imagel-based method has been described elsewhere [11]. Briefly, valid digitized images were analysed by the
Imagel software (version 1.46, 26 June 2012) which generated MD readings via an algorithm developed on a training
set of independent images with known Cumulus values (further details in Li et al. [11] and Sovio et al. [12]).
Essentially, this approach works by calculating values of various statistical/textural features of the image after
applying different thresholding methods to distinguish dense areas from non-dense areas of the breast. The Imagel-
based software includes a machine-learning approach, combining principal component analyses and penalised
regression, that develops separate prediction models for estimating PD and breast size; absolute dense area is then
estimated from the product of PD and breast size, with non-dense area derived as its complement. ImagelJ-based MD

measurements were performed in both left and right MLO images of each woman and the left-right mean used in
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the analyses. This approach was used because a previous study, based on a subset of the data analysed herein,
showed that the mean of Imagel-based MD readings from the left and right MLO images taken at entry (i.e. closer to
age 41 years) performed as well as Cumulus on a single MLO image in terms of the magnitude of the associations of
the MD estimates with known BC risk factors, and with subsequent risk of BC [12]. However, we also examined
tracking and within-woman changes for the Imagel-based MD readings taken on the left MLO view only to allow a
more direct comparison with similar analyses for Cumulus readings taken on the same view. The Imagel-based
method failed to produce valid readings for about 10% of images (mainly due to poor quality of the digitised images,
i.e. tags superimposed on the breast area, unclear breast edge, non-optimal digitisation). Whenever the Imagel-
based estimates were available for only one (left or right) MLO image (for 14.4% cases and 14.1% controls), the value

for that image was used instead.

Statistical Methods

A natural log-transformation was used to normalise the distributions of dense and non-dense area values; no
transformation was required for PD or breast area values. BMI at each mammography was estimated for each
woman by linearly interpolating self-reported BMI at ages 40 and 50 years. For 10.9% cases and 7.3% controls, only
BMI at age 40 or 50 years was available and this value was taken to represent their BMI at the time of each
screening. Menopausal status was derived from information on age at menopause reported in the questionnaire and
was retrospectively determined for each screening appointment. If information on menopausal status was missing
(6.4% for cases; 4.2% for controls) the median age at menopause among cases and controls with non-missing
information was used. Whenever the values the other variables shown in Table 1 were not know they were treated

as missing in the analyses.

MD tracking with age among controls. The readings yielded by each measurement method (i.e. Cumulus, Image-

based) and MD measure (i.e. PD, dense area, non-dense area and breast area) combination at a given age were
ranked separately, and Spearman rank correlation coefficients (r) between ranks calculated (for Cumulus measures,

both overall and stratified by reader).

Within-woman changes in MD among controls. Linear mixed models were fitted by restricted maximum likelihood to

estimate individual-specific trajectories [15], separately for each measurement method and MD measure

combination. These models, which take into account the correlation among the repeated observations for each
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woman via one or more random coefficients that capture salient features of each woman trajectory, were specified
in terms of linear and quadratic effects of age (centred at age 45 years), number of children (0, 1, 2, 23), having ever
breastfed (if parous), age-specific BMI (categorised as: <22, 22-24.99 and >25kg/m?), family history of breast cancer,
and menopausal status (pre- or post-), and, for Cumulus, also an indicator of reader. Interactions between each
variable and current age (on the linear scale) were also included. Different specifications of the random effects
component of the models were compared using likelihood ratio tests, with a random intercept and random slope for
linear age selected for each combination of measurement method and MD measure. The fixed effects parts of the
models were then simplified through backward selection using Wald tests, but always retaining age, BMI and, for
Cumulus, reader. Parity was found to be borderline significant for only some of the MD dimensions and was
therefore dropped from all models to aid comparison. Model-based estimates of the average trajectories of each
MD measure obtained from Cumulus and Imagel-based values were plotted for different combinations of the

predictors to allow a graphical comparison of the performance of the two methods for each MD dimension.

To test whether models for data obtained from Cumulus and the Imagel-based method yielded different predicted
trajectories we also fitted a more general model for each MD measure based on readings from both methods and
including a “method” binary indicator, as well as interaction terms between this indicator and each of the other
selected explanatory variables, while allowing method-specific variances of the residual errors. The model was then
simplified by removing terms that were not significant via a backward stepwise procedure using the Wald test as

before.

Within-woman changes in PD and BC risk. An extension of the models described above was used to evaluate the

association between predicted individual trajectories in PD, as yielded by Cumulus or the ImageJ-based method, and
BC risk. The models were specified in terms of the variables used above but centred at age 42 (instead of 45) years in
order to compare the model predictions from age at entry into the study. First, as before, general mixed effects
models were fitted on the cases and fitted again on controls, but using only images taken at least one year prior to
diagnosis for each case and the corresponding period for her matched controls. For both groups the models were
simplified via backward stepwise selection using the variables mentioned above and always including age, BMI, and,
for Cumulus, reader (as before).Woman-specific MD values at age 42 years (the random intercept) and her rate of

change from that age (the random slope for age) were predicted (separately by each method) and then included in
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conditional logistic regression models to estimate the odds ratios (ORs) of BC. Four selected typical individual PD
trajectories were finally plotted relatively to the trajectory of a woman with mean trajectory (i.e. with mean random

intercept and mean random slope).

All analyses were performed in Stata version 13.1.

Results

A total of 313 cases and 452 controls were included in the analysis, corresponding to 308 complete sets (i.e.
consisting of one case and at least one control, with each having at least one MLO image). Cases and controls had, by
design, the same age at first mammographic screen (Table 1). They also had similar ages at menarche, first birth and
menopause, and a similar BMI at ages 40 (when available) and 50 years. Cases were more likely to have a positive
family history of BC, but less likely to be parous, to have ever breastfed, and to be post-menopausal at the time of
their first and last screens (the latter corresponding to the screen taken at least one year prior to BC diagnosis in
cases and equivalent time in corresponding controls) (Table 1). Both Cumulus and the Imagel-based method showed
that, at ages 42 years, cases had, on average, higher dense area and PD than controls, but lower non-dense and
breast areas (Supplementary Table 1). Cumulus and Imagel-based PD declined from age 42 to 48 years at a similar
rate among controls, i.e. by 1.17% (standard deviation (SD) 1.91%) and 1.07% (SD 1.79%) per year, respectively,
reflecting marked increases in non-dense area, as well as smaller decreases in dense area, with increasing age

(Supplementary Table 1).

MD tracking among controls. A high degree of tracking in the four MD measures was observed among controls

according to both measurement methods (Figure 1 and Supplementary Table 2), with within-woman rank
correlations being similar when both methods were based on the left MLO view but slightly higher for the Imagel-
based method when the latter was based on the left-right mean MLO readings (for Cumulus, Figure 1 and
Supplementary Table 2 show data for all observers combined as observer-specific correlation coefficients yielded
similar values (Supplementary Table 3)). The degree of tracking decreased with increasing time between screens for
both methods, but remained high for films taken six years apart, i.e. from age 42 to 48 years (e.g. for PD r: 0.66 for
Cumulus left MLO readings; 0.66 and 0.77 for Imagel-based left MLO and left-right MLO mean readings, respectively
(Figure 1 and Supplementary Table 2)). Higher degrees of tracking were observed for non-dense and breast areas for

both methods (r for the latter: ~0.90 for screenings taken 6 years apart; Figure 1 and Supplementary Table 2).
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Within-woman changes in MD among controls. The mixed effect models led to broadly similar average trajectories

for Cumulus (left MLO) and the Imagel-based method (left-right MLO mean), as shown in Figure 2 for different
combinations of the main predictors (details of the fitted models are given in Supplementary Table 4). Specifically,
PD and dense area measured by either method decreased with increasing age, while non-dense area and breast area
increased. The linear component of the yearly rate of change in PD was more than twice as fast after the
menopausal transition than prior to it for Cumulus (-1.10%; 95% Cl: -1.56%, -0.64% vs. -0.50%; 95% Cl: -0.81%,-
0.18%, respectively). Similarly the yearly rate coefficient in the Imagel-based model was nearly twice as fast after the
menopause (-1.16%; 95% Cl: -1.71%, -0.61% vs. 0.67%; 95% Cl: 1.15%, -0.18%, respectively). The impact of reaching
the menopause (set to be at age 50 years in Figure 2) is -2.10 and highly significant for Cumulus but close to zero
(and not significant) for the Image-J based method. BMI was negatively associated with mean levels of PD and dense
area, but positively associated with mean levels of non-dense and breast areas, regardless of the measurement
method used. However, this variable had no effect on the rate of change of the density measures (Supplementary

Table 4). Parity had no effect on mean level and rate of change for any of the MD measures.

For a more direct comparison of the PD trajectories predicted by the two methods we also fitted a common mixed
effects model for both sets of measurements, where a binary indicator of method was included as an explanatory
variable for both the intercept and the rate of change (Table 2). The results show that the average PD trajectories
derived from the Imagel-based method (left-right MLO mean) were systematically higher than those based on
Cumulus (left MLO) (by 2.54, 95% Cl: 2.07, 3.00). In contrast, there was no difference in the mean estimates of non-
dense area and total breast area at age 45 years yielded by the two methods but the rate of increase with age was
less steep for the Imagel-based method (Table 2). Interestingly, the estimated residual SDs are significantly greater
for Cumulus than for the Imagel-based method for PD (9.10 versus 7.65, p=0.0002) and dense area (13.77 versus
10.09, p<0.0001) and smaller for non-dense area (0.17 versus 0.23, p<0.0001, on a log scale) and total breast area

(0.08 versus 1.11, p<0.0001, on a log scale) (Table 2).

Analyses based only on readings from the left breast for both Cumulus and the Imagel-based method show similar
patterns. For instance, the PD trajectories derived from the Imagel-based left MLO readings were also systematically
higher than those produced by Cumulus readings on the same view: by 3.26, 95% Cl: 2.76, 3.76 (Supplementary

Table 5). The estimated residual SDs for the Imagel-based right-left MLO mean readings were lower than, or similar
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to, those for left MLO Cumulus readings (Table 2). However this advantage was lost when only left MLO readings
were used (Supplementary Table 5), pointing to the need for averaging the left and right measures when using the

automatic Imagel-based readings in order to reduce the impact of measurement error.

Within-woman trajectories in PD and BC risk. The random coefficients (intercepts and slopes) predicted from the PD

models fitted separately on cases and controls (adjusting for age, and BMI) were treated as exposures in conditional
logistic regression models for being a case (further adjusting for parity and family history of BC). The parameter
estimates were then used to calculate ORs of breast cancer for four women with typical PD trajectories, randomly
drawn from the controls with BMI of 22-24.99 kg/m?, who remained pre-menopausal at the end of the follow-up
period, and whose Cumulus readings were performed by the same observer (i.e. observer 1), relatively to a woman
with mean trajectory (i.e. with mean random intercept and mean random slope). Their PD predicted trajectories
were similar for Cumulus and the ImageJ-based (left-right MLO mean) methods although, consistently with Figure 2,
the Imagel-based PD trajectories tended to be higher than those produced by Cumulus (Figure 3). Their associated
ORs for subsequent BC were also similar. Women with a high PD at baseline, which remained high over time, had the
highest odds of developing BC according to both methods relative to a woman with mean random intercept and
mean slope (OR: 8.10 (95% Cl 3.96, 16.6) for Cumulus (left MLO) and 3.42 (2.00, 5.48) for the ImageJ-based method
(left-right MLO mean; Figure 3). In contrast, women with the lowest PD at baseline, despite a slight increase in their
PD over time, had the lowest odds of developing BC according to both measurement methods (OR: 0.07 (95% ClI
0.03, 0.16) for Cumulus (left MLO) and 0.23 (0.12, 0.43) for the Imagel-based method (left-right MLO mean; Figure

3).

Discussion

The ability of the ImagelJ-based method to measure between-women differences in MD at a single point in time has
previously been shown to be similar to that of the well-established computer-assisted Cumulus method among post-
menopausal Swedish women [11] and pre-menopausal British women [12]. The latter study [12] was conducted on a
subset of images included in the present study, i.e. those taken at baseline when the women were close to age 41
years. Herein we extended this comparison to the assessment of within-woman changes in MD over a ~10 year

period (from age 41 onwards). The findings showed that the ability of the Imagel-based method (based on the
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average of left and right MLO values) to capture within-woman changes in MD was broadly similar to that of

Cumulus (based on a single MLO reading).

Consistently with a previous study [16], both measurement methods showed that MD measures track over time. The
degree of tracking was similar for both Cumulus and the Imagel-based method when both approaches were based
on a single (left) image. The degree of tracking for Cumulus was slightly weaker than previously reported reflecting
the fact that its MD measurements were based on a single image whereas previous Cumulus work [16] was based
on the average of left-right MD measurements. The left-right average MD would have strengthened the degree of
tracking for Cumulus by minimising reader measurement error in the assessment of MD. A similar pattern was
observed in the present study for the ImagelJ-based method, with the degree of tracking being stronger for the left-
right average MD than for the left MD only. Nevertheless, the odds of remaining in the top fifth of the PD
distribution at later screens for women who were in that category at age 42 years was high according to both
methods. Tracking from age 40 onwards implies that between-woman differences in MD are established earlier in
life, a finding consistent with recent evidence from women aged 15-30 years [17], and that any within-woman
variations after that age are of a much smaller magnitude relative to between-woman differences. These findings
explain why MD remains a predictor of breast cancer risk several years after MD assessment and imply that a single
MD assessment at young ages (at least as early as age ~40 years) would allow identification of women with high
density, and who may benefit the most from risk-lowering interventions or from more intensive screening (e.g.

modalities other than mammography, shorter screening intervals).

The age-related MD trajectories predicted by the two methods were broadly similar. On average, PD and dense area
declined with age. In contrast, the rate of increase in non-dense and breast areas with age was less pronounced for
the ImagelJ-based method. The findings from this study are broadly consistent with those reported by previous
studies examining longitudinal trends in MD measures and their correlates. Kelemen et al [18] and Boyd et al [19]
also found that PD decreased with age, with a greater decline observed during the menopausal transition. A decline
in dense area with increasing age and during the menopausal transition, paralleled with a simultaneous increase in
non-dense area, is likely to reflect lobular involution of the breast gland. The amount of fibroglandular tissue

decreases with age and the menopausal transition as a result of the decrease in circulating levels of ovarian-
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produced oestrogens. Increases in the non-dense area may also result from weight gain and consequent increase in

the amount of adipose tissue in the breast.

Reassuringly, both MD measurement methods revealed increased odds of having BC for women with PD trajectories
that started at high value and remained high throughout the follow-up, and lower odds for those whose PD
trajectories start at a low PD value. A detailed examination of whether between-screen changes in MD convey
additional risk information, beyond that provided by a single MD measurement, will be the focus of future analyses

within the Age Trial once a larger number of breast cancer cases has been accrued.

The study has several strengths. Most previous studies on changes in MD have focused on screening attendees and
therefore mainly on women aged 50 and above. Our study population was unique in that it comprised younger
women from the general population who were invited to attend annual routine mammographic screening from age
40/41years. Thus, the young age at recruitment, the availability of multiple screening rounds at short (1-year)
intervals, and the relative long follow-up allowed us to map in detail within-woman changes in MD measures over
time. The study is also one of the few to have examined not only within-woman changes in PD but also changes in its
two components: absolute dense and non-dense areas. For Cumulus, films for a given case-control set were read in a
blind way and in a random order (a key methodological feature for the assessment of tracking). Screening
mammography equipment might have changed during the follow-up period with more recent systems being based
on higher contrast resolutions which make the fibroglandular tissue appear less dense on the films, thus leading to
an overestimation of the decline in MD. However, such changes would have had little impact on our Imagel —
Cumulus comparisons as any changes would have affected the two methods similarly as their readings were derived

from the same set of images.

The study also had some weaknesses. Only MLO images were available in all screening rounds and, for logistic
reasons (time and costs), the Cumulus readings were performed only on the left MLO view. Information on
correlates of MD measures at baseline, and their rate of change, was collected retrospectively, hence any
misclassification, if present, is likely to have affected similarly the two methods. In particular, screen-specific BMI
data were estimated by linearly interpolating the self-reported BMI values at ages 40 and 50 years. Thus, if BMI

increased with increasing age to a greater (or lower) degree than our BMI estimates, or if the between-screen
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changes in BMI were not linear, residual confounding could have affected the MD trajectories. Information on

contraceptive use and hormone therapy was not available, but this would have affected both methods similarly.

Our findings indicate that the Imagel-based approach, using the mean of two measurements, is a valid fully-
automated alternative to Cumulus for measuring within-woman changes in MD. MD is not only a strong BC risk
factor but it also affects the sensitivity of screening mammography. Despite its relevance, MD assessment currently
has little impact on risk-lowering decisions or screening strategies. Our findings indicate that the Imagel-based
approach, using the mean of two measurements, is a valid fully-automated alternative to Cumulus for measuring
within-woman changes in MD. Other fully-automated methods have been developed to measure MD in digitized
images (e.g. [20-25]), but the ImagelJ-based approach benefits from the fact that it does not require the use of any
special equipment (e.g. phantoms) at the time of mammography and hence it can be applied to historical collections

of images. In addition, it is relatively inexpensive as it was developed as an open source.
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