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ABSTRACT

Background: A model was developed to risk-adjust the postoperative mortality of colorectal cancer patients in order to make fair comparisons between healthcare providers. Previous models were derived in relatively small studies with the use of suboptimal modelling techniques.
Methods: 62,314 adults included in a national study of major surgery for colorectal cancer were used to develop and validate a logistic regression model for 90-day mortality.  The main risk factors were identified from a review of the literature.  The association with age was modelled as a curved continuous relationship.  Bootstrap resampling was used to select interactions between risk factors.
Results: A model was developed that was well calibrated (absolute differences between observed and predicted mortality always smaller than 0.75% in deciles of predicted risk).  It discriminated very well between low and high risk patients (C-index 0.80, 95% CI 0.79 to 0.81).  An interaction between age and metastatic disease was included as metastatic disease was found to increase postoperative risk in young patients aged 50 (OR = 3.53, 2.66 to 4.67) far more than in the elderly in patients aged 80 (OR = 1.48, 1.32 to 1.66).
Conclusions: The model, estimated in the largest number of colorectal cancer patients to date, is recommended when comparing postoperative mortality of major colorectal cancer surgery between hospitals, clinical teams or individual surgeons.
INTRODUCTION
Bowel resection in patients with colorectal cancer is a major operation carrying a substantial risk of death.  Postoperative mortality is widely used as a measure to compare safety among hospitals, clinical teams or individual surgeons.  Such reporting of provider outcomes is becoming increasingly widespread, with the aim of stimulating quality improvement, identifying best practice, and aiding patient choice.  These comparisons need to be adjusted for differences in risk to ensure that providers who treat higher-risk patients are not unfairly penalised. Improved risk adjustment may help to reduce any tendency for providers to avoid the treatment of high-risk patients1

.
The risk models that are currently available to estimate risk-adjusted postoperative mortality in colorectal cancer patients have significant limitations.  Firstly, the largest study to date – including 7,400 patients of whom 553 died – only considered patients who died in hospital, thereby not counting those patients who died as a result of complications after discharge 
We have developed a risk model in more than 60,000 colorectal cancer patients, 3500 of whom died in the first 90-days after surgery.  To avoid the limitations observed in earlier studies that had developed risk models for this group, we selected the main risk factors and re-grouped sparse data categories in advance without being informed by the results of the model.  In addition, the association with age was modelled as a curved continuous relationship.  Lastly, bootstrap resampling techniques were used to minimise the risk of identifying interactions that would not be found in other datasets.
The aim of our study was to develop a risk model for the explicit purpose of risk adjusting comparisons of hospitals, clinical teams or individual surgeons.  This implies that we only considered routinely collected risk factors that capture a patient’s risk immediately before surgery.  We did not consider risk factors that are linked to the surgery itself, or related processes, as these are under the control of the care provider.  Where high quality care leads to better outcomes, due merit should be given to the provider.
METHODS
Participants
We included patients from the National Bowel Cancer Audit (NBCA), which covers 150 National Health Service (NHS) trusts (i.e. a trust is an organisational unit that can include more than one hospital) in England and 13 multidisciplinary teams (i.e the organisational level at which cancer care is organised) in Wales.  The national audit included 102,875 patients who were diagnosed with colorectal cancer between 1 August 2007 and 31 July 2011.  They represent about 80 per cent of all patients with a bowel cancer diagnosis during this period 17

.  NBCA is approved under Section 251 by the Confidentiality Advisory Group and this study has a Data Sharing Agreement from the Healthcare Quality Improvement Partnership.
We included all 62,314 patients who underwent a major resection (i.e the removal of part or all of the bowel), after having excluded patients with cancer of the appendix, those who were younger than 18 years, and those whose date of surgery was missing (see Figure 1).  Of those patients included, 52,796 (84.7%) were linked to the Hospital Episode Statistics (HES), a routine dataset of all hospital admissions of NHS patients in England. Patients were linked to Office for National Statistics mortality data to obtain 90-day and 30-day mortality.
Selection of risk factors
The following criteria were used for inclusion of risk factors into a logistic regression model: routinely available in clinical data, beyond the control of the provider, reflecting patient risk immediately before surgery, and completely recorded or likely to be missing at random in our data.  Risk factors meeting the above criteria were identified by searching the literature for all multivariable models developed to predict short-term mortality after colorectal surgery, irrespective of the underlying condition (see the web appendix for details of the literature search).  All variables considered in these models, meeting the above criteria, were included in the model whether or not they were found to be independently associated with postoperative mortality.
In advance of the statistical analysis, it was considered clinically plausible that the effect of risk factors on postoperative mortality may differ between young and old patients, between men and women, between emergency and non-emergency presentation, and between patients with colon and rectal cancer.  We tested therefore interactions of each of these risk factors with the main risk factors.  Interactions were also used to check whether the effect of each component of TNM stage on mortality differed by the values of the other TNM stage components.
Definitions of variables
The endpoint of the study was death, in or out of hospital, within 90 days of surgery.  We used 90-day mortality as it captures 50% more postoperative deaths than 30-day mortality 18

. It has been shown that most of the deaths within 90 days of surgery occurred as a result of the treatment 
The risk factors included in the model are presented in Table 1.  ASA grade is a measure of physical status in 5 categories and is determined before surgery.  The integrated clinicopathological stage (TNM 5th edition in accordance with guidance from the Royal College of Pathologists) was recorded after excision of the tumour, based on the combined evidence from clinical, radiological and pathological findings.  Although cancer stage was only recorded after excision of the tumour it reflects the stage immediately before surgery. Cancer site was defined by grouping ICD-10 codes into the seven categories presented in Table 1.  Mode of admission was based on HES data and grouped as emergency or elective.  Guided by the definition of the Charlson Score 20

, comorbidities were identified in HES data and defined as a hospital admission with one of the following diagnoses in the last year, including the current admission: congestive cardiac failure, peripheral vascular disease, cerebrovascular disease, dementia, rheumatological disease, liver disease, diabetes, hemiplegia/paraplegia, AIDS/HIV; or any of the following diagnoses at a previous hospital admission in the last year: myocardial infarction, chronic pulmonary disease or chronic renal disease.
Statistical methods

To reduce bias due to over-fitting, we decided in advance on the regrouping of categories with small numbers and the modelling of age as a linear plus quadratic term, after centring on its mean (age 70).  Missing data was dealt with by multiple imputation using chained equations (MICE) with 20 imputation sets 25

.24

.  Hypothesis tests for interaction terms were carried out using Wald tests 23

.  The χ2 statistic from the Hosmer-Lemeshow test cannot be combined over imputation sets using Rubin’s rules.  Instead an F statistic was constructed, based on the mean χ2 statistic across imputations, taking into account the between-imputation variation 22

, length of hospital stay and days between diagnosis and surgery).  Rubin’s rules were used to pool the regression coefficients, their standard errors, and the C-index of discrimination, across imputation sets 21

.  The imputation model included all risk factors and the indicator variable of 90-day mortality as well as a number of additional variables (surgical urgency, emergency admission according to the NBCA, surgical procedure, number of lymph nodes extracted, number of positive lymph nodes extracted, socio-economic deprivation measured by national ranking of the Index of Multiple Deprivation rank 
Interactions of age, sex, emergency surgery and rectal cancer with the key risk factors (age, sex, ASA grade, mode of admission and TNM stage) were tested, as well as interactions between the three components of TNM stage.  Non-parametric bootstrap re-sampling with 100 bootstrap samples was used to assess the stability of interactions selected into the model, for all interactions with P<0.10 26

.  The aim of the bootstrap approach is to estimate the proportion of times an interaction would be selected into the model if a different random sample of patients were taken each time.  The criterion for inclusion of interactions into the model was P<0.05 in at least 80% of bootstrap samples.  See the web appendix for more details.
Variable selection strategies tend to inflate parameter estimates, particularly in small datasets, a concept known as over-fitting 28

.
27

.  A shrinkage factor can be estimated to counter any bias introduced.  With such a large dataset and with variable selection methods used only to identify interaction terms, very little over-fitting is expected in our analysis, and therefore shrinkage of parameter estimates towards the null should be unnecessary.  A global shrinkage factor was estimated to confirm this, using an heuristic formula based on the model deviance and the number of parameters considered for inclusion in the model, including all interaction terms 
The adequacy of a linear plus quadratic relationship of age with postoperative mortality was checked by superimposing the fitted relationship onto a plot of observed mortality within 5-year age bands against age, averaged over all imputation sets.
In order to investigate the adequacy of the linear plus quadratic relationship between age and mortality, we also employed a maximum-likelihood approach to select the “best fitting” powers of a fractional polynomial 29

.  The fitted lines of the linear plus quadratic model to the “best fitting” model were compared by eye.
The sensitivity of the specification of the model and the parameter estimates to length of follow-up was explored by fitting the model for 30-day mortality using the same predictors. 

Calibration of the model was checked using plots of observed versus predicted mortality in deciles of predicted risk, averaged over all imputed datasets.  With very large datasets Hosmer-Lemeshow tests are highly sensitive to small unimportant differences in observed and predicted risk.  Calibration was only considered to be a problem if there was statistical evidence of a lack of fit from the F-statistic of the combined Hosmer-Lemeshow tests, and the size of differences between observed and predicted risk in deciles of risk was large enough to be clinically important.  The area under the receiver operating characteristic curve, the C-index, was used to assess discrimination of the model within the estimation dataset 
Internal model validation was carried out by bootstrap validation 31

.  The C-index was estimated in the imputed data, and bootstrap re-sampling was used to adjust for the over-optimism due to validating the model in the same data that was used to build the model.

All analyses were carried out in Stata version 12, except bootstrap resampling which was carried out in R version 2.14.1.

RESULTS
Literature search
Fifteen prognostic models for short-term mortality after colorectal surgery were identified in English language journals, the largest of which included 976,000 cases 
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.  Three of the models were explicitly for case-mix adjustment, although two of these included predictors which can be influenced by the provider
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.  Seven of the models were for colorectal cancer patients, and the largest of these included 7,400 cases  HYPERLINK \l "_ENREF_2" \o "Tekkis, 2003 #58" 
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, such as surgical urgency and procedure, and the other model included only 55 deaths9

.  Ten of the models included data items not routinely collected in national databases, such as serum measurements, lifestyle factors including smoking and alcohol consumption, and clinical observations including blood pressure and body mass index.
Of the risk factors considered in previous studies, those which fit our inclusion criteria were year of diagnosis, age, sex, ASA grade, cancer site, Dukes’ stage, TNM stage, mode of admission, and comorbidities.  All of these predictors were included in our model except Dukes’ stage.  TNM stage, a more detailed staging variable, was included instead.  See Table 2 for a summary of variables identified and reasons for exclusion.

Model fitting
Overall, 3,588 out of 62,314 patients undergoing major surgery for bowel cancer died within 90 days of surgery (5.8%).  Table 1 summarises the patient and tumour characteristics of all patients.  24,289 patients (39.0%) were missing at least one of the risk factors.
The only interaction to meet the inclusion criterion for selection into the model was between age and metastases (p < 0.0001).  This interaction demonstrated complete stability, being selected into the model with P<0.05 in 100% of bootstrap samples. The graph in Figure 2(a) shows that having metastases increases risk substantially in younger patients, but has a much smaller effect on risk in older patients.  This graph shows predicted mortality by age alongside the observed mortality in 5-year age-bands with 95%-confidence intervals, and demonstrates that the shape of predicted risk with age fits the data well.
Table 1 also reports the crude and adjusted odds ratios for 90-day mortality for each risk factor in the model, with the effect of age reported separately in patients with and without metastases.  The strongest predictors were ASA grade and age.  ASA grade 3 was associated with approximately 3 times the risk of grade 1, and ASA grade 4 or 5 was associated with 7.5 times the risk of grade 1.  In the absence of metastases, a patient aged 80 had 3.3 times the risk of a patient aged 60, and when metastases were present, a patient aged 80 had 1.9 times the risk of a patient aged 60.  All other risk factors in the model were associated with mortality.  In particular, patients with advanced T-stage or M-stage, those presenting as an emergency, and those with comorbidities were all at increased risk of death after surgery.
The heuristic shrinkage factor was estimated on 38,025 complete cases to be 0.963, indicating little potential for over-fitting due to the large dataset.
The “best fitting” fractional polynomial for age, adjusting for the other predictors, was a second-order fractional polynomial with a linear term, (age(17 years), and the transformation (age(17 years)×loge(age(17 years).  Its fitted line showed little difference in the relationship between age and mortality compared to the linear plus quadratic model, the only difference being that the risk of mortality was modelled to decrease sharply with age in patients under the age of 40, a relationship which is not clinically plausible (Figure 2(a)).  Therefore, our a-priori choice of a linear plus quadratic model was deemed most suitable.
Calibration
The model is well calibrated by deciles of risk, as shown in Figure 2(b).  Although the F-statistic of the combined Hosmer-Lemeshow tests gave statistical evidence of a lack of fit (P=0.004), Figure 2(b) shows that the absolute difference between observed and predicted mortality was smaller than 0.5% for 7 of the deciles, and was never larger than 0.75%.  There was very good calibration by Dukes’ stage even though it was not included in the model (observed 90-day mortality was 2.8%, 5.2%, 5.7% and 11.1% for Dukes’ stage A, B, C and D, respectively, compared to predicted mortality of 2.7%, 5.2%, 5.8% and 11.1%, respectively).
Discrimination
The C-index of discrimination, within the estimation data, was estimated to be 0.800 (95%-CI 0.793 to 0.807) (Figure 2(c)).
Model validation

The bootstrap validation C-index was 0.799, which as expected given the large sample size, is very close to the C-index on the estimation data.
DISCUSSION
Findings

Our model for case-mix adjustment of postoperative mortality in colorectal cancer patients was developed in the largest dataset to date.  Based on risk factors defined in advance and available in routinely collected data, the model shows good calibration and discriminates well.  With such a large dataset and with variable selection techniques employed only to identify interaction terms, bias due to over-fitting is limited.  We are the first to accurately model a continuous association between age and mortality, allowing a non-linear relationship, and the first to provide reliable evidence on interactions between key risk factors.  We recommend this model be used to adjust comparisons of postoperative mortality among hospitals, clinical teams or individual surgeons for differences in case mix.
Comparison with previous studies

The largest previous model was developed in 976,000 patients, one-third of whom had colorectal cancer.  Cancer stage was not included in the model, which included only in-hospital deaths, and was developed using sub-optimal modelling approaches such as categorising of continuous variables and ignoring interactions between risk factors.  It is not suitable for case-mix adjustment as it includes factors related to the surgery itself or processes of care of the provider.  No estimate of model discrimination is reported. 

The most frequent risk factors considered for inclusion in the models identified in the literature were age, sex, ASA grade, surgical procedure and surgical urgency, each of which was considered in at least 5 models.  Three of these risk factors were included in our model (age, sex, and ASA grade).  Instead of procedure we included cancer site and instead of surgical urgency we included mode of admission to avoid as much as possible including factors related to the process of care that are under the control of the provider. 

It is likely that the nine models identified in our literature search which report discriminatory ability within their own sample are over-optimistic in their estimates of discrimination.  Three of these nine models were validated in a different health system and their discriminatory ability in these external data sets were was often substantially lower than in their original data sets (0.90
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 maintained at 0.8135).  Five of the other six models are likely to suffer from a large amount of over-fitting as the models were developed on fewer than 300 deaths
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 reduced to between 0.70 and 0.73
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 reduced to between 0.69 and 0.78 HYPERLINK \l "_ENREF_4" \o "Tekkis, 2004 #59" 
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.  Although these models appear to show very good discrimination, with internal C-indices ranging from 0.81 to 0.89, it is likely that their discrimination in other settings would be considerably lower.  In the largest of the studies to report discrimination, the model was developed on over 1,000 deaths, and the internal C-index was 0.91 
We expect the discriminatory ability of our model to remain high when it is applied in data derived from health systems in other countries or different time-periods, as it was developed in a very large dataset without a data-driven model specification.  The discrimination of our model is therefore likely to compare very favourably with other models when applied in external data.
Strengths of the study

Our robust strategy to identify interactions showed that the influence of metastases on risk of mortality is much diminished in elderly patients.  It is clinically plausible that metastatic disease is much more detrimental in the short-term to younger patients who are in other ways more fit for surgery, whereas in frail, elderly patients for whom mortality is already high, metastases have little impact.  This finding is particularly important as young patients tend to have more advanced disease on presentation 
We included TNM stage in the model rather than Dukes’ stage.  TNM stage has the potential to better discriminate between patients with different sizes of tumour and different levels of node involvement, because unlike TNM stage, Dukes’ stage does not separate into different categories patients with stages T1 and T2, those with T3 and T4, and those with N1 and N2.  Our model shows good calibration by Dukes’ stage even though it was not included as a predictor.

Unlike the studies identified in the literature, we used multiple imputation, a statistically valid approach for data that are missing at random (MAR).  This imputation approach allowed us to include all 62,314 cases in building and testing our model, whilst taking into account uncertainty in the imputed values 25

.
23

.  Our inclusion in the imputation model of additional variables that were not included in the risk adjustment model makes the MAR assumption more plausible 
Ours is the first model to use 90-day mortality as the endpoint, whilst also presenting model estimates for 30-day mortality.  Death within 90 days is more likely to capture those deaths that occur after prolonged critical care support, which is now a common feature of colorectal cancer resection.  From a patient’s perspective, the risk of postoperative death within three months is just as significant an outcome as death within one month of surgery.   We believe that 90 days is sufficiently close to the date of surgery to almost exclusively capture patients dying as a result of treatment.  In a series of 186 colorectal resections, Visser et al showed that all but two of the 17 patients who died within 90 days had a postoperative complication, and only one of the 17 died because of dissemination of their cancer 
Potential limitations

Some patients could not be linked to HES, and therefore had no mode of admission or comorbidities recorded.  The majority of these patients, however, had mode of admission or surgical urgency recorded in NBCA, and this, along with surgical urgency in NBCA, contributed to the imputation of the missing values of mode of admission in HES.  For patients who could not be linked to HES, the number of comorbidities needed to be imputed, and many of the items in the imputation model strongly predicted its value, in particular ASA grade, age, sex, socio-economic deprivation, and length of hospital stay. An analysis restricted to patients linked to HES changed the parameters estimates very little (results not shown).  We therefore believe that the incomplete linkage to HES led to little bias in the model estimates. 
We have ignored any “clustering” of patients’ mortality within English NHS trusts (or Welsh multidisciplinary teams).  The within-trust intra-class correlation coefficient was estimated to be just 2.3% (95%CI: 1.4 to 3.9%) in a complete-case analysis of 38,025 patients, after adjustment for all predictors in the model, and multilevel modelling therefore had very little effect on the parameter estimates or their standard errors.
Implications

We have modelled a continuous relationship between age and mortality rather than modelling mortality to be fixed within age-bands and we have modelled the effect of age on mortality separately for patients with and without metastases.  As a consequence, our model can be expected to provide more accurate risk adjustment for providers with unusual distributions of age or stage of disease.  This applies particularly to tertiary referral centres which tend to treat younger patients with more advanced disease.  Note however that, even with such a large dataset, the number of young patients was relatively small and a lower proportion of young patients die soon after surgery.  Inevitably, the model will be less precise in this age group.  
The model was designed to risk-adjust outcome data when comparing providers and should not be used to predict individual patient risk.  The variables were selected into the model with this in mind and therefore risk factors which would improve the prediction of individual patient risk may well be omitted, such as surgical access and other processes of care.  A model to predict individual patient risk should be based only on information available before surgery, and the cancer staging used in this model was recorded after excision of the tumour. 

The model must be recalibrated before it is applied in new settings because overall mortality is likely to change over time and differ by country.  Even over the four years of our study we observed a reduction in mortality, and with changes in practice such as increased use of laparoscopic surgery it is likely that mortality will reduce further.  A simple recalibration technique is to fit a logistic regression model of the outcome in the new data with the predicted log-odds according to our model as the only covariate 34

.  The intercept from this calibration model is then added to the intercept in our model to calibrate overall mortality.  If change over time is to be modelled in the new setting, the calibration model should ideally include variables for time (e.g. a dummy variable for each year), leading to a recalibrated estimate of the intercept and parameter estimates for time.  Such simple recalibration methods are preferable to re-fitting the model in new data because they still use the risk factors that were estimated in our large cohort of patients.  Unless the sample size of the new data is comparable to ours or larger, re-fitting the entire model would increase over-fitting and reduce accuracy of the risk-adjustment 
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LEGENDS

Figure 1: Flow chart of patient inclusion

Figure 2(a): Observed and predicted mortality against age, by distant metastases.  Circles are observed mortality in 5-year age-bands, adjusted for all other model covariates, and error bars are 95% confidence intervals.  Where fewer than 5 deaths occurred in an age-band in patients with or without metastases the observed mortality is not reported.  Solid lines represent the predicted mortality of the model, and dashed lines the predicted mortality from a “Best fitting” fractional polynomial.

Figure 2(b): Calibration by deciles of risk

Figure 2(c): Receiver operating characteristic curve, with sensitivities (i.e. detection rate) for a range of specificities (i.e. 1 – false positive rate).
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