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Abstract

Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the
healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from
those associated with neurological disease. The present study investigates whether age-related changes in metabolite
concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23–65 years, underwent conventional
imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T
Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and
associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear
decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-
Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range,
starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and
decline in glutamate-glutamine neurotransmitter pool progress with aging.
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Introduction

Human senescence is associated with deterioration in physical

performance which, in part, can be attributed to age-related

neurodegeneration of the spinal cord. Decline in motor agility and

gait are ubiquitous features of aging which can begin from the

fourth decade of life; typically, walking becomes slower, with

shortening of stride length and a tendency to stoop [1,2]. Sensory

perception across all the sensory modalities can become impaired

[3–6], with an increased incidence of bowel, bladder and erectile

dysfunction [7–10]. Studies of humans and rodents show that

advancing age is associated with aberrations of spinal myelin,

proliferation of astrocytes and reduced axonal number and

diameter within spinal sensory and motor tracts [11–13].

Quantitative morphometric studies in humans show that the

decrease in dorsal root fibres begins in the third decade of life [14],

whilst quantitative MRI has shown that diffusion anisotropy in the

upper cervical cord declines with normal aging, with loss of fibre

coherence beginning from the age of ten [15].

Conventional MRI of the spinal cord lacks the necessary

sensitivity to detect these microstructural changes. T2 hyperinten-

sities which are commonly seen in the aging brain are only rarely

seen in the spinal cord [15–17] and age-related volume loss

appears to be less marked in the spinal cord than in the brain;

although some studies have reported a negative correlation

between cord cross sectional area (CSA) and age [18,19], others

have found no change in CSA in the elderly [15,20,21]. The

development of new quantitative MRI techniques, which are more

sensitive to change in underlying tissue microstructure and

metabolism, may be much more suited to studying aging of the

spinal cord in vivo [22].
1H magnetic resonance spectroscopy (MRS), which allows the

quantification of metabolites in human tissue, has been widely

used to study healthy aging of the brain in humans [23–27] and

animals [28]. Over the past decade, developments in imaging

acquisition and post-processing, together with the availability of

high field scanners, have made it possible to use MRS to study the

spinal cord in-vivo [29,30]. Reductions in spinal cord total N-
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acetylaspartate (tNAA) concentrations are thought to reflect

neuroaxonal injury and/or mitochondrial dysfunction in patients

with multiple sclerosis, cervical spondylitic myelopathy and

amyotrophic lateral sclerosis, [31–33] while increases in spinal

cord myo-inositol/total creatine (Ins/tCr) ratios in multiple

sclerosis and following brachial plexus re-implantation [34,35]

are likely to represent a reactive gliosis. Because metabolite

concentrations reflect specific pathological processes, they could

potentially become useful imaging biomarkers of the future. Serial

MRS investigations in patients with neurodegenerative diseases

may therefore be a useful way of monitoring progression and

response to treatments. However, periodic imaging is potentially

vulnerable to temporal changes in spinal cord metabolites that are

associated with normal healthy aging, rather than disease

progression and it is, therefore, important to understand how

spinal metabolites change with age to improve interpretation of

interval changes.

To date no studies of the spinal cord have addressed metabolic

changes associated with normal aging. In this study, which was

carried out in healthy volunteers, we therefore aimed to (i)

investigate whether age was associated with changes in concen-

trations of commonly quantified metabolites and (ii) explore the

effect of gender on metabolite concentrations.

Materials and Methods

Study participants
All subjects provided written, informed consent prior to taking

part in the research, which was approved by the NRES

Committee London Bloomsbury (Formally London REC 2 Ethics

Committee).

Healthy volunteers were prospectively recruited from amongst

university staff and respondents to adverts within the university

and neurology outpatient clinic. A minimum of two subjects per

decade of life (between the ages of 20–65) were recruited in order

to achieve a good spread of ages. The age of subjects, from

youngest to oldest were; 23, 24, 25, 28, 30, 30, 31, 31, 33, 33, 36,

40, 43, 44, 46, 48, 52, 54, 55, 56, 65 and 65 years old. Participants

found to have severe spondylitic changes [16], compression of the

cord or an intrinsic cord lesion were excluded from the study.

MRI Protocol
All scans were performed using a 3T Achieva system (Philips

Medical Systems, Best, Netherlands), with the manufacturer’s 16-

channel neurovascular coil. An MR compatible cervical collar was

worn by all volunteers as this has recently been shown to

considerably reduce motion artefacts during scanning [36]. All

subjects initially underwent conventional structural imaging of the

upper cervical cord with: (a) Spin-echo T2-weighted sequence,

with TR=4000 ms; TE=100 ms; echo train length = 24 echoes;

FOV=1606250 mm2; voxel size = 0.660.663.0 mm3;number of

excitations (NEX)= 2; 13 contiguous coronal slices, and (b) Dual-

echo PD/T2-weighted sequence with TR=4000 ms; TE=15/

80 ms; FOV=2566160 mm2; voxel size = 1.061.063.0 mm3;

NEX=2; 12 contiguous sagittal slices.

Single voxel MRS data was then acquired using a recently

optimised protocol [37]. Cuboid volumes of interest (VOI) with

dimensions of approximately 5.467.76655 mm3 (2.3 ml) were

prescribed and centred on the C2/3 intervertebral disc (Figure 1)

using the previously acquired coronal and sagittal T2-weighted

and PD/T2-weighted reference scans. The dimensions of the VOI

were adjusted in the anterior-posterior (AP) dimension dependent

on the size of each subjects spinal cord (mean VOI 2.02 ml;

SD60.22 ml). MRS data was acquired using a point resolved

spectroscopy (PRESS) localisation sequence, with triggered

iterative shimming, multiply optimized insensitive suppression

train (MOIST) water suppression (available on Philips scanners)

[38–40], 4 outer volume suppression (OVS) slabs (broadband

saturation pulses approximately 5 ms duration and 6000 Hz

bandwidth, applied twice, sequentially) in the AP and rostrocaudal

directions and cardiac gating (TR=3RR<3000 ms) using a

peripheral pulse unit (350 ms delay from R-wave peak),

TE=30 ms, number of averages = 376. Details of the asymmetric

excitation RF pulse and the high-bandwidth refocusing pulse can

be found in Table S1. In addition, details of the gradient duration

and strength that apply to the default MRS voxel dimension are

shown in Table S2.

Post processing
Metabolite concentrations were quantified using the user-

independent LCModel (version 6.3) package [41] and a set of

basis spectra simulated using GAMMA [42]. The basis set

comprised seventeen metabolites including the macromolecules,

specifically, N-acetyl-aspartate (NAA), N-acetylaspartyl glutamate

(NAAG), gamma-Aminobutyric acid (GABA), Myo-inositol (Ins),

creatine (Cr), phosphocreatine (PCr), choline (Cho), phosphocho-

line (PCho), glutamate (Glu), glutamine (Gln), glucose, guanidi-

noacetate, lactate, scyllo-Inositol, taurine, alanine and aspartate.

Quantification of metabolites was performed by using the

unsuppressed water signal obtained from the same voxel [43].

NAA+NAAG (hereafter, tNAA), choline+phosphocholine (hereaf-

ter, tCho), creatine+phosphocreatine (hereafter, tCr), Ins and

Glu+Gln (hereafter, Glx) concentrations formed the focus of our

analysis. The signal-to-noise ratio (SNR) and full width of half

maximum (FWHM) of the tNAA peak provided by LCModel were

used to assess spectral quality and Cramér-Rao Lower Bounds

(CRLB) values for each metabolite were used to assess the

reliability of the spectral fit [37]. Poor quality spectra were

excluded from the analysis. Criteria for exclusion were poor water

suppression or FWHM.0.13 with SNR,3.

Statistical analysis
All statistical analyses were performed using IBM SPSS

statistical package version 22.0 (IBM Corporation, Armonk, NY,

USA). Associations between metabolites and age were examined

using linear regression of the metabolite as response variable on

age, with gender, linewidth (FWHM) and voxel volume covariates;

a quadratic term in age was also entered to examine evidence of

non-linearity and removed if p.0.1. Gender differences reported

from these models are adjusted for age, linewidth (FWHM) and

voxel volume. P values of ,0.05 were taken to be statistically

significant.

Results

Twenty-five healthy participants were prospectively recruited

and scanned. Three participants were excluded from the analysis

due to poor spectral quality. Therefore, twenty-two healthy

participants (15 females) with a mean age of 40.5 years, standard

deviation (SD) 13.1, range 23–65 were included in the final

analysis.

Figure 2 shows typical examples of post-processed spectra

included in the final analysis. The FWHM and SNR estimated

by LCModel (reported as mean 6 SD) were 0.1160.02 ppm and

5.0561.75 respectively. Cramér-Rao lower bounds (CRLBs)

indicated a reliable fit for tNAA, tCho, and tCr. A reliable fit

was achieved for Glx in 19 out of 22 spectra and for Ins in 20 out

Age and Metabolite Concentrations in the Spinal Cord
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of 22 spectra [44]. Mean CRLBs for each metabolites were; tNAA

(7%), tCr (11%), tCho (10%), Ins (11%) and Glx (17%).

There was no statistical evidence of a non-linear relationship

between metabolite concentrations and age. Older age predicted

lower spinal tNAA concentration (0.049 mmol/L lower per

additional year of age, p = 0.010) and lower Glx concentration

(0.054 mmol/L lower per additional year of age, p= 0.002)

(Table 1). Age was not significantly associated with the other

metabolites (Figure 3).

Glx concentration was significantly higher in men, mean (SD)

7.27 (0.97) mmol/L, than females, mean (SD) 5.73 (1.05) mmol/L

(p = 0.010, adjusting for age, FWHM and voxel volume), but no

gender differences were seen with other metabolites (Table 2).

Discussion

We used a single voxel MRS protocol optimised for improved

SNR to permit quantification of Glx from the spinal cord [37]. A

higher SNR was achieved by employing a longer voxel and

increased signal averaging compared to earlier MRS protocols

[29,30,45,46]. Although longer voxel lengths can be associated

with worsening of B0 convergence [29], our other spectral quality

indicators (FWHM and CRLB), after elimination of poor spectra,

were comparable to those published by other groups [30,46].

We aimed to evaluate whether age is associated with changes in

metabolite concentrations of the upper cervical cord, as is seen in

the brain. Using a recently optimised MRS protocol [37], we

quantified metabolite concentrations in the cervical cords of

healthy subjects aged between 23 and 65. We found that older age

was strongly associated with lower concentrations of tNAA and

Glx and that there were significantly lower Glx concentrations in

female subjects compared to males.

NAA is a non-essential amino acid which is synthesised by

neuronal mitochondria and found exclusively in neurones and

their processes [47–50]. In the spinal cord, axonal numbers closely

correlate with NAA levels quantified by immunoassay [51], and

NAA levels decrease in the presence of inhibitors of complexes I,

III, IV and V of the mitochondrial respiratory chain [52].

Therefore, in MRS studies, concentrations of tNAA are commonly

interpreted as reflecting neuroaxonal integrity and/or mitochon-

drial energy production [50]. In the current study, we observed a

linear decrease in tNAA concentrations in the upper cervical cord

with aging, and therefore hypothesise that the tNAA decline

reflects age-related neuroaxonal loss and mitochondrial dysfunc-

tion. In fact, mitochondrial DNA (MtDNA) deletions and point

Figure 1. Planning of spectroscopy scans. Coronal (a) and sagittal (b) T2-weighted images of the upper cervical cord in a healthy subject
showing voxel placement The NAA voxel (orange) is centred on the C2/3 intervertabral disc, avoiding surrounding CSF. The white voxel illustrates the
chemical shift displacement of water. Keeping both the orange voxel (on resonance, 2.02 ppm) and white voxel (4.7 ppm) within the cord, ensures
that metabolites between 2.02 and 4.7 ppm (tNAA, tCr, tCho, Glx, Ins) also arise from within the spinal cord and chemical shift displacement of each
metabolite need not be an issue. Positioning of the rostrocaudal OVS slabs is shown in periphery of images a+b and positioning of the anterior-
posterior OVS slabs is shown in c.
doi:10.1371/journal.pone.0105774.g001

Figure 2. Representative spectra obtained using LCModel from 3 study participants.
doi:10.1371/journal.pone.0105774.g002

Age and Metabolite Concentrations in the Spinal Cord

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e105774



mutations accumulate during normal CNS aging [53,54] and,

together with increased production of reactive oxygen species [55–

57], are thought to be responsible for age-related neuroaxonal

degeneration. As our sample age range starts at 23 years, we have

not been able to ascertain whether age-related changes in the

spinal cord occur before the early twenties. Similarly, it is possible

that subjects older than 65 could show accelerated decline of

tNAA. However, within our sample age range of 23265, we did

not find a quadratic association between age and the concentra-

tions of tNAA and Glx. Future longitudinal studies will study the

decline trajectory of tNAA within individuals by following them up

for a decade or longer.

Interestingly, in healthy brain aging, reductions in tNAA have

been widely reported in grey matter regions [23,58–60], but rarely

seen in the white matter [23,58,61,62] which may, in part, be

explained by a slower rate of aging-related white matter volume

loss in the brain when compared with grey matter [63]. In a

previous brain MRS study, a different temporal behaviour of

NAA/tCho has been observed between the white matter and grey

matter. In the cerebral white matter, the NAA/tCho ratio

increases rapidly during the first decade of life before peaking in

the second or early third decade, followed by a steady decline

starting in the latter half of the third decade of life, whilst in the

grey matter, the NAA/tCho ratio enters a steady decline from

childhood [64]. Although we have not been able to assess if the

age-related decline in tNAA in the spinal cord is also tissue

dependent in the current study, due to the difficulty in segmenting

white matter and grey matter tissues within the spinal cord, it is

Figure 3. Scatter plots of relationship between age and (A) tNAA, (B) Glx, (C) tCho, (D) Ins and (E) Cr concentrations from the upper
cervical cord. Regression lines are shown where there was a significant association (A, B). No significant association was seen between age and
tCho, Ins or Cr (C–E).
doi:10.1371/journal.pone.0105774.g003

Table 1. Associations between age (predictor) and metabolite concentrations (response variable).

Association between age and metabolite concentrations

Regression coefficient Standardised regression coefficient 95% CI for regression coefficient p-value

tNAA 20.049 20.522 20.085, 20.013 0.010

Glx 20.054 20.579 20.085, 20.022 0.002

tCho 0.001 0.026 20.014, 0.015 0.920

Ins 20.006 20.067 20.055, 0.043 0.791

Cr 20.003 20.040 20.046, 0.039 0.867

Unstandardised and standardised regression coefficients calculated from the multivariate model are reported with 95% confidence intervals and p-values. The
regression models adjusted for gender, linewidth and voxel volume.
Abbreviations: tNAA =N-acetylaspartate + N-acetylaspartylglutamate, Cr = Creatine + phosphocreatine, tCho = Choline containing compounds, Ins = Myo-inositol,
Glx = glutamate/glutamine.
doi:10.1371/journal.pone.0105774.t001
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possible that tNAA concentration declines faster in spinal grey

matter than white matter with age and this could be an area for

future research.

Glutamate (Glu), the major excitatory neurotransmitter in

mammals plays a major role in the coordination of basic

propulsive movement synergy for locomotion at the spinal level

[65] and processing and transmitting sensory information in the

spinal cord [66]. Glu, as opposed to Glx, which represents a sum

of Glu and glutamine, is difficult to measure in the spinal cord. We

found that Glx concentration was negatively associated with age.

Between 75–86% of the Glx signal is thought to come from Glu

[67], and this decline in spinal Glx could largely be explained by

neuroaxonal degeneration. As Glu is largely present in neurones at

synaptic terminals, with Glu from the extracellular compartment

and glial cells considered to be present in very low concentration

and therefore contribute very little to the spectroscopy signal

[68,69], it would be expected that Glu (and therefore Glx) will

decrease where there is neuronal loss. However, it is interesting

that the rate of decline in Glx concentration with age is more rapid

than tNAA, which might suggest that the reduction in glutamate-

glutamine neurotransmitter pool are driven by more than

neuronal loss alone.

The observed association between age and Glx in the spinal

cord is in keeping with previous MRS investigations in the brain

which have consistently shown declining concentrations of Glu

with older age in multiple brain regions including the frontal white

matter, parietal grey matter, motor cortex, anterior cingulate

cortex, hippocampus, basal ganglia and striatum [24,26,68,70,71].

An interesting observation in the current study was that of

higher concentrations of Glx in men than women. MRS studies in

the brain measuring Glx and Glu concentrations have differed on

whether gender differences exist. Higher levels have been reported

in men compared to women in the parietal grey matter and

dorsolateral prefrontal cortex [25,72], whilst other studies have

reported higher concentrations in women in the cerebellum and

striatum [73]. Kaiser et al. however found no differences in Glu

and Gln concentrations between men and women in the corona

radiata and mesial motor cortex [68]. Hormonal factors may be

responsible for some of the observed gender differences in our

study. An examination of the medial prefrontal cortex during the

follicular phase and the luteal phase of the menstrual cycle found

that Glu/tCr ratios were significantly lower during the luteal phase

compared with the follicular phase [74]. Additionally, blood Glu

levels vary during the menstrual cycle such that blood Glu levels

are inversely correlated to levels of plasma oestrogen and

progesterone [75], but interestingly in the work by Zlontik et al,
Glu levels were significantly higher in men than women at any

stage of the menstrual cycle. Although the gender differences in

spinal Glx concentrations observed in this study are in keeping

with some earlier reports from the brain, further studies, with

larger sample sizes will be needed to confirm the validity of this

finding and to investigate whether spinal Glx levels vary with

female hormone levels.

In the present study no evidence of association was seen

between tCho, tCr and Ins concentrations in the spinal cord and

age. Although changes have been reported in these metabolites in

the brain with aging and have been interpreted as reflecting

changes in glial proliferation, those changes are not thought to

occur uniformly in the brain, with regional variation commonly

reported. tCho concentrations have been reported to be higher in

the corpus callosum, parietal lobe, frontal grey matter and pons in

older people [23,27,62,76], but remain stable in the frontal,

occipital and temporal lobes and the basal ganglia in other studies

[60,77] and decline in the midbrain [23]. Similarly, tCr was seen

to increase in the parietal, frontal grey and white matter

[27,62,78], but other studies found no change in tCr with aging

[60,77]. Much fewer brain studies have assessed Ins levels with

aging; a single study found an increase in the frontal grey matter

[62], whilst another study reported that Ins/tCr ratios decreased

in the frontal grey matter, basal ganglia, and occipital grey matter

[79]. A recent meta-analysis of 18 spectroscopy studies assessing

regional metabolite changes in healthy brain aging found that

there was significant increases in parietal tCho and tCr; although

fewer studies assessing changes in Ins had been carried out, levels

were not seen to change significantly in the brain with age [27].

To the best of our knowledge, this is the first report of

associations between metabolite levels and age within the spinal

cord. We have shown a possible effect of aging on tNAA and Glx

levels, which should be taken into consideration when planning

serial MRS imaging of the spinal cord in clinical and research

settings. However, it will take further longitudinal studies to

determine the rate of change in metabolites over time in healthy

aging and whether metabolite concentrations decline at differing

rates in spinal grey matter and white matter. Due to exploratory

nature of the study, our sample size was relatively small and

absolute metabolite concentrations observed within of our cohort

should therefore be interpreted with some caution until future

work, using larger sample sizes, further characterises absolute

metabolite concentrations by age group. Future experiments

should also allow additional scanning time for the inclusion of an

experimentally measured macromolecular spectrum, as this has

been shown to improve the accuracy of spectral quantification

[80]. Studies of brain aging have previously shown that age-related

metabolite changes are not uniform and can vary between brain

Table 2. Mean (SD) water scaled metabolite concentrations derived with LCModel for all subjects and by gender.

Metabolite concentrations (mmol/L) by gender

All subjects (n =22) Male (n=7) Female (n= 15)

tNAA 5.69 (1.24) 6.05 (1.37) 5.52 (1.18)

Glx 6.21 (1.24) 7.27 (0.97) 5.73 (1.05)*

tCho 1.30 (0.35) 1.36 (0.53) 1.27 (0.25)

Ins 4.70 (1.23) 5.36 (1.83) 4.42 (0.79)

Cr 3.76 (1.11) 4.15 (1.47) 3.60 (0.90)

*Significant difference in Glx concentration between male and females (p = 0.010, after adjusting for age, linewidth and voxel volume).
Abbreviations: tNAA =N-acetylaspartate + N-acetylaspartylglutamate, Cr = Creatine + phosphocreatine, tCho = Choline containing compounds, Ins = Myo-inositol,
Glx = glutamate/glutamine.
doi:10.1371/journal.pone.0105774.t002
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regions, and it is possible that metabolite changes during aging

occur at dissimilar rates at different spinal levels which will also

require further investigation.

Supporting Information

Table S1 Details of RF pulses (default voxel dimen-
sions). *Maximum B1 of the coil used was 13 mT.
(DOCX)

Table S2 Details of RF pulses (default voxel dimen-
sions).

(DOCX)

Author Contributions

Conceived and designed the experiments: KA BS OC CW AT. Performed

the experiments: MY KA BS. Analyzed the data: KA DA. Contributed

reagents/materials/analysis tools: AT OC CW. Contributed to the writing

of the manuscript: KA BS MY DA CW AT OC. Funding application: AT

OC CW. Wrote the manuscript: KA. Reviewed and improved the

manuscript: KA BS MY DA CW AT OC.

References

1. Wolfson L, Whipple R, Amerman P, Tobin JN (1990) Gait Assessment in the

Elderly - a Gait Abnormality Rating-Scale and Its Relation to Falls. Journals of

Gerontology 45: M12–M19.

2. Murray MP, Kory RC, Clarkson BH (1969) Walking Patterns in Healthy Old

Men. Journals of Gerontology 24: 169-&.

3. Deneeling JND, Beks PJ, Bertelsmann FW, Heine RJ, Bouter LM (1994)

Sensory Thresholds in Older Adults - Reproducibility and Reference Values.

Muscle Nerve 17: 454–461.

4. Ferrell WR, Crighton A, Sturrock RD (1992) Age-Dependent Changes in

Position Sense in Human Proximal Interphalangeal Joints. Neuroreport 3: 259–

261.

5. Robbins S, Waked E, Mcclaran J (1995) Proprioception and Stability - Foot

Position Awareness as a Function of Age and Footwear. Age and Ageing 24: 67–

72.

6. Mufson EJ, Stein DG (1980) Degeneration in the spinal cord of old rats. Exp

Neurol 70: 179–186.

7. Marcio J, Jorge N, Wexner SD (1993) Etiology and Management of Fecal

Incontinence. Diseases of the Colon & Rectum 36: 77–97.

8. Siroky MB (2004) The aging bladder. Rev Urol 6 Suppl 1: S3–7.

9. Kaiser FE (1999) Erectile dysfunction in the aging man. Medical Clinics of

North America 83: 12672+.
10. Aversa A, Bruzziches R, Francomano D, Natali M, Gareri P, et al. (2010)

Endothelial dysfunction and erectile dysfunction in the aging man. International

Journal of Urology 17: 38–47.

11. Burek JD, van der Kogel AJ, Hollander CF (1976) Degenerative myelopathy in

three strains of aging rats. Vet Pathol 13: 321–331.

12. Cruz-Sanchez FF, Moral A, Tolosa E, de Belleroche J, Rossi ML (1998)

Evaluation of neuronal loss, astrocytosis and abnormalities of cytoskeletal

components of large motor neurons in the human anterior horn in aging.

Journal of Neural Transmission 105: 689–701.

13. Nonaka N, Goto N, Goto J, Shibata M, Nakamura M (2008) Morphometric

evaluation of the aging process in various human nerve fibers. Okajimas Folia

Anat Jpn 85: 103–106.

14. Corbin KB, Gardner ED (1937) Decrease in number of myelinated fibers in

human spinal roots with age. Anatomical Record 68: 63–74.

15. Agosta F, Lagana M, Valsasina P, Sala S, Dall’Occhio L, et al. (2007) Evidence

for cervical cord tissue disorganisation with aging by diffusion tensor MRI.

Neuroimage 36: 728–735.

16. Thorpe JW, Kidd D, Kendall BE, Tofts PS, Barker GJ, et al. (1993) Spinal cord

MRI using multi-array coils and fast spin echo. I. Technical aspects and findings

in healthy adults. Neurology 43: 2625–2631.

17. Lycklama a Nijeholt GJ, Barkhof F, Scheltens P, Castelijns JA, Ader H, et al.

(1997) MR of the spinal cord in multiple sclerosis: relation to clinical subtype and

disability. AJNR Am J Neuroradiol 18: 1041–1048.

18. Suzuki M, Shimamura T (1994) [Morphological study of the axial view of the

cervical spinal cord by MR images]. Nihon Seikeigeka Gakkai Zasshi 68: 1–13.

19. Ishikawa M, Matsumoto M, Fujimura Y, Chiba K, Toyama Y (2003) Changes

of cervical spinal cord and cervical spinal canal with age in asymptomatic

subjects. Spinal Cord 41: 159–163.

20. Tanaka Y (1984) [Morphological changes of the cervical spinal canal and cord

due to aging]. Nihon Seikeigeka Gakkai Zasshi 58: 873–886.

21. Sherman JL, Nassaux PY, Citrin CM (1990) Measurements of the normal

cervical spinal cord on MR imaging. AJNR Am J Neuroradiol 11: 369–372.

22. Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, et al.

(2014) The current state-of-the-art of spinal cord imaging: Methods. Neuro-

image 84: 1070–1081.

23. Moreno-Torres A, Pujol J, Soriano-Mas C, Deus J, Iranzo A, et al. (2005) Age-

related metabolic changes in the upper brainstem tegmentum by MR

spectroscopy. Neurobiol Aging 26: 1051–1059.

24. Zahr NM, Mayer D, Pfefferbaum A, Sullivan EV (2008) Low striatal glutamate

levels underlie cognitive decline in the elderly: Evidence from in vivo molecular

spectroscopy. Cereb Cortex 18: 2241–2250.

25. Sailasuta N, Ernst T, Chang L (2008) Regional variations and the effects of age

and gender on glutamate concentrations in the human brain. Magn Reson

Imaging 26: 667–675.

26. Chang L, Jiang CS, Ernst T (2009) Effects of age and sex on brain glutamate and

other metabolites. Magn Reson Imaging 27: 142–145.

27. Haga KK, Khor YP, Farrall A, Wardlaw JM (2009) A systematic review of brain

metabolite changes, measured with 1H magnetic resonance spectroscopy, in

healthy aging. Neurobiol Aging 30: 353–363.

28. Harris JL, Yeh HW, Swerdlow RH, Choi IY, Lee P, et al. (2014) High-field

proton magnetic resonance spectroscopy reveals metabolic effects of normal

brain aging. Neurobiol Aging.

29. Cooke FJ, Blamire AM, Manners DN, Styles P, Rajagopalan B (2004)

Quantitative proton magnetic resonance spectroscopy of the cervical spinal

cord. Magn Reson Med 51: 1122–1128.

30. Marliani AF, Clementi V, Albini-Riccioli L, Agati R, Leonardi M (2007)

Quantitative proton magnetic resonance spectroscopy of the human cervical

spinal cord at 3 tesla. Magnetic Resonance in Medicine 57: 160–163.

31. Holly LT, Freitas B, McArthur DL, Salamon N (2009) Proton magnetic

resonance spectroscopy to evaluate spinal cord axonal injury in cervical

spondylotic myelopathy. J Neurosurg Spine 10: 194–200.

32. Ciccarelli O, Altmann DR, McLean MA, Wheeler-Kingshott CA, Wimpey K, et

al. (2010) Spinal cord repair in MS: does mitochondrial metabolism play a role?

Neurology 74: 721–727.

33. Carew JD, Nair G, Andersen PM, Wuu J, Gronka S, et al. (2011)

Presymptomatic spinal cord neurometabolic findings in SOD1-positive people

at risk for familial ALS. Neurology 77: 1370–1375.

34. Marliani AF, Clementi V, Albini Riccioli L, Agati R, Carpenzano M, et al.

(2010) Quantitative cervical spinal cord 3T proton MR spectroscopy in multiple

sclerosis. AJNR Am J Neuroradiol 31: 180–184.

35. Kachramanoglou C, De Vita E, Thomas DL, Wheeler-Kingshott CA, Balteau

E, et al. (2013) Metabolic Changes in the Spinal Cord After Brachial Plexus

Root Re-implantation. Neurorehabil Neural Repair 27: 118–124.

36. Yiannakas MC, Kearney H, Samson RS, Chard DT, Ciccarelli O, et al. (2012)

Feasibility of grey matter and white matter segmentation of the upper cervical

cord in vivo: A pilot study with application to magnetisation transfer

measurements. Neuroimage 63: 1054–1059.

37. Solanky BS, Abdel-Aziz K, Yiannakas MC, Berry AM, Ciccarelli O, et al. (2013)

In vivo magnetic resonance spectroscopy detection of combined glutamate-

glutamine in healthy upper cervical cord at 3 T. NMR Biomed 26: 357–366.

38. Phlips-Manual (2009) Application guide volume 4: Spectroscopy. Achieva

Release Series 3: Philips Medical Systems, Netherland.

39. Kendi AT, Tan FU, Kendi M, Yilmaz S, Huvaj S, et al. (2004) MR spectroscopy

of cervical spinal cord in patients with multiple sclerosis. Neuroradiology 46:

764–769.

40. Harting I, Hartmann M, Jost G, Sommer C, Ahmadi R, et al. (2003)

Differentiating primary central nervous system lymphoma from glioma in

humans using localised proton magnetic resonance spectroscopy. Neurosci Lett

342: 163–166.

41. Provencher SW (1993) Estimation of metabolite concentrations from localized

in vivo proton NMR spectra. Magn Reson Med 30: 672–679.

42. Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer-Simulations in

Magnetic-Resonance - an Object-Oriented Programming Approach. Journal of

Magnetic Resonance Series A 106: 75–105.

43. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, et al. (2006) Use of

tissue water as a concentration reference for proton spectroscopic imaging.

Magn Reson Med 55: 1219–1226.

44. Provencher SW (2014) LCModel & LCMgui User’s Manual. http://s-

provencher.com/pub/LCModel/manual/manual.pdf.

45. Gomez-Anson B, MacManus DG, Parker GJ, Davie CA, Barker GJ, et al. (2000)

In vivo 1H-magnetic resonance spectroscopy of the spinal cord in humans.

Neuroradiology 42: 515–517.

46. Henning A, Schar M, Kollias SS, Boesiger P, Dydak U (2008) Quantitative

magnetic resonance spectroscopy in the entire human cervical spinal cord and

beyond at 3T. Magn Reson Med 59: 1250–1258.

47. Clarke DD, Greenfield S, Dicker E, Tirri LJ, Ronan EJ (1975) A relationship of

N-acetylaspartate biosynthesis to neuronal protein synthesis. J Neurochem 24:

479–485.

Age and Metabolite Concentrations in the Spinal Cord

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e105774



48. Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain

mitochondria and its involvement in mitochondrial/cytosolic carbon transport.
Biochem J 184: 539–546.

49. Truckenmiller ME, Namboodiri MA, Brownstein MJ, Neale JH (1985) N-

Acetylation of L-aspartate in the nervous system: differential distribution of a
specific enzyme. J Neurochem 45: 1658–1662.

50. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-
Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog

Neurobiol 81: 89–131.

51. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD (2000) Neurological
disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate

in chronic multiple sclerosis patients. Ann Neurol 48: 893–901.
52. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, et al. (1996)

Inhibition of N-acetylaspartate production: implications for 1H MRS studies
in vivo. Neuroreport 7: 1397–1400.

53. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002) High aggregate

burden of somatic mtDNA point mutations in aging and Alzheimer’s disease
brain. Hum Mol Genet 11: 133–145.

54. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration.
Ann Neurol 58: 495–505.

55. Gupta A, Hasan M, Chander R, Kapoor NK (1991) Age-related elevation of

lipid peroxidation products: diminution of superoxide dismutase activity in the
central nervous system of rats. Gerontology 37: 305–309.

56. Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of
cellular signaling pathways, cell dysfunction, and death in the nervous system.

Rev Neurosci 9: 105–116.
57. Butler D, Bahr BA (2006) Oxidative stress and lysosomes: CNS-related

consequences and implications for lysosomal enhancement strategies and

induction of autophagy. Antioxid Redox Signal 8: 185–196.
58. Charles HC, Lazeyras F, Krishnan KR, Boyko OB, Patterson LJ, et al. (1994)

Proton spectroscopy of human brain: effects of age and sex. Prog Neuropsycho-
pharmacol Biol Psychiatry 18: 995–1004.

59. Lim KO, Spielman DM (1997) Estimating NAA in cortical gray matter with

applications for measuring changes due to aging. Magn Reson Med 37: 372–
377.

60. Brooks JC, Roberts N, Kemp GJ, Gosney MA, Lye M, et al. (2001) A proton
magnetic resonance spectroscopy study of age-related changes in frontal lobe

metabolite concentrations. Cereb Cortex 11: 598–605.
61. Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM (1999)

Aging of the adult human brain: in vivo quantitation of metabolite content with

proton magnetic resonance spectroscopy. J Magn Reson Imaging 9: 711–716.
62. Chang L, Ernst T, Poland RE, Jenden DJ (1996) In vivo proton magnetic

resonance spectroscopy of the normal aging human brain. Life Sci 58: 2049–
2056.

63. Ge YL, Grossman RI, Babb JS, Rabin ML, Mannon LJ, et al. (2002) Age-

related total gray matter and white matter changes in normal adult brain. Part I:
Volumetric MR imaging analysis. American Journal of Neuroradiology 23:

1327–1333.
64. Kadota T, Horinouchi T, Kuroda C (2001) Development and aging of the

cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol
22: 128–135.

65. Grillner S, Wallen P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of

goal-directed locomotion in vertebrates - An overview. Brain Research Reviews

57: 2–12.

66. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nature

Reviews Neuroscience 11: 823–836.

67. Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, et al. (2008) Regional

apparent metabolite concentrations in young adult brain measured by (1)H MR

spectroscopy at 3 Tesla. J Magn Reson Imaging 27: 489–499.

68. Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate

and glutamine concentration changes in normal human brain: 1H MR

spectroscopy study at 4 T. Neurobiol Aging 26: 665–672.

69. Muhlert N, Atzori M, De Vita E, Thomas DL, Samson RS, et al. (2014)

Memory in multiple sclerosis is linked to glutamate concentration in grey matter

regions. J Neurol Neurosurg Psychiatry.

70. Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations

in human brain using single voxel proton magnetic resonance spectroscopy at 3

Tesla. Neuroimage 21: 1762–1771.

71. Choi C, Coupland NJ, Bhardwaj PP, Kalra S, Casault CA, et al. (2006) T2

measurement and quantification of glutamate in human brain in vivo. Magn

Reson Med 56: 971–977.

72. O’Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E (2011) In vivo

detection of GABA and glutamate with MEGA-PRESS: reproducibility and

gender effects. J Magn Reson Imaging 33: 1262–1267.

73. Zahr NM, Mayer D, Rohlfing T, Chanraud S, Gu M, et al. (2013) In vivo

glutamate measured with magnetic resonance spectroscopy: behavioral corre-

lates in aging. Neurobiol Aging 34: 1265–1276.

74. Batra NA, Seres-Mailo J, Hanstock C, Seres P, Khudabux J, et al. (2008) Proton

magnetic resonance spectroscopy measurement of brain glutamate levels in

premenstrual dysphoric disorder. Biol Psychiatry 63: 1178–1184.

75. Zlotnik A, Gruenbaum BF, Mohar B, Kuts R, Gruenbaum SE, et al. (2011) The

effects of estrogen and progesterone on blood glutamate levels: evidence from

changes of blood glutamate levels during the menstrual cycle in women. Biol

Reprod 84: 581–586.

76. Soher BJ, van Zijl PC, Duyn JH, Barker PB (1996) Quantitative proton MR

spectroscopic imaging of the human brain. Magn Reson Med 35: 356–363.

77. Christiansen P, Toft P, Larsson HB, Stubgaard M, Henriksen O (1993) The

concentration of N-acetyl aspartate, creatine+phosphocreatine, and choline in

different parts of the brain in adulthood and senium. Magn Reson Imaging 11:

799–806.

78. Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, et al. (2001) Region

and tissue differences of metabolites in normally aged brain using multislice 1H

magnetic resonance spectroscopic imaging. Magn Reson Med 45: 899–907.

79. Fan G, Wu Z, Pan S, Guo Q (2003) Quantitative study of MR T1 and T2

relaxation times and 1HMRS in gray matter of normal adult brain. Chin

Med J (Engl) 116: 400–404.
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