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Abstract

Genome-wide association studies have identified a wealth of genetic variants involved in complex traits and multifactorial
diseases. There is now considerable interest in testing variants for association with multiple phenotypes (pleiotropy) and for
testing multiple variants for association with a single phenotype (gene-based association tests). Such approaches can
increase statistical power by combining evidence for association over multiple phenotypes or genetic variants respectively.
Canonical Correlation Analysis (CCA) measures the correlation between two sets of multidimensional variables, and thus
offers the potential to combine these two approaches. To apply CCA, we must restrict the number of attributes relative to
the number of samples. Hence we consider modules of genetic variation that can comprise a gene, a pathway or another
biologically relevant grouping, and/or a set of phenotypes. In order to do this, we use an attribute selection strategy based
on a binary genetic algorithm. Applied to a UK-based prospective cohort study of 4286 women (the British Women’s Heart
and Health Study), we find improved statistical power in the detection of previously reported genetic associations, and
identify a number of novel pleiotropic associations between genetic variants and phenotypes. New discoveries include
gene-based association of NSF with triglyceride levels and several genes (ACSM3, ERI2, IL18RAP, IL23RAP and NRG1) with left
ventricular hypertrophy phenotypes. In multiple-phenotype analyses we find association of NRG1 with left ventricular
hypertrophy phenotypes, fibrinogen and urea and pleiotropic relationships of F7 and F10 with Factor VII, Factor IX and
cholesterol levels.
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Introduction

Pleiotropy refers to a phenomenon in which a single locus

affects two or more apparently unrelated phenotypic traits. It is

often identified as a single mutation that affects these two or more

wild-type traits [1]. The study of pleiotropic genes usually involves

the mapping of phenotypic traits to a single mutant locus. When

two or more traits consistently segregate with a particular

mutation, this mutation is then classified as pleiotropic. In the

case of S. cerevisiae (yeast), it has been argued that the pleiotropic

effects of a gene are not usually conferred by multiple molecular

functions of the gene, but by multiple consequences (biological

processes) of a single molecular function [2]. Tyler et al. [3]

defined the concept of vertical and horizontal pleiotropy,

extending the definition of relational and mosaic pleiotropy

proposed by Hadorn and Mittwoch [4]. Vertical or relational

pleiotropy appears when a mutation in one gene produces a

modification of one particular phenotype, which leads to

modification in one or several related phenotypes. By contrast,

horizontal or mosaic pleiotropy appears when one mutation in one

gene with a causal implication in several biological mechanisms,

causes a disruption in these mechanisms. This causes alteration in

very different phenotypes, which are observable at the same

physiological level. Some papers [5] [6] [7] have established a high

level of pleiotropy for certain genes, particularly genes associated

with disease [8].

To discover such associations we could use a range of

multivariate techniques which highlight the dependence of a

single variable on a set of independent variables. Some proposals

are based on combining univariate association measures for

different phenotypes in order to find pleiotropic effects, such as

PRIMe [9] or Yang et al’s approach [10], based in O’Brien’s

method [11]. An approach taken by Li [5], uses Fisher’s combined

p-value approach [12], adjusting Fisher’s combined measure using

a Satterwhite approximation method. Other approaches use a

Bayesian network approach [13] or multiple regression analysis

[14]. However, for the purposes of pleiotropy analysis, we are most

interested in finding dependencies between two multivariate sets of

variables, rather than a relation of one set with one dependent

variable. Various techniques have also been introduced to deal

with such multivariate problems [15]. An example of this multiple

SNP/multiple phenotype analysis is GUESS [16], which is an

implementation of a Bayesian variable selection algorithm for

multiple regression using evolutionary Monte Carlo techniques:
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the algorithm selects relevant SNPs and identifies the contribution

of each SNP to single or multiple traits.

In this paper, we will focus on Canonical Correlation Analysis

(CCA) [17], which uses linear combinations of variables derived

from two sets of data objects and finds those combinations which

are maximally correlated with each other. The variables found in

the first iteration of the method give the first set of canonical
variables. In subsequent iterations we seek variables which

maximize the same correlation function, subject to the constraint

that they are uncorrelated with previous sets of canonical

variables.

CCA has been used as an efficient and powerful approach for

both univariate and multivariate gene-based association tests. For

genomic multivariate data analysis, such an approach would

involve finding linear combinations over very large blocks of

features, typically involving tens of thousands of features.

However, to use CCA, the number of samples should be more

than the number of features. To handle this issue, some solutions

have been proposed for genomic data integration, such as sparse

CCA [18]. With this approach, sparsity is intrinsically achieved by

the algorithm so that the number of features used is less than the

sample size. This method maximizes the correlations between

these selected subsets using a regularization procedure similar to

LASSO. Adaptive SCCA [19] selects fewer features which are

more correlated and Waaijenborg et al. [20], propose a method

called penalized CCA to find associations between gene expression

and copy number variation data. Other variants on CCA which

are applicable include non-linear extensions of CCA, such as

kernel CCA [21,22], Bayesian approaches to CCA [23,24] and

sparse CCA models for handling more than two types of data [25].

CCA for association analysis was proposed initially by Ferreira

and Purcel [26] and subsequently extended [27]. Both these

papers apply CCA to multiple trait/single genotype analysis

(pleiotropy analysis), while the latter also considers the case of

several markers (gene centered pleiotropy analysis) and several

traits, or several markers and one trait (epistasis analysis). Since the

original publication [26], CCA has been used for multiple

association analysis elsewhere, including a single SNP, multiple

phenotype association approach [28] to analyze blood phenotypes

related with metabolic syndrome in mice, and use of a sparse

version of CCA to discover associations between single locus and

multiple neuroimage phenotypes [29]. Further applications of

CCA include a study [26] of pleiotropy in white cell related traits

using a single locus/multiple trait approach, and use of CCA for

single SNP/multiple trait analysis to find different child behavior

profiles [30].

In this paper we propose an alternative approach for using CCA

in which we select feature sets via biological insight, based on

association with a gene, a pathway or another biologically relevant

grouping. As detailed below, to maximize the association between

genetic data and different phenotypes, we combine the CCA

approach proposed by Ferreira and Purcell [26] with an

optimization technique, drawn from integer programming. We

will refer to any discovered significant associations between subsets

of the genetic and phenotype data as putative association rules.

Results

Our results are divided into (a) single gene/single phenotype; (b)

single gene/multiple phenotype (in which the algorithm identifies

the set(s) of phenotypes associated with a single gene); (c) multiple

gene/single phenotype (in which the algorithm identifies the set(s)

of genes associated with a single phenotype); (d) multiple gene/

multiple phenotype (in which the algorithm selects sets of both

genes and phenotypes that correlate).

Single gene/single phenotype analysis
This approach consists of a gene centered association analysis

with each single phenotype using simple CCA without any search

heuristic. It is exactly the same approach used previously by Tang

and Ferreira [27], consisting of a multiple association of all the

SNPs close to a gene (see Methods for more detail) with a

particular phenotype. In order to correct for multiple testing, we

use a Bonferroni correction for 3648 genes and 82 phenotypes,

giving a ‘‘threshold’’ p-value of 1.67610206 corresponding to

p = 0.05 for a single test. We found 62 genes with significant

association (p,1.67610206). Most of the time this association

reflects the most associated SNP in a gene. The most important

associations are presented in the hive plot in Figure 1.

In Table 1 we show some of the associations found and

publications that supports these findings. All such associations can

be found in Table S1, where we compare the association values

between this approach and conventional single SNP association

tests.

Although most genes have more than one associated SNP

reading, we found a non-reported association (p = 4.93610210)

between the single SNP rs11264341, located in the intronic region

of gene TRIM46 (ENTREZ GENE # 80128), and the serum

magnesium phenotype. This SNP is in LD with SNP rs4072037

(r2 = 0.54) in MUC1, which has been previously related with

serum magnesium. Close to this SNP (.8 kb), and not in LD, we

found an association in gene MUC1 (ENTREZ GENE # 4582)

with serum magnesium (p = 1.37610214) which has been previ-

ously reported by Meyer et al. [31].

We found a previously reported association of gene SURF4
(ENTREZ GENE # 6836) and Von Willebrand Factor (vWF), but

also a non-previously-reported association with Factor VIII

(1.57610224) and alkaline phosphatase (ALP) (3.161029). SNPs

in SURF4 are in some LD (r2 = 0.696) with SNP in C9orf96,

which has been related with vWF [32], also with SNPs in

ABO(ENTREZ GENE # 28) (r2 = 0.502) which has been related

with vWF [32] and ALP [33] [34]. We could expect the

association between Factor VIII and vWF, because there is a

high correlation between its serum concentrations (0.70), and vWF

acts as a carrier protein of Factor VIII. However, the correlation

Author Summary

Pleiotropy appears when a variation in one gene affects to
several non-related phenotypes. The study of this phe-
nomenon can be useful in gene function discovery, but
also in the study of the evolution of a gene. In this paper,
we present a methodology, based on Canonical Correla-
tion Analysis, which studies gene-centered multiple
association of the variation of SNPs in one or a set of
genes with one or a set of phenotypes. The resulting
methodology can be applied in gene-centered association
analysis, multiple association analysis or pleiotropic pat-
tern discovery. We apply this methodology with a
genotype dataset and a set of cardiovascular related
phenotypes, and discover new gene association between
gene NRG1 and phenotypes related with left ventricular
hypertrophy, and pleiotropic effects of this gene with
other phenotypes as coagulation factors and urea or
pleiotropic effects between coagulation related genes F7
and F10 with coagulation factors and cholesterol levels.
This methodology could be also used to find multiple
associations in other omics datasets.

CCA for Pleiotropy Discovery
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between ALP and vWF are 0.14. This is a clear example of

vertical pleiotropy, where variants in SURF4 are causal of vWF,

and vWF glycoprotein is the carrier for Factor VIII glycoprotein

in blood. Another important association (p = 2.1861028), which

has not been reported, is between gene NSF (ENTREZ GENE #
4905) and triglycerides. NSF is related with genes KIAA1377
(ENTREZ GENE # 57562) and LUC7L2 (ENTREZ GENE #
51631), through the PPI network, which are also related with the

LPL gene (ENTREZ GENE # 4023). Finally the MYBPHL
gene is associated (p = 3.1961028) with low density lipoprotein

(LDL) cholesterol, which has not been previously reported.

However, SNPs in this gene are in LD with SNPs in CELSR2
(ENTREZ GENE # 1952) (r2 = 0.546), PSRC1 (ENTREZ

GENE # 84722) (r2 = 1) and SORT1 (ENTREZ GENE #
6272) (r2 1) rs12740374, which is associated [35,36,37,38,39] with

LDL cholesterol.

Novel associations of genes with ECG left ventricular
hypertrophy

Left ventricular hypertrophy can be detected through ECG

parameters such as Cornell product [40] or QRS product [40,41].

Using the CCA gene-centered association approach we have

identified a number of genes associated with these two clinical

parameters, which are also positively associated with cardiovascu-

lar diseases such as stroke [42]. We found association between

ACSM3 (ENTREZ GENE # 6296) and Cornell product

(p = 2.3861028). This gene was previously reported to associate

with hypertension in rats [43] and in humans [44] and also with

obesity hypertension in humans [45], but there is some contro-

versy [46]. Other studies relate it with ventricular deformations

such as left ventricular mass index and mean wall thickness [47].

The ERI2 gene was also associated with Cornell product

(p = 7.8761029). This gene overlaps ACSM3 (ERI2 SNPs is a

Figure 1. Hive plot for single gene/single phenotype. The vertical axis represents the association value (higher, more association). The left axis
represents phenotypes and the right axis represents genes. An interactive hive plot is published on the project webpage (http://pleioexp.epi.bris.ac.
uk/cca/1gene1phenhive.html).
doi:10.1371/journal.pcbi.1003876.g001

CCA for Pleiotropy Discovery
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subset of ACSM3). No association with left ventricular hypertro-

phy or hypertension has been reported previously. IL18RAP
(ENTREZ GENE # 8807) was associated with Cornell product

(p-value 1.0761028) and QRS voltage product (p-value

1.72610210). SNPs in this gene have been associated [48] with

echocardiography left ventricular obtained measures. In Grisoni et
al. [49], using different SNPs in the same gene, the authors did not

find any association between IL18RAP and any cardiovascular

diseases (CVD) risks. However, Tiret et al. [50] found a significant

association between IL18 family gene SNPs and mortality. We

found association between IL23R (ENTREZ GENE # 149233)

and Cornell product (3.3610212). This gene has been associated

with left ventricular hypertrophy [51] and idiopathic dilated

cardiomyopathy in Chen et al. [52]. It is interesting to note the

importance of autoimmune related genes (IL18RAP and IL13R) in

left ventricular hypertrophy or idiopathic dilated cardiomyopathy.

Table 1. Single gene/single phenotype association.

Gene Entrez gene# Phenotype P-value Publication

TRIM46 80128 Serum Magnesium 4.63E-010 Not Reported

MUC1 4582 Serum Magnesium 1.37E-014 20700443

UGT1A family 7361, 54577, 54575,
54600, 54579, 54657

Bilirubin 1.29E-112 19419973,21646302

ABO 28 Von Willebrand Factor 9.43E-112 21534939

ABO 28 Factor VIII 2.29E-077 23381943

ABO 28 ALP 4.35E-012 18940312

F7 2155 Factor VII 1.49E-079 17903294

F5 2153 Ratio APC/APTT 2.77E-062 23188048

F10 2159 Factor VII 1.24E-060 17903294

SURF4 6836 Von Willebrand Factor 5.66E-037 21534939

SURF4 6836 Factor VIII 1.57E-024 Not Reported

SURF4 6836 ALP 3.10E-009 Not Reported

F12 2161 APTT 5.77E-035 23188048

PVRL2 5819 LDL cholesterol 2.26E-016 19913121

PVRL2 5819 Total cholesterol 1.12E-008 19913121

CETP 1071 HDL cholesterol 2.55E-017 18193044

APOA5 116519 Triglycerides 2.32E-013 19913121

ZNF259 428256 Triglycerides 8.56E-012 19913121

BUD13 84811 Triglycerides 5.40E-011 19913121

HRG 3273 APTT 2.34E-012 23188048

HRG 3273 APC/APTT 2.56E-012 23188048

HFE 3077 Haemoglobin 9.76E-012 19862010

ESR1 2099 Triglycerides 1.84E-011 16099331

KNG 3827 APTT 1.84E-011 20303064

TFR2 7036 Haemoglobin 1.04E-009 19862010

SLC19A2 10560 APC/APTT 2.21E-009 23188048

APOC4 346 LDL cholesterol 8.17E-009 23119086

NSF 4905 Triglycerides 2.18E-008 Not Reported

ACSS2 55902 Factor VII 2.18E-008 20231535

EPO 2056 Haemoglobin 2.31E-008 19862010

MYBPHL 343263 LDL cholesterol 3.19E-008 Not Reported

ACSM3 6296 Cornell product 2.38E-008 Not Reported

ERI2 112479 Cornell product 7.87E-009 Not Reported

IL18RAP 8807 Cornell product 1.07E-008 Not Reported

IL18RAP 8807 QRS vol. product 1.72E-010 Not Reported

IL23R 149233 Cornell product 3.30E-012 23108651

NRG1 3084 Cornell product 2.71E-014 Not Reported

NRG1 3084 QRS vol. product 2.97E-011 Not Reported

This table shows single phenotype/single genotype association gene-centered association value. The first column represents genes, the second column phenotypes,
the third column represents the CCA association value and the fourth column is the Pubmed ID if the association has been previously reported.
doi:10.1371/journal.pcbi.1003876.t001

CCA for Pleiotropy Discovery
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A relation between autoimmune response and idiopathic dilated

cardiomyopathy has been suggested in San Martin et al. [53]

and Lappe et al. [54].

Finally, gene NRG1 (ENTREZ GENE # 3084) presents an

association with phenotypes Cornell product (2.71610214) and

QRS voltage product (2.97610211). This gene has been associated

to cardiovascular development in mouse [55], through the

NRG1/ErbB signaling pathway [56,57], that is involved in

angiogenesis, blood pressure and skeletal muscle response to

exercise. In humans, serum NRG-beta has been found elevated in

patients with severe systolic heart failure [58]. In McBride et al.
[59], no association was found between SNPs in NRG1 and a

group of congenital heart malformations (left ventricular outflow

tract, defects of aortic valve stenosis, coarctation of the aorta and

hypoplastic left syndrome). One of the drawbacks of CCA analysis,

which could affect our understanding of the role of NRG1, is that

this method lacks power when a gene is larger than 100 Kb [27],

and NRG1 has a length of 1.1 Mb.

Single gene/multiple phenotype analysis
In order to analyze the association of all the SNPs in one gene

and multiple phenotypes, we use CCA and a genetic algorithm as

an optimization method, to select the most important phenotypes,

as described in the Methods section.

In Table 2 we show some of the most important pleiotropic

genotype/multiple phenotype associations, including the p-value

of CCA association and the phenotypes with which they are

associated. We also show Fisher’s combined association value and,

in parentheses, the association value of the genes and the single

phenotype. In Table S2 we show all the results for associations

between one gene/multiple phenotypes. In order to correct for

multiple associations, we use a Bonferroni correction for 3648

genes and combinations of 82 phenotypes in subsets of 24 to 2

groups. We chose 24 because it is the maximum number of

different phenotypes in one association rule (an association rule is a

combination of a number of phenotypes associated with a number

of genes) selected by the genetic algorithm (see the multiple test

association correction paragraph in Methods). This combination

gives 5.3661020 different phenotypic rules, giving a threshold p-

value of 2.55610225 equivalent to p = 0.05 for a single test. In

Figure 2, we use a heatmap plot to represent the most important

(higher association) pleiotropic relations between phenotypes and

genotypes. Also, we use a hive plot (interactive plot available

online) in Figure 3. In this diagram, vertical axis represents

the association between the phenotype (left axis) and genotype

(right axis). Association rules are ordered in the diagram following

the association value (the higher association, the higher in the

plot).

Gene ABO which has an indicated association (p-value

2.476102147) with coagulation (tissue plasminogen activation,

Factor VIII and Von Willebrand factor levels), but also with serum

levels of ALP (previously reported in Yuan et al. [34] and

Table 2. Single gene/multiple phenotype association.

Gene Entrez gene# CCA p-value Fisher p-value Phenotypes

ABO 28 3.47E-147 1.53E-194 Creatinine (0.2771) ALP (4.35e-12) FVIII (2.288e-77) Tissue plasminogen activator
(0.002849) Von Willebrand Factor (9.43e-112)

F7 2155 4.42E-114 7.27E-078 Cholesterol (0.9719) HDL cholesterol (0.1073) FVII (1.486e-79) FIX (0.5965)

F10 2159 3.58E-079 1.61E-059 Cholesterol (0.8131) FVII (1.24e-60) FIX (0.8744)

SURF4 6836 2.02E-056 1.98E-066 Mean cell volume (0.01924) ALP (3.104e-09) GGT (0.7735) E vitamin_t1 (t1) (0.1303) E
vitamin_t2 (0.03584) FVIII (1.573e-24) D-dimer (0.4159) Tissue plasminogen activator
(0.1705) Von Willebrand Factor (5.655e-37) MMP9 (0.006049) BMI (0.1158) PR
interval (0.04652) Cornell index (0.001895)

NRG1 3084 1.03E-028 4.73E-019 Urea (0.005643) beta-carotene (0.001871) fibrinogen (0.007379) QRS duration
(0.0008578) Cornell index (0.651) Cornell product (2.709e-14)

HRG 3273 8.02E-024 1.03E-022 Haematocrit (0.05769) Total protein (0.007418) FIX (0.3289) APTT (2.342e-12) Ratio
APC/APTT (2.555e-12)

IL18 RAP 8807 5.07E-021 1.52E-017 White blood count (0.1395) Haematocrit (0.04132) Neutrophils (0.4115)
Lymphocytes (0.831) ALT (0.0287) Glucose (0.06899) FIX (0.03512) Cornell index
(0.4867) Cornell product (1.072e-08) Sokolowlyn index (0.2884) QRS voltage product
(1.723e-10)

CETP 1071 3.65E-020 5.94E-020 HBA1C (0.01231) HDL cholesterol (2.552e-17) Glucose (0.06243) FVII (0.0178) Von
Willebrand Factor (0.003123) CD40 (0.01286)

ALOX5AP 241 3.49E-018 7.28E-011 White blood count (0.2124) Mean cell volume (0.004036) Neutrophils (0.007984)
Urate (0.02255) Phosphate (0.07024) Total protein (0.002632) C Vitamin (0.06383)
Tissue plasminogen activator (0.06189) CD40 (0.02214) BMI (0.03787) Height
(0.002794) QTC interval (0.08854) Cornell index (0.1151) QRS voltage sum (0.2935)
QRS voltage prod (0.08101)

IL23R 149233 2.19E-018 1.09E-012 Adiponectin (0.04484) IL18 (0.01227) QRS duration (0.1137) Cornell index (0.2268)
Cornell product (3.299e-12)

GPR98 84059 3.37E-008 1.31E-006 White blood count (0.005413) Mean platelet volume (0.1353) Lymphocytes (0.2363)
Potassium (0.08101) Sodium (0.05957) Total protein (0.02314) E vitamin (0.03851)
Insulin (0.05201) Adiponectin (0.1668) TNFA (0.2093) homa-score (0.2542) CVD
(0.02455)

This table shows single gene/multiple phenotype association. The first column represents the gene, the second column represents the CCA association value, the third
column is the Fisher’s combined association value and the fourth column the phenotypes associated. In parentheses is the single phenotype association value of each
phenotype.
doi:10.1371/journal.pcbi.1003876.t002

CCA for Pleiotropy Discovery
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creatinine. Gene SURF4 (ENTREZ GENE # 6836), which has

been previously associated with Von Willebrand Factor, Factor

VIII and ALP, is also associated with ECG measures, MMP-9

(inflammatory marker) and mean cell volume (average red blood

cell volume) among others. Gene HRG presents a weak association

(p-value 1.88610224, corrected threshold 2.55610225) with some

factors related with coagulation, such as activated partial

thromboplastin time (APTT), ratio activated protein C (APC)/

APTT, volume, total protein and Factor IX. Finally gene CETP
(ENTREZ GENE # 1071) shows weak association (p-value

3.65610220) with cholesterol as expected, but also with coagula-

tion factors (Von Willebrand Factor, Factor VII and sCD40

ligand).

Gene F10 (ENTREZ GENE # 2159), presents association with

coagulation factors (Factor VII and Factor IX), but also with

cholesterol, similar to gene F7, which also presents association

with diastolic blood pressure. For the gene NRG1, we found

association with ECG measures of ventricular hypertrophy, but

also with urea and fibrinogen. Gene IL18RAP is weakly

associated (p-value 5.07610221) with white cell counts (white

cells, neutrophils, lymphocytes), with alanine transaminase (ALT)

and glucose, but also with ECG measures of ventricular

hypertrophy. Gene IL23R is weakly associated (p- value

2.19610218) with levels of interleukin 18 but also with adiponectin

and ECG measures of ventricular hypertrophy). Gene ALOX5AP
(ENTREZ GENE # 241) has been related with myocardial

Figure 2. Heatmap single gene/multiple phenotype. This figure shows the 22 most important association rules as columns in a heatmap. Note
that only one member of the UGT1A family is listed and rules for the same gene are summarized in the same column.
doi:10.1371/journal.pcbi.1003876.g002

CCA for Pleiotropy Discovery
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infarction and stroke [60], and also with inflammatory activity and

atherosclerosis [61]. In our results it presents some association with

some phenotypes related with immune response (white blood

count, neutrophils, CD40 or total protein) but also with some

markers of ECG related with hypertension. And gene GPR98
(ENTREZ GENE # 84059) is related in our analysis with immune

response phenotypes and insulin related phenotypes (insulin,

HOMA score) and in some cases with an association with CVD.

No relation between this gene and these phenotypes has been

reported, but some association was reported with carotid diseases

and body weight [62,63].

Multiple gene/single phenotype analysis
In this case, instead of selecting the most associated phenotypes

for each gene, the GA selects the most associated genes for each

phenotype. This operation is more computationally expensive

than the previous one, because of the high number of genes (3648)

involved. In order to correct for multiple testing, we use a

Bonferroni correction for 82 phenotypes and a combination of

3648 genes in subsets of 29, 28, 27…1 groups. We choose 29

because this is the maximum number of different genes in one

rule. This combination gives 2.0361072 different genotypic rules,

giving a threshold p-value of 2.99610275 equivalent to p = 0.05

Figure 3. Hive plot single gene/multiple phenotype. This figure shows a hive plot for gene/phenotype association rules. The vertical axis
represents the association rules (higher, more association). The left axis represents phenotypes and the right axis represents genes. An interactive
hive plot is published on the project webpage (http://pleioexp.epi.bris.ac.uk/cca/geneNphenHive.html).
doi:10.1371/journal.pcbi.1003876.g003

CCA for Pleiotropy Discovery
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for a single test. Ferreira [27] comments there may be a lack of

power related with gene size for CCA for the case of multiple gene

analysis. However, we consider that this analysis could contribute

if the involved genes are small. Some of the most interesting rules

are shown in Table 3. Other significant and non-significant

enrichment analyses of the genes in the rules are listed in

supplementary Table S3 and S4.

The Von Willebrand factor association (p-value 1.696102117–

2.496102119) is led by individual association with gene ABO (p-

value 9.436102112), and two of three significant pathways present

more CCA association that Fisher multiple association.

The bilirubin association (p-value 6.766102115–3.796102118) is

most influenced by genes in the UGT1 family, and all pathways

present more CCA association than Fisher multiple association.

The FVII association is led by genes F7 and EDEM2 (ENTREZ

GENE # 55741) or PROCR (ENTREZ GENE # 10544). Finally

FVIII association is led by ABO gene.

Regarding the enrichment analysis (Table S4), some interesting

enrichments has been found, such as Factor VII and Human

Phenotype Pathway ‘‘Abnormality of the coagulation cascade’’,

KEGG pathway ‘‘Complement and coagulation cascades’’ and

Reactome pathway ‘‘Formation of Fibrin Clot (Clotting Cas-

cade)’’, or Factor VIII and KEGG pathways ‘‘ECM-receptor

interaction’’ (pathway related with hemophilia, directly related

with factor VIII). From non significant rules, APTT related

genes are annotated with GO Terms ‘‘negative regulation of

blood coagulation’’, ‘‘blood coagulation fibrin clot formation’’,

‘‘blood coagulation intrinsic pathway’’ and Reactome pathway

‘‘formation of fibrin clot’’. Finally, LDL cholesterol is annotated

with LDL gene related annotations

Multiple gene/multiple phenotype analysis
Finally, we use a CCA - two population genetic algorithm

approach for multiple gene/multiple phenotype rule extraction. As

a result, a set of 56 rules that relate the most associated set of genes

with phenotypes was obtained. Following our previous multiple

association corrections, the maximum number of genes in the

obtained rules is 22 and the maximum size of the phenotypes is 9,

so there is a possible population of 1.9461057 gene rules and

3.361011 phenotypes, that determine a threshold p-value of

7.71610270 (equivalent to p = 0.05 for a single test).

Table 4 shows some of these association rules, and a complete

list of 56 rules can be found in Table S5. An enrichment analysis

can also be found in Table S6.

The bigger association obtained rule, genes F7, ABO,

MRPS28, UGT1A3 and SURF4 with phenotypes bilirubin FVII

and vWF, presents an association probability under 2.226102308,

which was below our machine precision and therefore recorded as

zero. We have identified some patterns in the multiple genes/

multiple phenotype pleiotropic rules. ABO and SURF4 has similar

relations with ALP, FVIII and vWF, F7 and F5 with FVII, F5 and

HRG with APTT and ratio APC/APTT, F12 with APTT and

NRG with Cornell product and QRS voltage product. Most of the

rules obtained here are combinations of these.

The enrichments analysis of multiple phenotypes reveals

interesting results, such as a rule formed by phenotypes bilirubin,

alp, APTT, ratio APC/APTT and Von Willebrand Factor which

were enriched for HP pathways ‘‘Prolonged partial thromboplas-

tin time’’ and ‘‘Prolonged whole-blood clotting time’’, KEGG

pathway ‘‘Complement and coagulation cascades’’ and Reactome

pathway ‘‘Formation of Fibrin Clot (Clotting Cascade)’’. This rule

is not a clear example of pleiotropy, because all genes and

phenotypes are related with clotting, but it is clear that the

inclusion of all genes and phenotypes in the same rules increases

the association. Rules including phenotypes QRS duration,

Cornell Index and Cornell Product, are annotated with

hypertension GO terms and linked with genes that support these

annotations. Also rules including phenotypes related with left

ventricular hypertrophy are enriched with the GO term ‘‘epithe-

lium development’’ and linked with genes related with cardiovas-

cular development.

Discussion

In the case of single gene/single phenotype analysis, we are not

looking for pleiotropic effects, but for a combined gene-based

association effect, and some interesting results were found. The

complete list of gene-based significant and previously reported

associations can be found in Table 1. One of the drawbacks of

CCA analysis, which could affect our understanding of the role of

NRG1, is that this method lacks power when a gene is larger than

100 Kb [27], and NRG1 has a length of 1.1 Mb.

In the case of single gene and multiple phenotype association,

our results show that the p-values (both CCA and Fisher) increase

when more related phenotypes are included in the phenotype set.

As expected, most of these phenotypes are correlated/associated.

However, not all phenotypic sets are correlated. An example can

be observed in gene F7 (ENTREZ GENE # 2155), which is

associated with phenotypes total cholesterol, Factor VII and

Factor IX. Correlation exists between total cholesterol and Factor

VII (0.28), Factor VII and Factor IX (0.39), but not between

cholesterol and Factor IX (0.09). In some cases, Fisher’s combined

p-value approach shows equal or bigger association than CCA,

which could mean that CCA association shows the cumulative

Table 3. Multiple gene/single phenotype association table.

Phenotype CCA p-value Fisher p-value Genes

Von Willebrand Factor 2.48E-119 3.12E-115 RTN4RL1 (0.08536) ABO (9.43e-112) HOXA7 (0.001082) MED1 (0.001762) RPS6KA2 (0.001278)
PDIA2 (0.004177) TCEA3 (0.03156) PPP1R1B (0.0007463)

Bilirubin total 3.79E-118 7.80E-113 SGSM1 (0.00048) EIF2C1 (0.06558) IFNG (0.1578) ODF3B (0.0004058) UGT1A8 (1.293e-112) TSC1
(0.04822) LRBA (0.1041)

Factor VII 8.49E-087 3.09E-083 EMILIN1 (0.0762) F7 (1.486e-79) SERPINC1 (0.0126) EDEM2 (3.111e-07) PRTFDC1 (0.01879)

Factor VIII 7.01E-082 1.28E-077 CEBPB (0.01432) CSMD2 (0.0168) ABO (2.288e-77) RELN (0.06236) TNR (0.02139) C11orf9
(0.002082) NSMAF (0.09858) TRIM55 (0.02656) TXNL1 (0.0164)

This table shows multiple gene/single phenotype association values. The first column is the phenotype, the second column is the CCA association value, the third
column is Fisher’s combined association value and the fourth column are the genes associated. In parentheses the single gene/single phenotype association value is
given for each gene.
doi:10.1371/journal.pcbi.1003876.t003
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effects of individual associations. In contrast, when Fisher’s

multiple association p-value is smaller than CCA association, this

could suggest that CCA association analysis has found pleiotropic

effect between a gene and these phenotypes. Some examples of the

first group are association of gene ABO with coagulation

phenotypes. In contrast, examples of pleiotropic effects appear in

genes F10 (ENTREZ GENE # 2159) or F7, which presents an

association with coagulation factors (Factor VII and Factor IX),

but also with cholesterol.

In the case of multiple gene/single phenotype, using this robust

association threshold, we have identified a set of pathways that are

associated significantly with phenotypes Von Willebrand factor,

bilirubin, FVII and FVIII. The whole list of pathways is listed in

Table S3. It’s interesting to see that there is no significant

difference between the CCA and Fisher’s association, in contrast

with the differences shown in the previous Section, which supports

the fact that CCA could detect pleiotropy patterns.

In conclusion, in this paper we have applied a canonical

correlation analysis approach for association in multivariate

datasets, finding correlations between gene-centered genetic

variants and phenotypes. This multivariate approach allows us

to mine pleiotropic relations between one or a set of genes and a

set of phenotypes. In term of single gene/single phenotype

association, we have found non-reported associations of gene NSF

and triglycerides and genes ACSM3. ERI2, IL18RAP, IL23RAP
and NRG1 with phenotypes related with left ventricular hyper-

trophy. We use a genetic algorithm as feature selection algorithm

in order to find pleiotropy patterns in phenotypes. Using this

approach we found pleiotropy patterns in genes F7 and F10
with phenotypes Factor VII, Factor IX and cholesterol; NRG1,

with left ventricular hypertrophy related phenotypes, but also with

fibrinogen and urea or IL18RAP or IL23RAP, related with

immune response related phenotypes, but also with ECG

measures.

Despite the possible drawbacks of CCA, related to power when

the length of a gene is greater than 100 Kb, or increases of type I

error when features are not normally distributed, we found that

CCA can be used as a powerful tool to find gene-centered

association, multivariate association and pleiotropic patterns. Also,

this tool can be extended to find non-linear canonical correlation

relations using kernel based approaches such as KCCA. Future

research directions include improving the search method, using

other meta-heuristics such as Tabu Search, Simulated Annealing

or Particle Swarm Optimization, or sparse regularization methods.

Materials and Methods

The study population
The British Women’s Heart and Health Study (BWHHS) is a

UK-based prospective cohort study of 4286 healthy women aged

60–79 years at baseline (1999–2001). Participants were selected at

random from general practice registers in 23 UK towns [64]. A

range of baseline data sources (blood samples, anthropometry,

health/medical history, echocardiography measures, etc.) was

collected between 1999 and 2001, and DNA extracted from 3884

participants. Although the cohort has been followed-up in

subsequent phases, all data presented here is based on the

recruitment (baseline) phase.

Ethics statement
Multi-centre (London Multi-centre Regional Ethics Committee)

and local research ethics committees provided approval for the

BWHHS study and informed consent was obtained from the

women to complete the data used in this study.

Genotyping
Genotyping was performed using the Illumina HumanCVD

BeadArray (Illumina Inc, San Diego, USA), which comprises

nearly 48,742 SNPs in over 2,100 genes selected on the basis of

cardiovascular candidacy by an international consortium of

experts [65]. Genotypes were called using a Illumina BeadStudio

(v3) Genotyping Module. Samples with a genotype call rate ,

90%, Hardy Weinberg disequilibrium ,1027 and minor allele

frequency ,1% were excluded from the analysis, following insight

from previous work on this array and patient cohort [66]. Non-

European samples were also excluded from analysis. Principal

components analysis identified no evidence of population strati-

fication (consistent with self-reported ancestry).

Phenotyping
The different phenotypes used in this study consisted of 11

directed and derived electrocardiogram (ECG) measures, obtained

as described in Gaunt et al. [67], 64 blood measures, 2 blood

pressure readings, 3 anthropometric measures, HOMA score

(derived from glucose and insulin values) and an indicator of

whether a patient has suffered cardiovascular disease. These data

were measured as described in Lawlor et al. [64].

Data preprocessing
All data were analyzed using R (The R project for statistical

computing, http://www.r-project.org/). Due to the high number of

missing values present in the phenotypic data (7575 of 312984

values, median of 55 (1.42%) missing values per phenotype, max

509 (13.17%) and min 19 (0.49%)), we followed a strategy of

phenotypic data imputation based on a k-nearest neighbor

approach, implemented in the R package ‘‘Imputation’’ [68]

(http://cran.r-project.org/web/packages/imputation/index.html),

with a k of 5. In order to test how these imputed values affected the

association profile, we compared the single association values of

imputed data versus data with missing values removed. The results

Table 4. Multiple gene/multiple phenotype association table.

Genes CCA p-value Phenotypes

F7, ABO, MRPS28, UGT1A3, SURF4 ,2.22E-308 Bilirubin, Factor VII, Von Willebrand Factor

F5, ABO, MYO1B, PAX5, TRIM46 1.35E-168 ALP, Ratio APC/APTT, Von Willebrand Factor

F5, UGT1A3 6.68E-153 Bilirubin, Ratio APC/APTT

F7, EDEM2 1.56E-123 Cholesterol, factor VII, factor IX, diastolic blood pressure

This table shows multiple gene/multiple phenotypes association rules. The first column are the multiple genes, the second column the CCA association value and the
third column the multiple phenotypes.
doi:10.1371/journal.pcbi.1003876.t004
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show that the associations are the same or lower in the imputed

values, so imputation does not create false associations. All

phenotypic data was normalized to mean zero and standard

deviation one.

All the approaches for analysis in this work were based on a

‘‘gene-centered’’ perspective. Genotype data, both intronic and

exonic, was assigned to the genomically closest gene using the

function ‘‘ClosestBED’’ from the suite ‘‘BEDTools’’ [69] (http://

bedtools.readthedocs.org/en/latest/). In order to avoid multi-

collinearity in genotype data, we applied two-stage linkage

disequilibrium (LD) pruning as described in Tang and Ferreira

[27]. We removed SNPs with a high LD (r2.0.64) with other

markers and also a high correlation between linear combinations

of SNPs using Variance Inflation Factor (VIF) [70] in order to

exclude SNPs with a VIF.2 with other markers. In order to select

the most appropriate value for r2, we developed several

experiments to test the CCA single gene/single phenotype

association using a range of r2 (0.5–0.99), and best results was

obtained pruning SNPs with r2.0.64. The value of VIF.2 was

selected based in the recommendation of the original CCA paper

[27].

The study design
As mentioned above, unlike other approaches to pleiotropy

analysis, in this study we used a gene-centered approach. This

perspective allowed us to capture all the pleiotropic effects in one

gene, instead of the pleiotropic effects caused by just one variation.

But we are also interested in studying the pleiotropic effects of a set

of genes in several phenotypes. In order to do this, we divided the

study into four stages. Firstly, we studied the individual association

between each gene (which may consist of one or more SNPs) and a

single phenotype to establish a gene-centered association baseline.

This approach did not reveal any pleiotropy, of course, but it is

worth pursuing for two reasons. Firstly, it was interesting to find if

inclusion of several SNPs increases the association value over a

single SNP approach. Secondly, we got a baseline gene association

value that we used as a comparator for the CCA association

analyses in our subsequent analysis.

For our second stage we studied the association between one

single gene and a set of phenotypes. The aim of this analysis was

to reveal possible gene-based pleiotropic effects. Our next stage

was to study association effects between multiple genes and a

single phenotype (gene-based epistasis analysis). The aim of this

analysis was to discover pathway based baseline association

between a set of genes and a single phenotype. Finally, our last

stage consisted in studying the association between a set of

multiple genes and different phenotypes. Here we expected to

find the pleiotropic effects of a set of genes in multiple

phenotypes, with increased statistical significance for the indicat-

ed association rules.

Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) allows us to find linear

combinations of two sets of variables with the highest correlations.

The aim of this work was to find correlation between a set of

genotype data and a set of phenotype data. The CCA algorithm

was based on a method proposed by Tang and Ferreira [27]. In

order to test the significance of all canonical correlations, Wilk’s

Lambda and Rao’s F approximation were calculated. Let q be the

number of SNPs in the genotype, p the number of phenotypes

evaluated, n the number of samples and cj the number of

canonical components calculated. Wilk’s Lambda is calculated as

follow:
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The methods for CCA analysis analyzed in the previous Section

could be computationally expensive with a large number of

features and samples. In order to use standard CCA we can also

divide the feature set into small subsets using biological insight (eg

the set of SNPs in the region of a specific gene). In this paper we

will simply use feature sets in which the SNPs are linked to a single

gene, defining the link to a gene by genomic proximity. In this

case, feature selection is not necessary because the number of

samples is larger than the number of features.

To find those sets which have a high correlation, according to

CCA, we need to use an optimization method, with the association

value as the fitness function for this optimization procedure. We

have formulated this optimization step as an integer programming

problem which can therefore be addressed using a metaheuristic

procedure to find an approximately good solution in a computa-

tionally tractable time. We have decided not to use methods such

as hill climbing or similar local methods, because they are prone to

capture by local minima. In this particular problem, any big single

association could be assumed to be a local minimum and a hill

climbing approach could not exit easily. Instead of this, we have

decided to use global methods, such as Tabu Search [71], Particle

Swarm Optimization [72] or Genetic Algorithm (GA) used here,

as a well known and well used approach to this type of problem

and with an effective means for evading local minima. A GA is a

metaheuristic, initially proposed by Holland [73] and Goldberg

[74]. This procedure is based on the principles of evolution and

natural selection, with steps analogous to inheritance, mutation

and crossover. It is initialized with a set of solutions, each

representing one possible solution to the problem. The perfor-

mance of each proposed solution is estimated using the fitness

function, which measures how well an individual solution is

adapted to the proposed problem. The method then iteratively

evolves a high-fitness solution. The ‘‘genalg’’ R package (http://

cran.r-project.org/web/packages/genalg/index.html) was used as

a binary implementation of a GA. However, because of the

requisites of the multiple gene/multiple phenotype analysis, this

code was modified in order to include two population searches

(Modified source of genealg package is available in http://github.

com/jseoane/gaCCA). One of those populations represents

different solutions for gene selection, and the other represents
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different solutions for phenotype selection. The search strategy is

applied in parallel over the two populations and the fitness function is

evaluated simultaneously over the selected set of genes and selected

set of phenotypes, when calculating their CCA association value.

The encoding of the genetic algorithm is a binary encoding,

widely used in feature selection approaches, where if the feature is

set to 1, it is included in the analysis and is not included otherwise.

The fitness function in the three versions is defined by the CCA

association value. Regarding the parameterization, the population

size is 100 for single gene/multiple phenotype, 600 for multiple

gene/single phenotype and 1000 for multiple gene/multiple

phenotype. The mutation depends on the size of the GA

chromosome (1/82 in the case of multiple phenotype, 1/3248 for

multiple gene). The elitism (how many samples of the population are

conserved between generations) is 20/35/100, respectively for each

of the versions. Finally, the ‘‘zero to one ratio’’, which controls the

number of features in the chromosome is set to 50 in the case of

multiple phenotype and 700 in the case of multiple gene.

In order to avoid multiple testing associations which arise by

chance, we applied a Bonferroni correction. In this case, the

Bonferroni correction should be applied to both sides of the

association. In this case the association is calculated over p
phenotypes and g genes, so a 0.05 of confidence should need 0.05/

(p*g). But when a GA is used, millions of associations are

considered, so we approximate the Bonferroni correction over the

search space of the algorithm (i.e. if we expect rules of p9

phenotypes and g9 genes, the search space over genes are

combinations of g different genes over g9, g9-1, g9-2,..,2, and the

search space over phenotypes are combinations of p different

phenotypes over p9, p9-1, p9-2,..,2). The highly conservative final

association threshold proposed is 0.05/(length of search space in

genes * length of search space in phenotypes), though we ranked

and considered all results by p-value in our analysis. In order to

compare the CCA combined association measure with other

measures, we have chosen a statistical measure based on Fisher’s

combined p-value approach proposed in Li et al. [5].

Enrichment analysis
During phase two and phase four of the analysis, a set of genes

related with one or several phenotypes is obtained. In order to

functionally annotate these sets of genes, we perform an enrichment

analysis, detecting GO ontology terms, KEGG, Reactome or

Phenotype annotations that are significantly present in our

pathways. We use the enrichment analysis tool g:Profiler [75]

(http://biit.cs.ut.ee/gprofiler/), through R package ‘‘gProfiler’’

(http://cran.r-project.org/web/packages/gProfileR/index.html).

In order to calculate the p-values for each enrichment, the method

first simulate 10 millions of queries (sets of genes) randomly to see

how was the p-values distribution according the query size. Then

analytically derived the p-value threshold for each query size (for

more details consult g:SCS threshold section in the Reimand paper).

Precision
Because some association values were close to zero, note that all

calculations were performed in a 64-bit Linux R environment

where the lowest positive value is 2.226102308, which means that

values below this threshold were treated as zero.

Supporting Information

Table S1 Single gene/single phenotype CCA association values.

This table shows the p-values and the minus log 10 association

values for single gene/single phenotype CCA analysis.

(DOC)

Table S2 Single gene/multiple phenotype CCA association

rules. This table shows the association values in CCA single gene/

multiple phenotype analysis. The second column shows the CCA

association value, the third column represents the Fisher’s

combined association value and the fourth column shows the

phenotypes associated. In parentheses is the single phenotype

association value for each phenotype.

(XLSX)

Table S3 Multiple genes/single phenotype CCA association

rules. This table shows the association values in CCA multiple

gene/single phenotype analysis. The first column shows the

phenotypes, the second column shows the CCA association value,

the third column represents the Fisher’s combined association

value and the fourth columns shows the genes associated. In

parentheses is the single gene/single phenotype association value

for each gene.

(XLSX)

Table S4 Enrichment analysis multiple gene/single phenotype.

This table shows the results of enrichment analysis performed with

g:Profiler for each rule obtained in multiple gene/single phenotype

analysis. The first column shows the enrichment p-value, the

second column shows the term id following the gProfiler

terminology. Term starting with GO refers to Gene Ontology,

terms starting with BIOGRID refers to Biogrid interaction data,

terms starting with TF refers to a Transcriptor Factor from

TRANSFAC database, terms starting with KEGG refers to a

KEGG database pathway, terms starting with MI refers to a

microRNA targets sites from MicroCosm database, terms starting

with CORUM refers to CORUM database protein complexes,

terms starting with REAC refers to a Reactome database pathway

and finally terms starting with HP refers to terms in Human

Phenotype Ontology (HPO). The third column is the name of

pathway/GO term, etc. The fourth column represents the genes

present in the enrichment. The fifth column shows the phenotype

and the last column represent the CCA association p-value.

(XLSX)

Table S5 Multiple genes/multiple phenotype CCA association

rules. This table shows the association values in CCA multiple

gene/multiple phenotype analysis. The first column shows the

phenotypes, the second column represents the CCA association

value and the thirst column shows the genes associated.

(DOC)

Table S6 Enrichment analysis multiple gene/multiple pheno-

type. This table shows the results of enrichment analysis performed

with g:Profiler for each rule obtained in multiple gene/multiple

phenotype analysis. The first column shows the enrichment p-

value, the second column shows the term id following the g:Profiler

terminology. Term starting with GO refers to Gene Ontology,

terms starting with BIOGRID refers to Biogrid interaction data,

terms starting with TF refers to a Transcriptor Factor from

TRANSFAC database, terms starting with KEGG refers to a

KEGG database pathway, terms starting with MI refers to a

microRNA targets sites from MicroCosm database, terms starting

with CORUM refers to CORUM database protein complexes,

terms starting with REAC refers to a Reactome database

pathway and finally terms starting with HP refers to terms in

Human Phenotype Ontology (HPO). The third column is the

name of pathway/GO term, etc. The fourth column represents

the genes present in the enrichment. The fifth column shows the

phenotypes and the last column represent the CCA association p-

value.

(XLSX)
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Table S7 Glossary of phenotypes. Complete name of the

phenotype.

(DOC)
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