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Abstract

Cutaneous ulcers are common in yaws- endemic areas. Although often attributed to 'Treponema pallidum subsp. pertenue' 
and Haemophilus ducreyi, quantitative PCR has highlighted a significant proportion of these ulcers are negative for both 
pathogens and are considered idiopathic. This is a retrospective analysis utilising existing 16S rRNA sequencing data from 
two independent yaws studies that took place in Ghana and the Solomon Islands. We characterized bacterial diversity in 
38 samples to identify potential causative agents for idiopathic cutaneous ulcers. We identified a diverse bacterial profile, 
including Arcanobacterium haemolyticum, Campylobacter concisus, Corynebacterium diphtheriae, Staphylococcus spp. and 
Streptococcus pyogenes, consistent with findings from previous cutaneous ulcer microbiome studies. No single bacterial 
species was universally present across all samples. The most prevalent bacterium, Campylobacter ureolyticus, appeared 
in 42% of samples, suggesting a multifactorial aetiology for cutaneous ulcers in yaws- endemic areas. This study empha-
sizes the need for a nuanced understanding of potential causative agents. The findings prompt further exploration into the 
intricate microbial interactions contributing to idiopathic yaw- like ulcers, guiding future research toward comprehensive 
diagnostic and therapeutic strategies.

Impact Statement

This study on the microbiome of cutaneous ulcer disease (CUD) significantly advances our understanding of the diverse 
microbial composition associated with CUD lesions in Ghana and the Solomon Islands. To our knowledge, to date there 
have only been two published studies investigating the causes of idiopathic cutaneous ulcers, both using samples collected 
in Papua New Guinea. Here, we have used a 16S ribosomal subunit sequencing to determine which bacterial species are 
present in each sample. The identification of potential causative agents such as Staphylococcus spp., Streptococcus spp., 
Streptococcus pyogenes, Arcanobacterium haemolyticum and Corynebacterium diphtheriae provides crucial insights for accu-
rate diagnosis and targeted antimicrobial therapy. This study impacts clinical practice, as it underscores the need for refined 
tools to prevent misdiagnosis. Effective treatment will prevent the emergence antimicrobial resistance by limiting the use of 
inappropriate antibiotics.
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DATA SUMMARY
The 16S rRNA sequencing data used in this study are available at the European Nucleotide Archive under study accession number 
PRJEB11547; the accession numbers for the individual samples used in this study are provided in the Table S1, available with the 
online version of this article. The code used to analyse this data is described within Methods.

INTRODUCTION
Tropical cutaneous ulcer disease (CUD) is an umbrella term to describe the presentation of exudative lesions common in the 
tropics [1]. Globally, yaws, caused by Treponema pallidum subsp. pertenue was until recently believed to be the major cause of 
CUD. However, the use of molecular diagnostics demonstrates up to 50 % of CUD cases are caused by Haemophilus ducreyi 
[2, 3], with only 20–30 % caused by T. pallidum subsp. pertenue. One third of CUD lesions are not caused by either of these two 
agents and are considered idiopathic [2–4]. To date, there has been limited research on the causes of these idiopathic ulcers. Two 
studies have investigated potential aetiological agents; both focused on samples collected from individuals in Papua New Guinea 
[5, 6]. The first study used metagenomic sequencing and the second used bacterial 16S rRNA sequencing techniques (hereafter 
16S). Neither study found a dominant alternative CUD cause; however, the 16S microbiome study concluded that Streptococcus 
pyogenes was likely to have a causal role in CUD as it was the most abundant organism detected and appeared to be enriched in 
idiopathic ulcers. As yet, there have been no reports published investigating the potential causes of CUD in other yaws- endemic 
countries. An improved understanding of the microbiome of cutaneous ulcers in other settings could help identify causes of 
CUD and ultimately improve targeting of CUD antimicrobial therapy.

METHODS
This study used samples previously collected in 2014 and 2013 from studies in Ghana [7] and the Solomon Islands [2, 8], 
respectively. In both studies, key demographic data, such as age and gender, were recorded, as well as clinical information about 
the lesion, such as lesion location and duration. Alongside this, rapid plasma reagin (RPA) assays, T. pallidum haemagglutination 
assays (TPHAs) and quantitative PCRs (qPCRs) for T. pallidum subsp. pertenue and H. ducreyi were performed. The limit of 
detection for both pathogens is 10–100 copies per reaction [9]. Results of initial testing for T. pallidum subsp. pertenue and H. 
ducreyi have been reported previously [2, 7].

In this study, we used residual DNA to sequence the 16S rRNA gene. The V1–V2 region was amplified using the Illumina adapter 
and indexed PCR primers (forward, 5'- AGMGTTYGATYMTGGCTCAG- 3', and reverse r356, 5'- GCTGCCTCCCGTAGGAGT-3'; 
from Eurofin Genomics). PCRs were performed in triplicate according to Illumina’s 16S metagenomic sequencing library prepara-
tion protocol [10] and sequenced using the 600 cycle MiSeq reagent kit V3 (Illumina). Sequences were uploaded to the European 
Nucleotide Archive under study accession number PRJEB11547, accession numbers for specific sequences in this study are shown 
in Table S1.

FastQ files were processed using a custom pipeline developed from a 16S benchmarking study [11]. In brief, flash2 [12] was 
used to join paired- end sequence reads. Sequences were then dereplicated, chimeric sequences were removed and the sequences 
were clustered at 98 % sequence similarity into operational taxonomic units (OTUs). Taxonomy was assigned using a multistep 
method. First, MAPseq [13] was used to compare OTUs to a reference V1–V2 16S rRNA gene from H. ducreyi (GenBank 
accession no. CP022037.2) and 'T. pallidum subsp. pertenue' (GenBank accession no. CP104185.1). They were considered true 
matches if they showed at least 97 % nucleotide identity. Following this, all OTUs were compared to the full silva arb database 
[14] using sintax [15] and verified with results from MAPseq. The resulting taxonomic classifications were analysed with R 
using the Phyloseq package [16].

Reads that were not assigned to order level or those that were classed as eukaryotes or viruses were removed. We conglomerated 
reads that had the same species name and deleted OTUs comprised of fewer than 200 sequence reads. The top 15 OTU assignments 
were validated by aligning the amplicon sequence against the GenBank database using blast, available at National Center for 
Biotechnology Information [17]. We used the highest similarity GenBank search result as the correct assignment if it differed 
from that of the original analysis, provided the percentage of similarity was over 97 %.

RESULTS
Of the 38 participants included in the study, 16 were from Ghana and 22 were from the Solomon Islands. All participants were 
under 15 years old and the median age was 8 years. Of the 38 participants, 20 (52.6 %) were male (Table 1).

Conglomerating and filtering removed 298 980 reads (10.8 % of total reads) representing 37 219 OTUs (99.7 % of total OTUs). The 
final dataset contained 2 480 980 reads containing 94 OTUs representing 69 unique genera. All samples (n=38, 16 from Ghana and 
22 from the Solomon Islands) had over 20 000 reads [median number of reads was 64, 72 (interquartile range: 49 371–86 943]. 
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Overall, 78.6 % of the retained reads were represented by the 15 most prevalent OTUs. Three of the original most prevalent 
OTUs were Janthinobacterium agaricidamnosum, Burkholderia contaminans and Curvibacter delicatus. These were considered 
bacterial DNAs that are commonly found contaminating reagents found in DNA extraction kits [18]. They were removed from 
the downstream analysis [18].

In the original studies [2, 7], none of the 38 samples had tested positive for the H. ducreyi hhDA qPCR target; however, in the 
current study there were 4 samples containing over 200 reads for the OTU assigned as H. ducreyi. One sample had detectable 
levels of T. pallidum subsp. pertenue, which correlates with the qPCR results of the previous study [7].

Table 1. Demographic data of the 38 participants included in the analysis

Characteristic Overall Ghana Solomon Islands

No. of participants 38 16 22

Median age (years) 8 8 8

Age range (years) 5–14 6–12 5–14

Male sex (%) 20 (52.6) 11 (68.8) 9 (40.9)

Median lesion duration (weeks) 4.1 4.1 4.1

Lesion location

  Lower leg 20 (52.6) 0 20 (90.9)

  Foot 2 (5.3) 0 2 (9.1)

  Torso 10 (26.3) 10 (62.5) 0

  Face 5 (13.2) 5 (31.3) 0

  Arm 1 (2.6) 1 (6.25) 0

Fig. 1. Relative abundance of the 15 most commonly assigned species/genera in 38 samples from Ghana (n=16) and the Solomon Islands (n=22).
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The other taxa identified in our study included common microbiota of the skin and dental cavity (Fig. 1). Alongside T. pallidum 
subsp. pertenue and H. ducreyi, some of the most common bacteria included Arcanobacterium haemolyticum, Campylobacter 
concisus, Corynebacterium diphtheriae, Staphylococcus spp., Streptococcus pyogenes and Treponema denticola, all of which have 
been seen in previous cutaneous ulcer microbiome studies [5, 6]. There was no common, shared microbiome across all samples 
collected. None of the 15 most prevalent OTUs were found in all samples tested (Fig. 2). The most prevalent bacterium, Campy-
lobacter ureolyticus, was found in 42 % of samples.

DISCUSSION
This study identified a diverse range of bacteria in CUD samples collected in the Solomon Islands and Ghana. Four samples had 
detectable levels of H. ducreyi, contradicting the qPCR H. ducreyi- negative results of the previous study [7]. This discrepancy 
may be attributed to a mutation in the hhDA target primer binding site [19], resulting in false- negative qPCR results. Repeating 
these PCRs with an alternative H. ducreyi target could confirm this; however. this was not possible during this study as we did 
not have access to the residual samples.

Bacteria such as Staphylococcus spp. and Streptococcus spp., which were common in our analysis, could be causing skin conditions 
that may be confused with yaws or H. ducreyi. This highlights the importance of using molecular and serological tools to avoid 
misdiagnosis. We also detected a high prevalence of Streptococcus pyogenes, A. haemolyticum and Corynebacterium diphtheriae, 
which were found in 36, 34 and 21 % of the samples, respectively. These bacteria were proposed candidates as causes of chronic 
ulcers in Papua New Guinea [5, 6] and should be further investigated as potential causes, or colonizers, of cutaneous ulcers.

This study was limited by the fact samples were collected at one time point without corresponding control swabs, either from 
asymptomatic skin of the individual with CUD, or from matched individuals without lesions. By investigating the microbiome 
of asymptomatic skin from the same individuals or their close contacts, it may be possible to differentiate between commensal 
bacteria and those that are potential causes of CUD. However, as this was a retrospective study using residual DNA, it was not 
possible to make this differentiation. Due to this being a retrospective observational study, adequate negative- control samples 
were not included in the sequencing run. Therefore, we are unable to determine which reads may have been extraction kit 
contaminants and which bacteria were truly present within the ulcer samples. However, by removing OTUs belonging to common 
kit contaminants [18] and OTUs with less than 200 reads, we hope to have filtered out most contaminating bacteria. Finally, in 
the Ghana study [7], researchers reported many participants had treated their ulcers with local topical treatments such as gentian 
violet paint, animal faeces or the contents of antibiotic capsules, which may have affected the bacterial composition of the sample. 
However, as samples were collected from children presenting with exudative lesions, we believe our 16S analysis gives a good 
indication of which bacteria were present at the time of sampling. Without a longitudinal study design, it is not possible to know 
which pathogens are responsible for causing the ulcers and which are merely opportunistic colonizers.

Future work should include microbiome analyses on larger sample sizes, participants from cohort studies and the inclusion of 
asymptomatic skin controls. This could include the use of novel technologies like the MinION sequencer (Oxford Nanopore 
Technologies) to allow for rapid, close- to- the- patient, or even point- of- care diagnosis of CUD. By inclusion of the appropriate 

Fig. 2. The proportion of samples from Ghana and the Solomon Islands (n=38) containing the 15 most prevalent OTUs. Samples were considered to 
contain the OTU if they accounted for at least 1 % of the total reads of the sample.



5

Handley et al., Microbial Genomics 2024;10:001234

controls, more inferences could be made about causes of cutaneous ulcers leading to the development of more appropriate 
diagnostic tests or strategies. Accurate diagnostic tools would enable the deliverance of appropriate antimicrobial treatments and 
help reduce the selection pressure for resistance development [20].
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