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Areas included in the analysis of individual-level data 

The hospitals where data were collected for the study reported in [1] were in the Kilimanjaro 

and Tanga regions of North-East Tanzania. The study hospitals in Kilimanjaro region spanned 

the main population centres (see Figure 1 of the main text), and so we included all of this 

region in the analysis. In Tanga region, Tanga is a large town, none of whose hospitals were 

included in the original study. Also, none of the study hospitals were in the south-west 

Tanga region. Hence we excluded from the analysis areas around Tanga town and in the 

south and west of Tanga region. The included areas in Tanga region were Korogwe and 

Lushoto districts and parts of Muheza and Handeni districts. We excluded the remainder of 

Muheza and Handeni districts, plus Tanga, Pangani and Kilindi districts (Figure S1).  

The wards included in Muheza and Handeni districts were: Bwembwera, Daluni, Kicheba, 

Kigongoi, Kilulu, Kisiwani, Kwafungo, Lusanga, Magila, Magoroto, Majengo, Maramba, 

Masuguru, Mbaramo, Mhinduro, Misalai, Misozwe, Mkuzi, Mtindiro, Ngomeni, Nkumba, 

Pande, Potwe, Songa, Tingeni and Zirai wards in Muheza district; and Kabuku, Kwamatuku, 

Kwedizinga, Mgambo and Segera wards in Handeni district.   

 

Figure S1 Areas included in the analysis 

 



 

The ward of each person presenting at hospital was recorded, and so we were able to 

include in the analysis only those severe malaria patients who lived in the included wards, as 

well as using the populations of the included wards from the Tanzania National Census 

(2002) as the denominator for calculating incidence. The population at risk used to estimate 

incidence was considered to be the population of the wards from which cases were reported 

plus a handful of wards which were close to the hospital but reported no cases in the study 

period. At the district hospital in the highest transmission setting, children were recruited 

only every second day, due to the very large number of admissions. The data were weighted 

accordingly. 

 

Model fitting methodology 

Symptoms and mortality parameters 

The parameters that determine the probability of experiencing each symptom, given that an 

episode of severe malaria occurs, and the case fatality ratio for each combination of 

symptoms were assumed to be independent of transmission intensity and past exposure. 

These parameters were estimated by maximum likelihood using the individual-level data 

from Tanzania.  

Transmission model 

The model-fitting for estimating the parameters relating to immunity against severe disease 

was done using Bayesian methods. The procedure for fitting the model to data was as 

follows: 

 find the equilibrium model solution for each location, conditional on a given EIR, 

using the model and parameters from [2]; 

 for each location, find the predicted incidence of severe malaria by age; 

 calculate the likelihood that the model produced the observed data. 

We grouped the individual level data from Tanzania into six areas, and treated each as a 

single transmission setting for the purpose of calculating the model prediction: Tanga and 

Kilimanjaro regions were each divided into low, mid and high altitude (below 600m, 600-

1200m and above 1200m respectively). Wards were classified according to the mean 

altitude, weighted by the population in each square kilometre. In the description that 

follows, these data are referred to as dataset A.  

We additionally used data from nine sites across Africa reported in [3, 4], referred to as 

dataset B. The severe disease incidence data from Bakau and Sukuta, The Gambia, Kilifi 



North, Siaya and Kilifi South, Kenya were originally published in [5], while the incidence data 

from Kilifi Township, Kenya, Mponda, Malawi, Foni Kansala, The Gambia and Ifakara, 

Tanzania were first published in [3]. The data point in [3] from an area of Ethiopia where 

malaria is epidemic rather than endemic was excluded since our analysis focusses on 

endemic malaria transmission. The denominator population for calculating incidence was 

taken as “pre-defined communities located with 15km of essential clinical services” ([3], 

figure 4). 

  

The data from dataset B was grouped into 10 one year age groups, from birth to age 10. To 

model variation in incidence not explained by transmission intensity, we included a random 

effect u for each of the nine sites, having a normal distribution with standard deviation V . 

For a given set of parameters let the model-predicted incidence of severe malaria in site j  

and age group i  be 
ji , and the person-time at risk and number of episodes be 

jiT  and 
jiy

 

respectively. We then assume that conditional on u , 
jiy  follows a negative binomial 

distribution with mean 
u

ji jie T   and dispersion parameter V . The random effects were 

integrated out of the likelihood by Gauss-Hermite quadrature.  

In dataset B, where the population at risk was defined within a fixed radius of the hospital, 

the incidence rate was much higher than in dataset A, where the population of a larger area 

was taken as the population at risk. It is likely that there were also differences in health care 

availability leading to different catchment areas and different local population densities. 

These differences could not be resolved given the historic nature of the data. Instead of 

having random effects we therefore introduced scaling factors so that we could jointly fit the 

model to the two different types of data. We introduced a total of six scaling factors one for 

each of the transmission settings for the Tanzanian data. While this scaling was used to 

adjust overall incidence, it did not affect estimates of the age-profiles which were the main 

motivation for this analysis.  

 

Dataset A was available at individual level. For each of the six areas into which the data were 

categorised, denote the scaling factor by kr  for area k . Then there was an additional scaling 

factor for each ward 
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where jx  is the median travel time to hospital reported by patients living in ward j , and 0x  

and   are parameters to be estimated. A small number of wards had no reported travel 

time. For these, the time was interpolated from neighbouring wards.  

The data in each ward were put into 31 age groups. Starting at age 0, they were: 4 of width 3 

months, 14 of width 1 year, and 13 of width 5 years. If the model-predicted incidence of 

severe malaria in ward j  and age group i  is 
ji , and the person-time at risk is 

jiT , then the 

expected number of events is  

( )ji k j j ji jir s T 
 

where ( )k j  is the area that ward j  belongs to. In order to give comparable statistical 

weight to that given to the data in dataset B, we assume that there is a gamma-distributed 

random effect   for each of 14 age groups, 10 groups up to age 10 (as for dataset B), and 

then 10-15, 15-20, 20-40 and above 40 years, with each  ~ ,1/V VGamma    being 

common to all wards. Then conditional on  , the number of severe disease episodes follows 

a Poisson distribution with mean ji . The random effects   can be analytically integrated 

out of the likelihood [6]. 

The parasite prevalence in 2 to 10 year-olds was also known for each site in dataset B. This 

was modelled using a beta-binomial likelihood with site-level normally distributed random 

effects for the logit prevalence, as in [2]. 

For each site, we fitted the EIR as parameters, with log-normal prior distributions. The log 

EIR for each site in dataset B was given a prior mean based on [7], and a standard deviation 

of 2, so that the prior distribution is relatively flat and information on the transmission 

intensity comes mainly from the parasite prevalence. The fitting to uncomplicated malaria, 

parasite prevalence and EIR data reported in [2] included parasite prevalence data from 24 

villages from the Kilimanjaro and Tanga regions, which for model fitting were grouped into 

the same six areas by region and altitude as dataset A here. Hence we had an estimate of 

the log EIR for each area, which we took as the prior mean, and we took the standard 

deviation to be 0.3. 

 

  



Parameter estimates 

Tables S1 and S2 contain the maximum likelihood estimates and 95% confidence intervals 

for the parameters determining which symptoms occur and the case fatality of each 

combination of symptoms. These were estimated from dataset A. 

 
 
Table S1 Parameters determining probability of each symptom occurring. The parameters 
are defined in the main text. 

 Maximum likelihood estimates and 95% confidence intervals 

Symptom 
0q  1q  r  

Severe anaemia 0.548 (0.490, 0.620) 0.178 (0.125, 0.229) 0.252 (0.141, 0.434) 

Cerebral malaria 0.024 (0.005, 0.045) 0.158 (0.122, 0.222) 0.189 (0.076, 0.329) 

Respiratory distress 0.185 (0.045, 1.000) 0.100 (0.082, 0.118) 2.970 (0.417, 47.3) 

 
 
Table S2 Case fatality ratio (%) for each combination of symptoms with 95% confidence 

intervals 

Symptoms Estimate 95% CI 

None  2.8 1.9, 3.9 

Severe anaemia 4.0 2.7, 5.8 

Cerebral malaria 16.2 9.2, 25.8 

Respiratory distress 22.1 13.9, 32.3 

Anaemia and cerebral 17.2 6.9, 33.7 

Anaemia and respiratory 22.5 14.4, 32.5 

Cerebral and respiratory 60.0 43.5, 74.9 

All symptoms 41.2 20.7, 64.4 

 

 

All transmission model parameters not related to severe disease were fixed at the values 

estimated in [2]. Table S3 lists the prior values and poster estimates and credible intervals of 

the severe disease parameters which were fitted here. 

 

  



Table S3 Transmission model parameters related to severe disease 

Parameter description Symbol Prior median and 95% 

interval 

Posterior median and 95% 

credible interval 

Acquired immunity 

Probability with no 

immunity 
0  0.5 (0.025, 0.975) 0.0749 (0.0302, 0.150) 

Maximum relative 

reduction 
1  0.5 (0.025, 0.975) 1.19E-4 (3.02E-5, 4.42E-4) 

Inverse of decay rate 
Vd  Fixed at 30 years  

Scale parameter 
0VI  0.0085 (0.000022, 4.94) 1.05 (0.57, 1.92) 

Shape parameter 
V  2.01 (0.88, 3.06) 1.99 (1.55, 2.56) 

Duration in which 

immunity is not boosted 
Vu  7 days (0.28, 178) 11.3 days (0.76, 53.6) 

Maternal immunity 

New-born immunity 

relative to mother’s 
VMP  0.5 (0.025, 0.975) 0.197 (0.122, 0.460) 

Inverse of decay rate of 

maternal immunity 
VMd  194 days (96.1, 342) 76.6 days (52.2, 111) 

Travel kernel for dataset A 

Time-scale 
0x  2.0 hours (0, 36.6) 2.63 hours (2.52, 2.74) 

Shape parameter   1.82 (0.07, 7.79) 6.07 (5.18, 7.11) 

Scaling factors r  for recorded severe disease incidence in dataset A 

By region and altitude 

Kilimanjaro:      <600m  1.0 (0.02, 50) 0.056 (0.022, 0.144) 

600-1200m  “ “ 0.286 (0.164, 0.641) 

>1200m  “ “ 0.032 (0.016, 0.082) 

Tanga:           <600m  “ “ 0.617 (0.327, 1.19) 

600-1200m  “ “ 0.084 (0.047, 0.181) 

>1200m  “ “ 0.049 (0.026, 0.117) 

 

 

  



Additional graphs of results 

Travel time to hospital 

Figure S2a shows the distribution of travel times to hospital in dataset A for all severe 

disease patients included in the analysis for whom this data was available, up to 10 hours. 

Each bar includes the upper limit: for example reported times of exactly 1 hour are included 

in the first bar, not the second bar. Most patients (79%) travelled less than two hours to 

hospital (47% 1 hour or less, 32% 1 to 2 hours), but a substantial number travelled for many 

hours, with the longest journey times being 10, 12 and 20 hours.  

We estimate that the proportion of severe malaria patients reaching hospital decreases 

sharply as their travel time to hospital increases from two to four hours (Figure S2b), which 

is consistent with previously published work reviewed in [8]. This suggests that the overall 

incidence of severe malaria and malaria mortality in this study could be an underestimate 

due to the high probability of missing cases amongst populations more than 2 hours away. 

 

Figure S2 (a) Reported travel times to hospital among severe disease patients. (b) Probability 

that a case of severe malaria will present to hospital by travel time to the hospital for that 

ward in hours, relative to someone with zero travel time. 

 

 

Observed and fitted symptoms by age 

We assume in the fitted model that the probability of each type of symptom given that there 

is an episode of severe malaria is independent of transmission intensity, depending only on 

age. Figure S3 shows the observed probability of each of the three symptoms, or of none of 



them in the whole Tanzanian dataset and also in two subsets of the data, low altitude Tanga 

and mid altitude Kilimanjaro: 89% of the patients in the analysis were from these areas. The 

former has much higher transmission than the latter. For plotting, the data are aggregated 

into the age groups 0-2, 2-5, 5-10 and 10-20 years. 

Generally the model fits the overall dataset well, although at older ages the model may 

slightly under-estimate the probability of developing respiratory distress. However, in each 

age group the proportion of severe cases with severe anaemia is lower in mid altitude 

Kilimanjaro than in low altitude Tanga, and the proportion with none of the three symptoms 

and the proportion with cerebral malaria are both higher. 

 

Figure S3 Observed probability of each symptom among those meeting the criteria for 

severe malaria in [1], with 95% binomial confidence intervals, and fitted model. 

 

 



Case fatality by age and transmission intensity 

Figure 3D in the main text shows the observed and model predicted case fatality in the 

Tanzanian dataset. We again plot the observed data for mid altitude Kilimanjaro and low 

altitude Tanga, in Figure S4. In the fitted model case fatality is assumed to depend only on 

the symptoms suffered, and so for a given age is assumed to be independent of transmission 

intensity. There possibly a lower case fatality in the youngest children in mid altitude 

Kilimanjaro.  

 

Figure S4 Fitted case fatality, and observed data in two areas of Tanzania. 
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